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Abstract 
Antibody-mediated immunity is crucial in the vertebrate immune system. Nanobodies, also known as VHH or single-domain antibodies 
(sdAbs), are emerging as promising alternatives to full-length antibodies due to their compact size, precise target selectivity, and stability. 
However, the limited availability of nanobodies (Nbs) for numerous antigens (Ags) presents a significant obstacle to their widespread 
application. Understanding the interactions between Nbs and Ags is essential for enhancing their binding affinities and specificities. 
Experimental identification of these interactions is often costly and time-intensive. To address this issue, we introduce NABP-BERT, a 
deep-learning model based on the BERT architecture, designed to predict NANOBODY®-Ag binding solely from sequence information. 
Furthermore, we have developed a general pretrained model with transfer capabilities suitable for protein-related tasks, including 
protein-protein interaction tasks. NABP-BERT focuses on the surrounding amino acid contexts and outperforms existing methods, 
achieving an AUROC of 0.986 and an AUPR of 0.985. 
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Introduction 
Antibodies (Abs) are proteins that recognize and bind to specific 
molecular sites on antigens (Ags), potentially harmful molecules, 
to trigger an immune response [1]. Due to their versatile bind-
ing capabilities, antibodies represent the predominant category 
of biotherapeutics, with 6 out of the top 10 most successful 
drugs being antibodies and a market value exceeding 100 billion 
dollars. The clinical development of antibody-based medicines 
is complex and time-consuming, often spanning several years 
[2, 3]. Abs are complex molecules composed of two polypep-
tide chains that require simultaneous expression and engineer-
ing, which can pose significant challenges. Due to their sub-
stantial size, the protein delivery might be challenging, espe-
cially in difficult situations such as tumor penetration. Therefore, 
there is considerable interest in exploring alternative Ab formats 
with more favorable therapeutic attributes. A subclass of Abs, 
called nanobodies (Nbs) or single-domain antibodies (sdAbs), has 
been discovered in camelid species such as camels, llamas, and 
alpacas [4]. 

Nbs exhibit structural similarities to normal Abs, but their 
Ag-binding regions are composed of a single polypeptide chain 
without a light chain. Nbs possess superior biophysical and ther-
apeutic characteristics compared to Abs due to their smaller size 
(12∼15 kDa) while still maintaining the benefits of molecular 
recognition [5] and possessing enhanced thermal stability. Fur-
thermore, observations have shown that Nbs can identify hid-
den epitopes, penetrate regions inaccessible to regular Abs, and 

exhibit greater longevity and solubility compared to conventional 
Abs [4, 6]. Due to these beneficial pharmacological characteris-
tics, Nbs are highly suitable for systematically developing multi-
component medicines. Integrating Nbs created using traditional 
laboratory techniques into clinical settings will require several 
years. To overcome this challenge, computational approaches can 
expedite the process, thereby enhancing the accessibility and 
affordability of life-saving treatments. 

Pretrained models, such as Bidirectional Encoder Repre-
sentations from Transformers (BERT) [7] and  GPT [8], have 
recently achieved significant success and are regarded as major 
advancements in artificial intelligence [9]. These High-capacity, 
self-supervised pretrained models can effectively learn from 
extensive datasets due to their numerous parameters. The vast 
knowledge embedded in these parameters can be leveraged to 
enhance various downstream tasks by finetuning these models 
for specific tasks. This approach, which utilizes extensive protein 
sequence data, has significantly improved the accuracy of 
predicting protein functions. 

This study presents PROT-BERT, a specialized self-supervised 
pretrained model designed to learn detailed representations of 
general protein sequences. PROT-BERT can serve as a foundation 
for various protein-related tasks. Furthermore, we introduce PPI-
PROT-BERT, a supervised model trained to predict interactions 
between pairs of protein sequences. PPI-PROT-BERT is based on 
PROT-BERT and is a foundation for downstream Protein-Protein 
Interaction (PPI) tasks. Building on these models, we introduce the
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NANOBODY®-Antigen Binding Prediction model, named NABP-
BERT, which is based on the pretrained BERT model. NABP-BERT is 
a novel supervised model that predicts the binding between pairs 
of nanobody-antigen (Nb-Ag) sequences. NABP-BERT is available 
in two variants: NABP-PROT-BERT and NABP-PPI-PROT-BERT, 
which utilize PROT-BERT and PPI-PROT-BERT as their pretrained 
models, respectively. 

To our knowledge, NABP-BERT represents the first attempt to 
predict Nb-Ag binding using the BERT model. Our main contribu-
tions include (i) Presenting PROT-BERT, a self-supervised model for 
protein-related tasks. (ii) Introducing PPI-PROT-BERT, a supervised 
model for protein-protein interaction prediction tasks. (iii) Propos-
ing NABP-PROT-BERT and NABP-PPI-PROT-BERT, two supervised 
models to predict binding between Nb-Ag pairs. (iv) Demonstrat-
ing that NABP-BERT models outperform existing state-of-the-art 
methods. 

Related works 
Deep learning algorithms have successfully addressed several 
challenges in protein research, including structure prediction [10], 
function prediction [11], and binding site prediction [12]. Massively 
parallel sequencing technology has facilitated the generation of 
substantial volumes of Ab repertoire sequencing data, increasing 
the utilization of deep learning in Abs [13–15]. 

Predicting Ab–Ag interactions is a crucial aspect of immunol-
ogy research, as it facilitates the development of enhanced 
treatments such as vaccines. Numerous systems and methods 
are available that can accurately predict Ab–Ag interactions. 
Lim et al. [16] developed a convolutional neural network (CNN) 
that uses complementarity-determining region (CDR) sequence 
characteristics to predict interactions between PD-1 and CTLA-4 
Abs. Wang et al. [17] developed a model that utilizes a multi-
head attention network with position embeddings of CDRs to 
accurately differentiate between Abs associated with influenza 
HA and the SARS-CoV-2 S protein. Ye et al. [18] also predicted 
Ab–Ag binding using random forest and weighted nearest-
neighbor models based on sequencing data. Huang et al. [19] 
introduced AbAgIntPre, an online tool for predicting Ab–Ag 
interactions based on sequence features. AbAgIntPre used a CNN 
combined with the encoding of spaced amino acid pair (CKSAAP) 
composition. Pittala et al. [20] developed a comprehensive deep-
learning framework to predict binding interfaces between Ags 
and Abs. Their approach integrates graph convolution networks, 
attention mechanisms, and transfer learning to capture key 
characteristics of Ab–Ag interactions effectively. Wang [21] 
employed a transformer-based neural network trained on DMS 
data to predict the escape percentages of Ab sequences against 
SARS-CoV-2 RBDs. 

Despite the discovery of Nbs more than three decades ago [22], 
there needs to be more focus on gathering data and advancing 
computational methodologies tailored explicitly for handling 
these small molecules [23]. As highlighted in previous studies 
[24–29], it is imperative to leverage deep-learning techniques 
that address the diverse sequence, structural, and Ag-binding 
attributes of Nbs to facilitate their computational design. 
Modeling and predicting Nb structures remains challenging 
[30, 31]. Although the Protein Data Bank contains hundreds of 
crystallographic structures of Nbs [32, 33], current models fail to 
comprehensively depict the significant diversity in both structure 
and sequence observed in Nb hypervariable loops. Furthermore, 
Nbs exhibit more substantial variation in conformation, length, 
and sequence diversity in their CDR3 region compared to Abs 

Table 1. Number of Samples for PPI and Nb-Ag datasets 

Dataset Training dataset Test dataset 

Pos set Neg set Pos set Neg set 

Nb-Ag 506 676 56 76 
PPI 31556 31556 281 281 

[ 27], making it more difficult to understand and predict their 3D 
structures. 

For accurate prediction of Nb structures, Tomer et al. [30] 
developed a sophisticated deep learning model called Nanonet. 
Nanonet utilizes a CNN of two 1D residual networks (ResNet) to 
perform 3D structural modeling of Nbs. Tam et al. [34] proposed a  
framework for predicting the posture of Nbs. They used modified 
parent poses to generate a set of features, which were then fed 
into a decision tree binary classifier. Additionally, Sardar et al. 
[35] employed various machine learning algorithms, including 
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive 
Bayes (NB), Multi-Layer Perceptron (MLP), Logistic Regression (LR), 
Random Forest (RF), and Decision Tree (DT) algorithms. These 
models employed gapped k-mers as an embedding technique 
to accurately predict binding interactions based solely on 
NANOBODY® and Ag sequences. 

An antibody’s CDRs exhibit high conservation between the 
heavy and light immunoglobulin chains, crucial in facilitating 
Ag binding. As previously mentioned, numerous computational 
methodologies have been devised to predict Ab–Ag interactions 
based on either structure or sequence. While these methodologies 
have proven effective in predicting Ab–Ag interactions, they do not 
apply to Nbs [31] due to their reliance on information from both 
Ab chains, whereas Nbs possess only a heavy chain. Currently, a 
model based on classical machine learning methods, as described 
by Sardar et al. [35], exists for predicting the binding between Nbs 
and Ags. However, most recent work on biomolecular interaction 
prediction has shifted towards deep learning models. Therefore, 
we developed a deep learning model based on BERT to predict the 
interaction between Nbs and Ags. 

Methods and materials 
Datasets and preprocessing 
The proposed model is trained using three distinct databases. 
The UNIPROT database is used for pretraining, while the 
NANOBODY®-Ag and binary PPI datasets are used for finetuning. 
The datasets are presented in the order of preprocessing and 
their interdependencies. Since the BERT model accommodates 
a maximum of 512 tokens, with three tokens reserved for the 
beginning, end, and separator between sequences, a total of 509 
tokens is allowed for the two sequences combined. Table 1 shows 
the number of samples in the training and test datasets. Below is 
a concise description of the collected datasets. More details about 
preprocessing the datasets can be found in the Supplementary 
Material. 

NANOBODY®-Ag dataset 
We used the dataset curated by Sardar et al. [35], which contains 
47 Ag sequences from UNIPROT [36]. For each Ag, we included all 
binding Nbs from the sdAb database [37], totaling 365 Nbs. We 
preprocessed the data using the following rules:

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae518#supplementary-data
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1. Selecting the binding and non-binding pairs using the 
Clustal Omega method to calculate the sequences’ prox-
imity matrix. 

2. Removing pairs whose combined token count exceeds 509 
tokens when using a k-mer representation with k set to 3. 

After preprocessing, 1314 pairs remained: 562 positive and 752 
negative pairs. The final Nb-Ag dataset was divided into two 
subsets. The first subset is the training set, which includes 1182 
pairs: 506 positive and 676 negative pairs, constituting 90% of the 
dataset. Within the training set, 5% is reserved for validation. The 
second subset is the test set comprising 132 pairs: 56 positive 
and 76 negative pairs, making up the remaining 10% of the total 
dataset. The Ag sequences comprise 13 unique protein sequences 
sourced from the UNIPROT database. 

PPI data 
The binary PPI dataset was sourced from the HINT database [38]. 
As of November 2023, this database contains positively interact-
ing protein-protein (PP) pairs for 12 organisms. The dataset was 
prepared for training as follows: 

1. Downloading and combining the binary interaction data for 
the 12 organisms. 

2. To avoid redundancy in finetuning with PP data, remove the 
unique protein sequences of the Ags from the PP dataset. 

3. Eliminating pairs whose combined token count exceeds 509 
tokens while using a k-mer representation with k set to 3. 

4. Dividing the interacting pairs into training and test sets. 
5. Employing BLASTp [39] to eliminate homologous proteins 

in both the test and training datasets with a similarity 
threshold of 40%. 

6. Generating random negative samples to maintain a 1:1 ratio 
of positive to negative cases. 

After preparing the PP data, a training dataset consisting 
of 63,112 examples was created, with 5% of the training data 
reserved for validation. Additionally, a test dataset comprising 
562 examples was created. 

UNIPROT database 
The protein sequences were downloaded from the UNIPROT 
database [36]. The entries were filtered based on the following 
rules: 

1. Removing sequences with fewer than 100 tokens or more 
than 509 tokens when using a k-mer representation with k=3. 

2. Removing protein sequences already present in the PPI 
dataset. 

After filtering, the total number of entries used for pretraining 
is 798,860. 

NABP-BERT model structure 
This paper introduces a novel NABP-BERT model, which provides 
a comprehensive and transferable framework for predicting Nb-
Ag interactions, focusing on the surrounding amino acid contexts. 
The NABP-BERT model uses the same structure as the BERT 
model, with some changes in the transformer module parameters. 
Figure 1 illustrates the complete structure of the BERT model, 
which consists of sequence tokenization, sequence embedding, 
transformer, and an output layer. A detailed description of the 
model structure is provided below. 

Figure 1. Structure of the BERT model consists of sequence tokenization, 
sequence embedding, transformer, and output layer. 

Sequence tokenization 
Nanobodies and Ags are composed of amino acid sequences, each 
represented by 20 distinct letters corresponding to the 20 natural 
amino acids. In this study, the NANOBODY® sequence is denoted 
as N = [n1, n2, ..., nk], and the Ag sequence as A = [a1, a2, ....., am], 
where ni and ai are the ith amino acids in the NANOBODY® and Ag 
sequences, respectively, and k and m represent the total number of 
amino acids in each sequence. Each pair of sequences in the Nb-
Ag dataset used for finetuning is associated with a label y, where  
y = 1 indicates that the NANOBODY® binds to the Ag, and y = 0 
indicates no binding. 

Initially, we tokenize the input sequence using a k-mer rep-
resentation, where each group of k amino acids is treated as 
an individual token. This approach is commonly used in protein 
sequence analysis as it incorporates additional contextual infor-
mation by combining each amino acid with its preceding ones. 
We adopt the same value of k based on prior research [40], which 
demonstrated that setting k to 3 achieves optimal performance. 
Consequently, the proposed model encodes the sequence using 
overlapping 3-mers of amino acids as tokens. For example, Fig. 2 
illustrates how the protein sequence ’MSKGEEL’ can be tokenized 
into a sequence of five 3-mers: MSK, SKG, KGE, GEE, EEL. The 
vocabulary for k = 3 consists of all the permutations of 3-mers 
plus four unique tokens: [CLS] for the classification token, [UNK] 
for the unknown token, [SEP] for the separation token, and [MASK] 
for the masked token. Thus, the total vocabulary size is 203 + 4, 
where 20 is the standard number of amino acids. 

Sequence embedding 
The input vector for each token in the model consists of three 
components: token embedding, segment embedding, and position 
embedding, as illustrated in Fig. 2. The token embedding encodes 
each 3-mer (three amino acids) based on a predefined vocabulary. 
The segment embedding distinguishes whether the token belongs 
to the first or second sequence in the pair. A positional encoding
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Figure 2. An example of sequence tokenization and embedding. The length of the NANOBODY® sequences and Ag sequences in this figure is an example. 

vector is integrated into the embedding vector to enable the 
model to capture the relative positional information of tokens 
within a sequence. The positional encoding vector is significant 
because the model does not employ recurrent or convolutional 
layers. 

Transformer 
The input embedding is fed into the transformer architecture, 
as shown in Fig. 3. This transformer comprises multiple encoder 
layers containing positional encoding, multi-head self-attention 
(MSA), and a position-wise feed-forward network (PW-FFN). The 
PW-FFN consists of two fully connected layers with a ReLU acti-
vation function in between. The MSA and the PW-FFN are aug-
mented with a residual connection, followed by a normalization 
layer, as described in [41]. Residual connections are employed 
to mitigate the vanishing gradient problem in deep networks. 
A comprehensive explanation of the transformer mechanism is 
provided in the work by Vaswani et al. Below is a concise explana-
tion of the functioning of a transformer. Given an input sequence 
X = (x1, x2, ..., xN), the output sequence of the self-attention head 
H = (h1, h2, ..., hN) may be computed as follows: 

hi = A
(
X, WQ , WK , WV) = 

N∑

j=1 

aij
(
X, WQ , WK) (

xjW
V)

(1) 

where xj ∈ Rdx , hi ∈ Rdh , WQ , WK, WV ∈ Rdx×dh are the parameter 
projection matrices. The weight coefficient aij is computed using 
a softmax function: 

aij
(
X, WQ , WK) = 

exp
(
ηij

)
∑N 

k=1 exp (ηik) 
(2) 

Figure 3. Structure of the transformer module 

The value of ηij is calculated using scaled dot-product attention: 

ηij =
(
xiWQ

) (
xjWK

)T

√
dh 

(3)
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The MSA utilizes self-attention multiple times to focus on infor-
mation from various representation subspaces at different posi-
tions simultaneously. This is formally defined as follows: 

MSA (x) = Concat (H1, H2, ..., H�) WO (4) 

The symbol Concat denotes the concatenation operation, �

represents the number of heads, and WO ∈ R�dx×dh is a matrix used  
for projection. In our study, the transformer module is configured 
with one encoder stack, eight MSA heads, a PW-FFN with 3072 
hidden units, and a transformer hidden size of 768. 

Output layer 
At the output, the [CLS] representation is fed into an output 
layer for classification, such as next sentence prediction, protein-
protein interaction prediction, or NANOBODY®-Ag binding 
prediction. 

Model training 
The proposed model adopts a pretraining-finetuning strategy. In 
the pretraining stage, self-supervised learning is employed to cap-
ture the general representation of protein sequences. The finetun-
ing stage then uses supervised learning to learn the relationships 
between pairs of sequences. Initially, the proposed model accepts 
input sequences represented by k-mer tokens. This input repre-
sentation effectively captures single and paired sentences within 
a unified token sequence, enabling our model to perform well in 
diverse downstream tasks. Specifically, for tasks involving PPI and 
NABP, the input sequence is structured as a pair of sentences: one 
representing ProteinA/NANOBODY® and the other representing 
ProteinB/Antigen. These two sentences are combined into a single 
sequence. The initial token in each sequence is consistently a 
unique classification token, denoted as [CLS]. The final hidden 
state corresponding to this token is the comprehensive represen-
tation of the entire sequence for classification purposes. 

We distinguish between the two sentences in two ways: first, 
by using a unique separator token [SEP], and second, by adding a 
segment embedding to each token to indicate whether it belongs 
to sentence A (ProteinA/NANOBODY®) or sentence B (Protein-
B/Antigen). After tokenizing the sequence, a masking strategy is 
applied, and the sequence is then passed to the embedding layer. 
It is worth noting that the masking strategy is applied only during 
the pretraining stage. The tokenized sequence is directly fed into 
the embedding layer during the finetuning stage. 

Self-supervised pretraining 
During the pretraining phase, PROT-BERT learns the fundamen-
tal syntax and semantics of protein sequence data from the 
UNIPROT database. It utilizes self-supervised learning in the gen-
eral pretraining stage for 1 000 000 epochs, as depicted in Fig. 4. 
PROT-BERT is pretrained using two unsupervised tasks on unla-
beled data. 

The first task is the Masked Language Model (MLM). In this 
task, a certain percentage of input tokens (3-mer amino acids) 
are randomly masked in a 512-length sequence, and the model 
is trained to predict these masked tokens to develop a deep bidi-
rectional representation. The final hidden vectors for the masked 
tokens are passed through a Softmax output layer across the 
vocabulary. The Supplementary Material provides more details 
about the MLM task throughout our experiments. 

The second task is Next Sentence Prediction, which is 
crucial for downstream tasks that require understanding the 

relationship between two sentences. This relationship is not 
directly addressed by traditional language modeling, as seen 
in tasks such as predicting PPIs and Nb-Ag binding. To enable 
the model to comprehend the connections between sentences, 
we pre-train it to predict the subsequent sentence. For each 
pretraining example, when selecting sentences A and B, B is 
chosen as the immediate subsequent sentence to A (labeled as 
IsNext) 50% of the time, and as a random sentence from the 
corpus (labeled as NotNext) the remaining 50% of the time. 

Supervised finetuning 
The PROT-BERT model undergoes two levels of finetuning fol-
lowing pretraining, as illustrated in Fig. 4. In the first level, the 
model is finetuned to predict interactions between annotated PP 
pairs. The model refined at this level is referred to as the PPI-
PROT-BERT model. In the second level, the PPI-PROT-BERT model 
is finetuned using labeled data from Nb-Ag pair sequences to 
predict the binding between NANOBODY® and Ag sequences. 
The model developed at this stage is denoted as the NABP-PPI-
PROT-BERT model. Each finetuning level is trained 10 times, each 
training session consisting of 100 epochs. The results presented 
in this paper represent the average performance across these 10 
executions. 

Implementation details 
The model was trained using a mini-batch size of 8 samples 
with back-propagation and binary cross-entropy loss. The Adam 
optimizer with accelerated adaptive moment estimation was used 
to minimize the loss, with the learning rate set to 2 × 10−5. The  
training was conducted on a server equipped with a GeForce GTX 
2080 Ti GPU with 11 GB of VRAM and a total memory of 251 GB. 
Details of the software libraries and framework versions are pro-
vided in the ’requirements.txt’ file, which is available alongside 
the code in the GitHub repository. 

Results and discussion 
Performance Evaluation by Varying the Number 
of Attention Heads 
We evaluated the performance of NABP-PPI-PROT-BERT by varying 
the number of attention heads in the transformer module. The 
number of attention heads can only be adjusted if the hidden size 
of the transformer is divisible by the number of attention heads. 
Given that the hidden size is 768, we configured the number of 
attention heads to be 1, 2, 3, 4, 6, 8, and 12. Throughout these 
experiments, the number of encoder layers was fixed at 1. Table 2 
presents the results of the NABP-PPI-PROT-BERT model with dif-
ferent numbers of attention heads, evaluated using AUROC and 
AUPR metrics. Notably, the performance across all experiments 
was satisfactory, with AUROC and AUPR values exceeding 0.96. 
The optimal performance was achieved with 8 attention heads, 
resulting in AUROC and AUPR values of 0.986 and 0.985, respec-
tively. 

Performance evaluation by varying the number 
of encoder layers 
In this experiment, the performance of NABP-PPI-PROT-BERT was 
evaluated by varying the number of encoder layers in the trans-
former module. The encoder layers were tested with configura-
tions of 1, 2, 4, 6, 8, 10, and 12 layers, while the number of attention 
heads was kept constant at 8 across all experiments. Table 3 
shows the performance of the NABP-PPI-PROT-BERT model with 
different numbers of encoder layers, as measured by AUROC and
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Figure 4. The training process of the proposed NABP-PPI-PROT-BERT model consists of three stages: self-supervised pretraining, supervised finetuning 
1, and supervised finetuning 2. 

Table 2. The performance of the NABP-PPI-PROT-BERT model by 
varying the number of attention heads with a single encoder in 
terms of AUROC and AUPR. 

# attention 
heads 

AUROC AUPR 

1 0.968 0.967 
2 0.982 0.976 
3 0.964 0.966 
4 0.973 0.972 
6 0.978 0.978 
8 0.986 0.985 
12 0.971 0.973 

Note: the best performance is given in boldface. 

Table 3. The performance of the NABP-PPI-PROT-BERT model by 
varying the number of encoder layers and number of attention 
heads is set to 8 in terms of AUROC and AUPR. 

# encoder  
layers 

AUROC AUPR 

1 0.986 0.985 
2 0.974 0.972 
4 0.960 0.964 
6 0.959 0.963 
8 0.948 0.949 
10 0.927 0.930 
12 0.921 0.927 

Note: the best performance is given in boldface. 

AUPR metrics. All configurations delivered satisfactory results, 
with AUROC and AUPR values exceeding 0.92. However, it is 
essential to note that the model’s performance tends to decrease 
as the number of encoder layers increases. Specifically, the AUROC 
dropped from 0.986 to 0.921, and the AUPR decreased from 0.985 
to 0.927 as the number of encoder layers increased from 1 to 12. 
Thus, our model suggests that a shallow BERT network, compris-
ing a single encoder layer and eight attention heads, is sufficient 
for the NABP task. 

Evaluation of performance through finetuning 
the pretrained PROT-BERT model with 
NANOBODY®-Ag Data 
Further experiments were conducted to optimize the pretrained 
’PROT-BERT’ model using Nb-Ag data. This refined model, named 
NABP-PROT-BERT, underwent a single round of finetuning. 
Figures 5 and 6 compare the performance of NABP-PROT-
BERT with NABP-PPI-PROT-BERT, focusing on different numbers 
of attention heads and encoder layers, respectively. Figure 5 
demonstrates that the NABP-PPI-PROT-BERT model outperforms 
the NABP-PROT-BERT model in terms of both AUROC and AUPR 

metrics across all attention head values when using a shallow 
BERT network with a single encoder. The NABP-PPI-PROT-BERT 
model shows superior improvements of 0.47%, 1.87%, 0.23%, 
2.04%, 2.60%, 2.93%, and 1.33% in AUROC, and 0.40%, 1.16%, 
0.45%, 1.77%, 2.33%, 2.53%, and 1.17% in AUPR, at attention head 
values of 1, 2, 3, 4, 6, 8, and 12, respectively. 

Figure 6 compares the two proposed models with varying 
numbers of encoder layers while keeping the number of 
attention heads fixed at 8. When using two or four encoders, 
the performance of both models is similar to that with a single 
encoder. However, with six encoders, which constitute a deeper 
BERT network, NABP-PROT-BERT outperforms NABP-PPI-PROT-
BERT in terms of AUROC, showing improvements of 0.71%, 2.11%, 
4.66%, and 4.45% at encoder layers 6, 8, 10, and 12, respectively. 
In terms of AUPR, NABP-PROT-BERT outperforms NABP-PPI-PROT-
BERT by 0.08%, 1.91%, 4.27%, and 3.91% at encoder layers 6, 8, 10, 
and 12, respectively. 

The most optimal results were achieved with a shallow BERT 
network using a single encoder and eight attention heads, com-
bined with two rounds of finetuning. The NABP-PPI-PROT-BERT 
model achieved AUROC and AUPR values of 0.986 and 0.985, 
respectively. In contrast, a deep BERT network with 10 encoders 
and 8 attention heads, with a single round of finetuning, yielded 
AUROC and AUPR values of 0.974 and 0.973 for NABP-PROT-
BERT. Therefore, a shallow BERT network with dual finetuning 
levels performs better than a deep network with a single finetun-
ing level. However, constructing the NABP-PPI-PROT-BERT model 
requires two finetuning levels, making it significantly more time-
consuming than the single finetuning required for NABP-PROT-
BERT. This time difference is notable, assuming both models have 
identical architectures, including the same number of encoder 
layers and attention heads. 

Effect of using the self-supervised pretraining 
stage 
This experiment investigates the impact of the pretraining mech-
anism on the predictive performance of NABP recognition models. 
For each model architecture, where the number of attention 
heads or encoders is varied, we bypassed the pretraining phase 
and directly trained the models using the Nb-Ag pairs dataset. 
The resulting model is referred to as NABP-BASIC-BERT. Figures 5 
and 6 present the experimental results of the NABP-BASIC-BERT 
model compared to the NABP-PROT-BERT and NABP-PPI-PROT-
BERT models in terms of AUROC and AUPR. There is a significant 
enhancement in evaluation metrics due to pertaining, as shown 
in Figures 5 and 6. This confirms the effectiveness of pretraining 
in acquiring knowledge about the relationships between amino 
acids by identifying shared characteristics in protein sequences. 
As a result, it enhances the model’s capability to identify NABP in 
subsequent tasks.
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Figure 5. Comparison between NABP-BASIC-BERT, NABP-PROT-BERT, and NABP-PPI-PROT-BERT models by varying the number of attention heads with 
a single encoder, in terms of (a) AUROC, (b) AUPR. 

When a single encoder is used with varying numbers of 
attention heads, the impact of pretraining on improving model 
performance becomes more apparent. The NABP-PROT-BERT 
models show improvements of 8.07%, 5.41%, 5.00%, 3.14%, 1.78%, 
2.34%, and 3.09% in AUROC for attention heads 1, 2, 3, 4, 6, 
8, and 12, respectively. In terms of AUPR, the improvements 
are 5.69%, 4.31%, 4.74%, 2.15%, 1.78%, 3.14%, and 2.18% over 
the NABP-BASIC-BERT models with the same attention heads. 
The NABP-PPI-PROT-BERT model demonstrates improvements of 
8.54%, 7.28%, 5.23%, 5.18%, 4.38%, 5.27%, and 4.41% in AUROC, 
and 6.10%, 5.47%, 5.20%, 3.92%, 4.11%, 5.67%, and 3.35% in AUPR, 
compared to the NABP-BASIC-BERT models at attention heads 1, 
2, 3, 4, 6, 8, and 12, respectively, as shown in Fig. 5. 

Figure 6 illustrates that when using various numbers of 
encoder layers with eight attention heads, the NABP-PROT-BERT 

model achieves the following improvements: 2.34%, 0.58%, 1.95%, 
1.2%, 8.95%, 3.20%, and 1.83% in AUROC. Similarly, in terms of 
AUPR, improvements of 3.14%, 2.33%, 5.81%, 0.66%, 10.90%, 4.33%, 
and 1.48% are observed over the NABP-BASIC-BERT models at 
encoder layers of 1, 2, 4, 6, 8, 10, and 12, respectively. The NABP-
PPI-PROT-BERT models demonstrate improvements of 5.27%, 
3.38%, 1.82%, 0.52%, and 6.84% in AUROC. Similarly, in terms 
of AUPR, there are improvements of 5.67%, 4.30%, 6.68%, 0.59%, 
and 8.99% over the NABP-BASIC-BERT models at encoder layers 
1, 2, 4, 6, and 8, respectively. However, with 10 and 12 encoder 
layers, there is a significant decrease in performance by 1.46% 
and 2.62% in AUROC, respectively. Regarding the AUPR metric, 
a drop of 2.43% is observed with 10 encoders. Adopting deep 
layers in the BERT network leads to a degradation in performance, 
which is not advantageous when dealing with the NABP problem.
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Figure 6. Comparison between NABP-BASIC-BERT, NABP-PROT-BERT, and NABP-PPI-PROT-BERT models by varying the numbers of encoder layers, and 
the number of attention heads is fixed at 8, in terms of (a) AUROC, (b) AUPR. 

By pretraining on a substantial amount of protein samples, it 
becomes feasible to effectively capture the relationships between 
amino acid molecules in protein sequences, thereby reducing 
the learning burden on the model. Pretraining is essential for 
optimizing the performance of the model. 

Performance comparison with state-of-the-art 
methods 
This study aims to develop a deep learning approach for predicting 
Nb-Ag binding based solely on sequence information. We found 
only one prior study [35] that explored this task exclusively using 
sequence data. Several classical machine learning algorithms 
were employed in that study, including SVM, NB, MLP, KNN, RF, 

LR, and DT. To ensure a fair comparison, we re-implemented 
these machine learning models using the same Nb-Ag dataset 
used for the proposed models. Additionally, we maintained the 
same training-to-test data ratio and used the same performance 
metrics, AUROC and AUPR. We then compared the proposed 
deep learning models—NABP-BASIC-BERT, NABP-PROT-BERT, 
and NABP-PPI-PROT-BERT—and the re-implemented models 
suggested by Sardar et al. [35]. 

Table 4 presents the performance of the NABP-BASIC-BERT, 
NABP-PROT-BERT, and NABP-PPI-PROT-BERT models, as well as 
the re-implemented ML models, in terms of AUROC and AUPR. The 
NABP-BASIC-BERT model is built with 6 encoders and 8 attention 
heads, the NABP-PROT-BERT model comprises 10 encoders with 8
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Table 4. Comparison between NABP-BASIC-BERT, 
NABP-PROT-BERT, and NABP-PPI-PROT-BERT models and 
state-of-the-art methods in terms of AUROC and AUPR. 

Model AUROC AUPR 

NABP-PPI-PROT-BERT 0.986 0.985 
NABP-PROT-BERT 0.974 0.973 
NABP-BASIC-BERT 0.953 0.957 
SVM 0.793 0.728 
NB 0.846 0.789 
MLP 0.635 0.586 
KNN 0.933 0.899 
RF 0.909 0.887 
LR 0.826 0.766 
DT 0.907 0.868 

Note: the performance of better models is in Boldface, and the best one is 
underlined. 

attention heads, and the NABP-PPI-PROT-BERT model consists of 
a single encoder with 8 attention heads. We focus on these three 
models as they exhibit superior performance compared to the 
other proposed models. The KNN method outperforms all other 
traditional ML algorithms, achieving AUROC and AUPR scores of 
0.933 and 0.899, respectively. In contrast, the NABP-BASIC-BERT, 
NABP-PROT-BERT, and NABP-PPI-PROT-BERT models outperform 
it, achieving AUROC and AUPR scores of 0.953 and 0.957, 0.974 
and 0.973, and 0.986 and 0.985, respectively. 

These results demonstrate that deep learning algorithms yield 
superior performance to classical ML algorithms. Specifically, the 
NABP-BASIC-BERT model shows improvements of 2% and 5.8% 
in AUROC and AUPR, respectively, compared to the KNN algo-
rithm. The NABP-PROT-BERT model demonstrates enhancements 
of 4.1% and 7.4% in AUROC and AUPR, respectively, compared to 
KNN. Finally, the NABP-PPI-PROT-BERT model exhibits improve-
ments of 5.3% and 8.6% in AUROC and AUPR, respectively, over 
the KNN algorithm. Among these models, NABP-PPI-PROT-BERT 
emerges as the most superior. 

Conclusion 
This paper introduces a novel sequence-based deep learning 
model leveraging the BERT architecture to predict NANOBODY®-
Ag interactions, thereby reducing the need for computationally 
intensive techniques such as docking. The proposed models 
employ a pretraining-finetuning approach. During the pretraining 
phase, the model efficiently captures information regarding 
the relationships between amino acids in protein sequences. 
The finetuning process comprises two stages: finetuning with 
protein-protein pair data and finetuning with Nb-Ag pair data. 
Experimental results reveal that employing a shallow BERT 
network with two levels of finetuning yields superior performance 
compared to utilizing a deep network with a single level of 
finetuning. Our proposed NABP-BERT models outperform other 
state-of-the-art methods in predicting NANOBODY®-Ag binding. 
Furthermore, a comprehensive pretrained model, trained on a 
large dataset of protein sequences, can be used for subsequent 
protein-related tasks. This versatile model, trained on protein-
protein pair sequences, can be adopted for downstream protein-
protein tasks. Specifically, when the structure of a NANOBODY®’s 
binding site is not accessible, the proposed NABP-BERT method, 
which is publicly accessible, will be a powerful tool in the 
expanding field of NANOBODY®-Ag binding prediction. Moreover, 
it can accelerate the progress of Nb-based diagnostics and 
therapies for various diseases, such as cancer and other severe 

illnesses. Our future focus will be on utilizing other deep learning 
algorithms and extracting additional structural features from 
NANOBODY® and Ag sequences to enhance the performance of 
our model. 

Key Points 
• Developed the PROT-BERT model as a general model for 

various protein-related tasks. 
• Introduced the PPI-PROT-BERT model as a base model for 

protein-protein interaction tasks. 
• Proposed the NABP-PROT-BERT and NABP-PPI-PROT-

BERT models specifically designed for predicting 
NANOBODY®-antigen binding. 

• Demonstrated that our proposed models outperform 
existing state-of-the-art methods. 
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