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Abstract

Collagen self-assembly supports its mechanical function, but controlling collagen mimetic peptides (CMPs) to self-assemble into higher-
order oligomers with numerous functions remains challenging due to the vast potential amino acid sequence space. Herein, we
developed a diffusion model to learn features from different types of human collagens and generate CMPs; obtaining 66% of synthetic
CMPs could self-assemble into triple helices. Triple-helical and untwisting states were probed by melting temperature (Tm); hence, we
developed a model to predict collagen Tm, achieving a state-of-art Pearson’s correlation (PC) of 0.95 by cross-validation and a PC of 0.8
for predicting Tm values of synthetic CMPs. Our chemically synthesized short CMPs and recombinantly expressed long CMPs could self-
assemble, with the lowest requirement for hydrogel formation at a concentration of 0.08% (w/v). Five CMPs could promote osteoblast
differentiation. Our results demonstrated the potential for using computer-aided methods to design functional self-assembling CMPs.
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Introduction
Collagens are widely distributed in bones, muscles, and blood
[1], containing 28 subtypes, most of which are type I, II, and III
[2]. Collagens are important biomaterials for cosmetics [3], drug
delivery [4], nutraceuticals [5, 6] and tissue engineering [7, 8]. The
structural integrity of collagen is important for supporting its
mechanical function and stability [9]. Collagen consists of Gly-X-
Y repeats, the basic unit for the triple helix, where X and Y are
usually proline and hydroxyproline [1]. Collagen assembles into
a triple helical structure as tropocollagen, which fundamentally
supports the formation of collagen fibres. Collagen fibres, in
turn, support the mechanical function under physiological con-
ditions and endow collagen with properties that make it ideal as
a biocompatible material for biomedical applications [10]. Native
collagens have inherent limitations including poor stability and
immunogenicity, low mechanical strength, and weak bioactivity
[11–13], addressing the need for designing functional collagen
mimetic peptides (CMPs) to overcome these limitations [14].

The formation of collagen triple helices facilitates higher-
order oligomer assembly [15]. The process is triggered by
noncovalent interactions between molecules, leading to a stable
supramolecular structure [16]. Collagen can form hydrogels
to support cell proliferation and adhesion [17–21]. However,
designing CMPs to mimic native collagens to self-assemble into
triple helices remains challenging. The G-X-Y repeat is the basic
unit supporting triple-helix formation, and the content of charged
residues and the degree of proline hydroxylation are believed
to determine collagen self-assembly [10, 22, 23]. Additionally,
various factors, including sequential composition and incubation
conditions, can influence collagen self-assembly [24]. Given
that self-assembly is crucial for collagen’s biological functions,
designing self-assembled CMPs is of significant importance.

The generative Artificial Intelligence (AI)-based collagen design
was first conducted by Khare et al., who combined generative
and supervised models for collagen sequences at with desired
melting temperature (Tm) [14]. The transition between triple helix
and untwisted states of collagen can be represented by the Tm

value [25], highlighting the significance for accurate prediction
of collagen Tm. The predictive accuracy of collagen Tm values
was further improved by a Bidirectional Encoder Representation
from Transformers (BERT)-based deep learning model, achieving
an R2 of 0.84 [26]. Besides AI-based design, amino acid sequence
analysis and molecular dynamics (MD) simulation have been
employed to investigate the mechanism underpinning collagen
self-assembly [27, 28]. MD simulation–based studies highlight the
role of proline hydroxylation in internal noncovalent interactions
[22] and provide insight into mutation-related CMP design. How-
ever, MD simulation–based methods require extensive computa-
tional resources that limit their utility for exploring novel CMPs.

To address the difficulties in designing CMPs and to control
their self-assembly behaviour at different temperatures, we devel-
oped a combinatorial AI-based method involving a generative
model and a supervised model. First, we developed a diffusion
model–based network [29] to identify the features of different
types of human collagens and generate CMPs, and their Tm values
were predicted using the supervised model, which learned amino
acid sequence features from a collagen Tm dataset [30]. The model
proved accurate and was implemented for the selection of CMPs
based on their predicted Tm values. We tested Escherichia coli and
Pichia pastrois as possible platforms for recombinant expression
of CMPs and found that several CMPs could be directly expressed
in both hosts. Additionally, we investigated the contribution
of proline hydroxylation to triple helix formation. To identify

samples that outperformed currently available collagen products,
we tested the capability of CMPs to inducing osteoblastic
differentiation and cell adhesion.

Results
Generating collagen mimetic peptides by
combining generative and supervised models
Collagen consists of G-X-Y repeats that drive triple-helix forma-
tion [31]. We developed a generative model (ColDiff) based on
a diffusion model to learn amino acid sequence features from
natural collagens and generate functional CMPs. A 30 aa region
of human collagen could assemble into a triple helix that was
verified by crystallography [32, 33]. Meanwhile, most collagen
samples in the collagen Tm dataset [30] varied in length from 27
to 33 aa (Supplementary Data 1). Therefore, we decided to focus
on generating collagens 30 aa in length because this length is
sufficient for triple-helix assembly, and Tm can be easily predicted.
Our aim was to generate CMPs with diverse functions by exploring
the sequential space of human collagens. We collected 28 types
of human collagens and conducted fragmentation, resulting in
continuous G-X-Y repeats that are 30 aa in length. This curated
training set comprised 7270 sequences (Supplementary Data 1).

ColDiff is an unconditional diffusion model derived from our
previously developed diffusion model [34]. Here, the sequences
from the training set were extracted features using one-hot
encoding (Fig. S1). The input samples were added with Gaussian
noise in a series of steps, and the model learned both forward and
reverse processes to recover samples in the original denoised
state (Fig. 1A). The quality of the generated samples was
evaluated by consulting the portion of continuous G-X-Y repeats
within the generated sequences. The best model achieved by
hyperparameter optimization was able to generate continuous
G-X-Y repeat sequences at a proportion > 92% after 50 epochs
of training (Fig. 1B and Fig. S2). The proportion of G-X-Y repeat
sequences fluctuated between 99.4% and 99.8% within 1000–
2000 training epochs (Fig. 1B), indicating a stable CMP-generating
ability for ColDiff.

A total of 25 600 sequences were generated by ColDiff by learn-
ing features from fragments of 28 types of human collagens, using
training parameters set at 2000 epochs. Multiple sequence align-
ment (MSA) was conducted to evaluate the similarity between the
generated and training sequences. The resulting sequence logo
revealed continuous G-P-O repeats as the most prominent motifs,
with charged residues appearing as secondary logos in both the
training and generated sequences (Fig. 1C and Fig. S3). Sequence
diversity was analysed using principal components analysis (PCA),
revealing two main clusters that encompassed the majority of
both training and generated sequences (Fig. 1D). Only a few gen-
erated sequences (three sequences) were distinctly separate from
the training sequences, indicating that >99.99% of the gener-
ated samples closely resembled the training samples. Analysis of
different G-X-Y frequencies showed that the G-X-Y distribution
between the training and generated samples achieved an r2 value
of 0.98 (Fig. 1E). These results suggest that the composition of
the generated samples closely matches that of the training sam-
ples. Functional motifs such as GAOGEN, GLKGEN, and GLOGEN
were found in the generated sequences at a frequency of 0.6%
(Supplementary Data 1) [35], which is slightly lower than the 2.2%
observed in the training set (Fig. 1F). These results suggested that
the generated samples are functionally related to the training
samples. Overall, the generated CMPs closely resembled the col-
lagen fragments in the training set.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
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Figure 1. Developing a diffusion model for designing self-assembling CMPs. (A) Diffusion model development based on amino acid sequence learning.
Sequence features of collagens were extracted by one-hot and by gradually adding Gaussian noise, the diffusion model learned the noising and denoising
process to recover original sequences based on input sequences. In this case, the diffusion model was used to learn features from collagens and generate
CMPs. (B) Accuracy of the diffusion model evaluated by calculating the proportion of continuous G-X-Y repeats from the generated sequences. (C)
Sequence logos of generated sequences after training for 2000 epochs, and the original collagen dataset. Sequence logos were created using WebLogo
(http://weblogo.berkeley.edu/logo.cgi). (D) Cluster analysis of sequences generated using ColDiff (25 600 samples) and from the training set (7270
samples). Cluster analysis conducted using PCA and KMeans cluster module. (E) Different G-X-Y frequencies of sequences generated by ColDiff and
the training set, the correlation was analysed. (F) Functional domain distribution in training and generated sets. (G) Accuracy based on 5-fold cross-
validation of ColNet. Accuracy was evaluated by calculating Pearson’s correlation between predicted Tm and real Tm values. (H) Gaussian distribution
of Tm values in training and generated sets. (I) Correlation between predicted Tm and real Tm values in the validation set. Sequences with highly distinct
predicted and real values are shown.

The Tm of collagen is associated with triple-helix untwisting
[36]. A supervised model ColNet was developed by training with
a collagen Tm dataset for Tm prediction (Supplementary Data 2)
[30]. Tm prediction was treated as a regression prediction task,
and we integrated CNN, ResNet [37], and self-attention [38]
for network architecture (Fig. S4). By conducting 5-fold cross-
validation according to a previous study [26], our rebuilt network
integrating ResNet and self-attention (SA) achieved a Pearson
Correlation Coefficient (PCC) of 95% (r2 = 90.2%) for predicted and
real Tm values (Fig. 1G and Fig. S5). We noticed that ColNet failed
with predicting few single mutation sequences, while the other
sequences with distinct predicted and real Tm values did not

exhibit obvious features (Fig. 1H and Fig. S6). The generated CMPs
and collagens from the training set shared a similar Gaussian
distribution for melting temperature, with the highest points
of the two related curves being 23.5◦C and 23.8◦C, respectively
(Fig. 1I), confirming the high correspondence between generated
CMPs and native collagens.

Characterizing the self-assembly capacity of
designed collagen mimetic peptides
The formation of the triple helix can be inferred from the Cir-
cular dichroism (CD) curves, which display a positive peak at
220–222 nm [39]. The transition temperature (Tm) of CMPs reflects

http://weblogo.berkeley.edu/logo.cgi
http://weblogo.berkeley.edu/logo.cgi
http://weblogo.berkeley.edu/logo.cgi
http://weblogo.berkeley.edu/logo.cgi
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the triple-helix formation and untwisting state. Based on the
Tm and functional domains of ColDiff-generated sequences, we
selected 50 sequences with Tm values ranging from 3◦C to 37◦C
for experimental validation, of which 30 had reported functional
domains (Table 1) [35]. The synthetic peptides were dissolved in
Phosphate Buffered Saline (PBS) (pH 7.5) at a final concentration
of 0.2 mg/ml and incubated at 4◦C for 12 h to enable their
self-assembly. The CD spectra measured at 4◦C showed that 33
samples displayed a positive peak at 220–222 nm, indicating a
66% success rate for ColDiff. The Tm values of the 33 samples
were measured by heating them from 0◦C to 70◦C and recording
the change of ellipticity at 220 nm. Most samples displayed Tm

values varied from 7.5◦C to 38.9◦C (Fig. S7). The predicted and
real Tm values achieved a PCC of 0.8 (Fig. 2A), indicating that
the combined methods generate self-assembled CMPs. Since 25◦C
and 37◦C are most relevant for bioengineering applications [14],
we tested triple-helix formation for 15 samples with Tm values
>25◦C, and three samples with Tm values >37◦C. Samples were
pre-incubated at 25◦C or 37◦C for 12 h before CD spectroscopy.
Our results indicated that the Tm values >5◦C higher than the
incubation temperature could stably sustain triple-helix forma-
tion (Fig. 2B), confirming a temperature-dependent triple helix to
disordered state transition [36].

The above results indicated that not all continuous G-X-Y
repeats were able to assemble into triple helices [14, 40]. Collagen
self-assembly was associated with charged residues [16], the pro-
portion of hydroxyproline [22], and GPO content [15]. The average
number of charged residues within the 33 samples that formed
triple helices was 6.06, compared to 5.76 for the 17 samples that
did not form triple helices (Fig. 2C). Each triple helix–forming
sequence contained ∼4.51 hydroxyproline residues and 0.91 GPO
motifs, whereas these values were 3.88 and 1, respectively, for
sequences that did not form triple helices (Fig. 2C). Different G-X-
Y portion analyses indicated a PCC of 0.81 for sequences that were
able and not able to form triple helices (Fig. 2D). The top three
G-X-Y motifs for sequences that formed triple helices were GPO,
GLO, and GEO, while for those that did not form triple helices, they
were GPO, GER, and GSO (Fig. 2D). Taken together, the proportion
of hydroxyproline and specific G-X-Y content were important
factors determining the self-assembly of CMPs, in addition to the
basic continuous G-X-Y repeats.

Because all continuous G-X-Y sequences predicted using
ColNet had positive Tm values, we aimed to explore the factors
that determined the positive/negative values of the generated
sequences. We noticed that sequences with negative values
resulted from the disruption of G-X-Y repeats. To study this
further, we used an initial sequence (GPO)3EPO(GPO)4 with a
negative Tm value of −16◦C to generate 8000 sequences, all
predicted to have negative values (Supplementary Data 3). To
explore the impact of disrupting G-X-Y repeats, we referred to
the crystal structure of the collagen sequence (Pro-Pro-Gly)10

[32] and disrupted this sequence by mutating Gly9 to Glu. MD
simulation was conducted for 300 ns at 300 K; the RMSD > 5 nm
took a portion of 2.89% for (Pro-Pro-Gly)10, compared with 3.55%
in the disrupted G-X-Y sequence (Fig. 2E). The average RMSD for
(Pro-Pro-Gly)10 and G9E were 0.427 and 0.439 nm, respectively.
RMSF analysis indicated that the N- and C-termini and residues
9–20 within each chain displayed higher flexibility than other
regions (Fig. 2F). Cluster analysis based on RMSD revealed a
three-state transition: triple-helix twisting, one-chain untwisting,
and completely untwisting (Fig. 2G). The partial and completely
untwisting states occurred in 4.66% and 0.01% for (Pro-Pro-Gly)10,
respectively, compared to 6.98% and 0.45% for the G9E. These

results were further validated by CD, which showed a negative
peak at 220 nm following the disruption of G-X-Y repeat (Fig. 2F).

Recombinant expression of collagen mimetic
peptides
Our initial goal was to identify ready-to-use biomaterials and
develop a method for large-scale production. To this end, we first
attempted to recombinant express CMPs in E. coli, by repeating
the 30 aa segment up to 16 times to benefit the recombinant
expression [41]. The results showed that 7 of the 50 recombinant
CMPs could be expressed in soluble form (Fig. 3A and Fig. S8).
Collagen solutions can be heated to 85◦C followed by cold incu-
bation [42], suggesting that they can recover their native struc-
ture after high temperature–induced untwisting. Therefore, we
performed protease cleavage to remove the His-tag after purifi-
cation, followed by heating to 85◦C, cooling, centrifugation, and
dialysis to remove contaminant proteins and cleaved tags (Fig. 3B).
The resulting CMPs were of high purity (Fig. 3B). The CMPs were
soluble expressed at a level of 0.1–0.2 mg/ml with bovine serum
albumin (BSA) as a reference (Fig. S9), while sample-E43 achieved
the highest expression level of 0.3–0.4 mg/ml (Fig. 3A).

Only a small portion of the CMPs could be expressed in E.
coli, suggesting a low efficiency of this expression platform. Intra-
cellular expression of CMPs in E. coli may suffer from multipro-
tease degradation [43, 44]. We therefore employed P. pastoris for
secretory expression of CMPs [45] because P. pastoris contains only
one endogenous protease that can degrade heterologous proteins
after secretion [46]. Given that long protein chains may be easily
degraded, these 30 aa sequences were replicated four times during
gene synthesis, and CMPs with Tm values >25◦C were selected
for secretory expression in P. pastoris since retaining triple-helical
conformation at temperature > 25◦C can benefit practical uses.
Six of the 15 samples were secreted with expression levels of 0.1–
0.2 mg/ml (Fig. 3C and Fig. S10).

CD was carried out on the expressed proteins to confirm
triple-helix formation [39]. The samples including sample-E3,
sample-E14, and sample-E43 purified from E. coli and sample-
P36 and sample-P43 purified from P. pastoris displayed positive
peaks at 220–222 nm (Fig. S11). Compared with synthetic peptides,
recombinantly expressed CMPs are much longer and lack proline
hydroxylation [47]. These CMPs seemed hard to assemble into
triple helix. To validate the impact of proline hydroxylation,
the prolyl 4-hydroxylase (P4H) from Bacillus anthracis [48] was
expressed and purified in E. coli (Fig. 3D) and used for in vitro
hydroxylation of recombinantly expressed CMPs. The samples
including sample-P1, sample-P6, and sample-P9 purified from
P. pastoris formed triple helices following hydroxylation (Fig. 3E).
Proline residues in collagen-like proteins were hydroxylated at a
rate of 32.1%–58.3% (Fig. S12). Thus, proline hydroxylation may
provide an alternative route for producing self-assembled CMPs,
but the effort involved is considerable.

Fibre morphology of collagen mimetic peptides
Collagen higher-order assembly is important for developing
biomaterials [15, 42]. Triple helix formation initially supported
nanofiber formation and subsequently supported gel formation
(Fig. 4A) [49]. Here, 38 samples able to form triple helices
(excluding samples requiring P4H treatment) were subjected to
gelation tests. Samples were solubilized in PBS at a concentration
of 1 mg/ml and incubated at 4◦C (Fig. S13). Sample-3, sample-E3,
sample-32, and sample-E43 were able to form nanofibres after
12 h of incubation detected by transmission electron microscopy
(TEM) at 100–200 nm, and porosity can be found from the CMP

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
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Table 1. The sequence and properties of selected CMPs for validation in this studySequence.

Predicted Tm Real Tm Domain Total charge Delta charge

GLOGPEGPRGIOGAOGENGIOGSKGEKGEO 25.93 29.67 GAOGEN 7.00 −1.00
GESGROGAEGAOGENGQOGPOGQRGPTGEQ 25.32 19.62 GAOGEN 6.00 −2.00
GVKGYRGAOGENGEDGLQGFOGLKGEOGIQ 15.85 17.03 GAOGEN 7.00 −1.00
GPOGTAGAOGENGSOGLOGESGPKGQRGFO 14.78 None GAOGEN 4.00 0.00
GGOGRIGPRGAAGPOGLKGENGETGPOGPV 23.85 None GLKGEN 5.00 1.00
GDRGAKGFOGLAGVSGPOGLKGENGMOGQM 22.29 38.90 GLKGEN 5.00 1.00
GVOGLQGLOGQOGLKGENGSVGFOGDKGEN 16.72 14.36 GLKGEN 5.00 −1.00
GMRGMOGFRGLDGDOGVOGLOGLKGENGSO 9.84 11.76 GLKGEN 6.00 0.00
GLOGENGVRGDOGPRGPOGFOGERGKOGPS 25.70 30.92 GLOGEN 7.00 1.00
GLOGENGDOGPRGHOGEDGEOGEKGRDGEO 23.86 19.36 GLOGEN 12.00 −4.00
GATGPOGPRGFKGPOGLOGENGATGEQGFO 13.23 23.90 GLOGEN 4.00 0.00
GLOGENGMQGLTGDRGPOGPOGPKGROGDF 10.03 13.42 GLOGEN 6.00 0.00
GPIGPIGPRGPOGLSGERGEOGTOGPTGPO 29.61 None GLSGER 4.00 0.00
GEKGEQGEKGPRGLSGERGSRGVOGPLGQO 22.88 None GLSGER 9.00 1.00
GDKGEIGEKGLOGLSGERGDIGNIGARGPO 17.05 None GLSGER 9.00 −1.00
GVOGITGIRGHKGELGLOGLSGERGROGRO 15.18 15.17 GLSGER 8.00 4.00
GADGARGMOGERGROGTOGSOGLOGIRGDR 26.67 27.86 GMOGER 8.00 2.00
GEVGMOGERGEOGAQGLOGGQGQOGPRGPK 25.93 19.44 GMOGER 6.00 0.00
GPRGKOGMOGERGESGFQGPKGFEGPOGGO 15.32 11.17 GMOGER 7.00 1.00
GLOGMOGERGPKGRLGSOGENGEKGGIGFO 13.21 23.41 GMOGER 7.00 1.00
GPRGFKGAOGPRGDOGROGERGEOGLDGEO 32.30 27.65 GROGER 10.00 0.00
GQOGROGERGLOGIOGAOGLRGQOGPOGLD 29.60 27.80 GROGER 5.00 1.00
GLOGMLGPLGIMGSOGROGROGERGLAGQR 28.32 15.82 GROGER 5.00 3.00
GFTGAOGAKGQRGKOGPLGPOGPOGROGER 27.19 None GROGER 6.00 4.00
GDOGIRGAOGLOGROGERGLTGPNGDOGFD 14.28 None GROGER 7.00 −1.00
GPOGPQGPRGETGEOGDRGPRGROGERGAT 13.60 None GROGER 9.00 1.00
GAKGSKGEKGFDGILGDVGROGERGSEGFO 10.83 None GROGER 10.00 0.00
GPAGGOGVMGFOGPLGEKGNRGVOGLOGDQ 21.21 15.56 GVMGFO 4.00 0.00
GPKGDKGDOGPOGVMGFOGPKGEKGTQGSO 19.14 None GVMGFO 7.00 1.00
GKOGPOGLDGTVGVMGFOGGKGEOGISGAO 10.84 14.34 GVMGFO 4.00 0.00
GSOGSSGPEGPOGEOGLAGEOGPVGEDGEA 38.16 33.82 6.00 −6.00
GPOGPOGSQGMOGPEGPOGEOGPOGPOGLO 37.61 25.47 2.00 −2.00
GEAGAQGPOGPOGNOGPOGVOGVDGPQGSS 36.92 None 2.00 −2.00
GPOGPHGPLGSOGLOGEDGIOGLOGPOGSD 36.51 34.08 4.00 −2.00
GLOGPQGVRGEOGDOGROGEOGPQGKOGEK 36.40 40.60 8.00 0.00
GPTGPQGERGPRGEOGPOGPOGPOGLOGGS 36.39 36.01 4.00 0.00
GPTGAOGPAGPOGROGQOGTOGQDGSOGLO 36.17 33.11 2.00 0.00
GPIGKVGPAGSRGNOGQOGEOGLAGVOGQR 36.15 35.38 4.00 2.00
GPTGPRGPOGPOGERGEDGEOGPRGPOGLO 36.15 13.94 7.00 −1.00
GPKGEOGLTGPOGEOGPOGQOGPOGLOGVO 35.88 13.73 3.00 −1.00
GRAGPRGROGFDGMAGDDGKOGLOGFIGFF 6.36 26.92 7.00 1.00
GSRGLOGLOGLDGIOGQOGPKGIOGFOGSO 6.22 12.21 3.00 1.00
GNRGCDGVOGLDGKOGEOGAKGEAGRDGAK 6.20 17.00 10.00 0.00
GQKGRKGPKGLDGAOGFMGVSGFOGNOGAR 6.16 7.54 6.00 4.00
GGOGPOGASGLDGMOGDMGEMGPOGIQGAR 5.80 None 4.00 −2.00
GDEGPOGVAGLDGSOGSOGPOGFSGPOGHO 5.54 None 4.00 −2.00
GPNGQTGARGPKGASFKOGTKGTOGFYGLF 5.51 None 4.00 4.00
GPSGPAGSOGLDGAKGKQGPQGFKGVVGSO 4.65 None 4.00 2.00
GPGGPNGAOIKMGREGEPGPTGPQGEDGPO 3.04 None 6.00 −2.00
DROGAQGKGAHOGHPGQFRHHGTNGEMCQA 3.04 None 9.00 5.00

The functional domains were as previous report.

sponges prepared by lyophilization using a scanning electron
microscope (SEM) (Fig. 4B and Fig. S14). Sample E3 comprised 16
replicates of sample-3, but its band thickness was 55 nm, thinner
than that of sample-3 (74 nm). The bandwidth for sample-32 and
sample-E43 were 22 and 56 nm, respectively (Fig. S15).

Sample-E3 and sample-E43 formed fragile hydrogels at a very
low concentration of 0.8 mg/ml after 8 h of incubation at 4◦C
(Fig. 4C). These hydrogels transitioned to a liquid phase when the
temperature exceeded 15◦C. In contrast, sample-3 and sample-
32 required a higher concentration of 2 mg/ml to form hydro-
gels (Fig. 4D). Rheological analysis was conducted to evaluate

the mechanical properties and stability of these hydrogels. The
storage modulus (G’) and the loss modulus (G”) at low deforma-
tion amplitude were measured to determine the elastic and vis-
cous contributions to the hydrogels’ viscoelasticity. At 0.8 mg/ml,
Sample-E3 and Sample-E43 exhibited minor distinctions in G’ and
G”, indicating that the formed hydrogels were relatively weak and
easily reverted to the liquid phase (Fig. 4C). When the concen-
tration was adjusted to 2 mg/ml, the storage moduli more than
doubled, indicating that all four samples formed stable hydro-
gels (Fig. 4D). Further increasing the concentration to 5 mg/ml
and incubating for up to 7 days resulted in 11 samples forming

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
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Figure 2. Triple-helical assembly of designed CMPs. (A) Correlations between predicted and real Tm values. (B) CD spectra of designed CMPs. Sample
numbers are shown. (C) Sequence logos of the top 10 sequences with the highest predicted Tm values from randomly generated sequences. (D) The G-X-
Y frequencies of sequences that were able or unable to form a triple helix, referred to as triple helix and untwisting, respectively. The RMSD (E), RMSF (F),
and average hydrogen bond–forming frequencies (G) among the three independent chains of the given triple-helix obtained from MD simulation based on
(Pro-Pro-Gly)10 (referred to as WT) and the G9E mutant (referred as MUT), respectively. The M- and WT-a, b, and c indicated the single chain of each com-
plex in (F). MD simulation was carried out at 300 K using Gromacs-2020. (H) Analysis of triple-helix twisting and untwisting using MD simulation. Based
on the trajectory, the representation of partial and full untwisting and their structures are shown. (I) CD spectra of (Pro-Pro-Gly)10 and the G9E mutant.

hydrogels (Fig. S15). However, these hydrogels remained fragile
and could easily transition to the liquid phase upon shaking or
temperature increase. Increasing the concentration to 50 mg/ml
enhanced the hydrogels’ rigidity and prevented them from con-
verting to the liquid phase upon shaking. For samples that did not
form hydrogels, large precipitates were observed (Fig. S16).

Collagens are believed to promote blood clotting by assisting
platelet adhesion through binding to platelet receptors [42, 50]
and subsequently inducing endogenous hemostatic mechanisms

to aid wound healing [51]. We selected Sample-E3 and Sample-
E43, which easily form hydrogels, for blood clotting tests and
compared their performance with commercial rat tail collagen
I. The sample sponges were incubated with mouse blood at a
concentration of 2 mg/ml to assess their in vitro coagulation
capability. After 30-min treatment at 25◦C [50], Sample-E3 and
Sample-E43 induced clotting in 96% and 92% of blood cells,
respectively, compared to 81% for collagen I (Fig. 4E), suggesting
the two samples with the capacity for inducing coagulation.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
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Figure 3. Recombinant expression of designed CMPs. (A) SDS-PAGE analysis of CMPs recombinantly expressed in E. coli. The expression cassette is shown,
and the CMP number is included on the gel. (B) SDS-PAGE analysis of CMPs purified from E. coli. ‘Before’ and ‘after’ refer to sample 43 before and after
heat treatment. (C) SDS-PAGE analysis of CMPs recombinantly expressed in P. pastoris.

Figure 4. Morphology of designed CMPs. (A) Collagen assembly from triple-helices to higher-order oligomers. (B) TEM and images of samples E3 (left)
and 3 (right). Samples were prepared at a concentration of 1 mg/ml. The samples were prepared as collagen sponges by lyophilization before SEM
visualization. Visualization of the other samples by TEM and SEM were in Supplementary Fig. S14. Validation of hydrogel formation by oscillatory shear
rheology analysis of CMPs at different concentrations, samples prepared at 0.8 mg/ml (C) and 2 mg/ml (D), respectively. (E) CMP sponge samples used
for in vitro blood clotting by supplementing at 2 mg/ml, PBS (containing Ca2+) and water were used as a negative control, and rat tail collagen I was
used as a positive control.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
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Assisting cell regeneration
Collagen assembles into a banded fibre that can support osteo-
genesis and matrix mineralization [15, 52, 53]. Nineteen samples
were tested for their ability to assist osteoblastic differentia-
tion, cell adhesion, and cell regeneration. The selected samples
were prepared as sponges for MC-3 T3 cell cultivation. BSA and
commercial collagen I served as negative and positive controls,
respectively [15]. The designed CMPs and collagen I supplemented
at 2 mg/ml promoted cell proliferation more effectively than BSA
during the first 3 days of cultivation, and proliferation was similar
by Day 5 (Fig. 5A), suggesting that the samples were not cytotoxic.

Cell adhesion analysis was carried out by adding CMPs and
collagen I. The adhered cells were resuspended prior to cell
counting. Collagen I and CMPs including sample-E3, sample-E14,
sample-E43, sample-3, and sample-32 promoted >1-fold higher
cell adhesion rate than BSA after 6-h cultivation (Fig. 5B). Genes
VCL and ACTN are reportedly related to the formation of focal
adhesion sites and cytoplasmic actin-binding protein occupation
[15], and messenger RNA (mRNA) levels of VCL and ACTN can be
used to evaluate osteoblastic differentiation. Sample-6, sample-
9, sample-24, sample-E3, sample-E43, and collagen I exhibited
ability to upregulate VCL and ACTN, the mRNA level of the given
two genes were >1-fold higher than that using BSA (Fig. 5B).
Meanwhile, the other 14 samples did not upregulate VCL or
ACTN transcription relative to the BSA-negative control (Fig. 5B).
In addition, the cell areas of CMP samples including sample-E3,
sample-E14, sample-E43, sample-6, and type I collagen were >88%
larger than whose when using BSA alone (Fig. 5C and D).

The recombinant expressed sample-E3 and sample-E43, which
exhibited activity for inducing cell differentiation, were further
assessed for their biocompatibility over a cultivation period of up
to 7 days. Our results indicated that cell growth maintained a sta-
ble trend within 7 days of cultivation (Fig. S17A). The proliferation
rates were ∼4-fold and 10% during the first 5 days and last 2 days,
respectively. SDS-PAGE analysis revealed that both samples were
stable with minor degradation at 25◦C during 7 days’ incubation,
losing <20% of their original state by the seventh day (Fig. S17B).

Discussion
Designing self-assembling CMPs remains challenging, here, we
developed a diffusion model to learn features from the retrieved
segments of human collagen to generate diverse CMPs, and sub-
sequently developed ColNet for collagen Tm prediction to select
CMPs with desirable Tm values. CMPs recombinantly expressed in
E. coli and P. pastoris pave the way for large-scale production. Addi-
tionally, we found that CMPs with up to 16 repeats can undergo
triple helix formation even without proline hydroxylation.
Nanofibre and hydrogel formation were investigated, and four
samples could rapidly form hydrogels at low concentrations (≤
2 mg/ml). In addition, we found the CMPs can induce osteoblastic
differentiation mimic natural collagens at a comparable rate.

Generative models have been implemented to design protein-
binding molecules and optimize functional areas [54, 55]. For
example, a sequential-based generative network, proteinGAN,
was used to design malate dehydrogenase (MDH) by learning from
its homologues [56], while ProtGPT2 utilized an unsupervised
language model to generate novel sequences that adhere to
the principles of natural ones [57]. Specifically developed for
designing collagens, ColGen-GA was built on a Tm prediction
model to control the self-assembly of generated collagens [14].
Inspired by ColGen-GA, we optimized ColDiff for generating

novel sequences, achieving a 66% self-assembly rate among the
generated sequences. Additionally, we enhanced ColNet for
predicting Tm values, achieving an average PCC of 95%, which sur-
passes the reported state-of-the-art model, CollagenTransformer
(91.6%) [26]. We critically assessed the success rate of ColNet using
33 synthetic collagen-mimetic peptides (CMPs), finding a PCC of
0.8, which is lower than the PCC of 0.96 obtained in ColGen-GA
based on five samples (CP1-CP5) [14]. A limitation of ColNet is that
it predicts a negative Tm value if the G-X-Y repeats are disrupted in
the input sample. This limitation could potentially be addressed
by incorporating more diverse training data.

Collagen self-assembly and its functional motifs are funda-
mental components that support cell adhesion and regeneration
[15, 35, 58]. Among the 50 selected CMPs, only five sequences
were capable of supporting osteoblast differentiation. Four of
these five sequences contained at least one known functional
motif, such as GAOGEN, GLKGEN, GLOGEN, and GROGER [35],
which can bind to cell surface receptors and activate behaviors
like differentiation. Importantly, we showed that recombinant
expressed sample-E3 and-E43, which replicated the sequence 16
times of sample-3 and sample-43, exhibited activity for inducing
cell differentiation, suggesting that replicating the motifs may
enhance the potential interactions between CMPs and cell surface
receptors. Furthermore, four samples exhibited similar activity
compared to commercial collagen I, while sample-9 and sample-
24 showed higher activity. Collagens self-assembly into hydrogels
is highly dependent on concentration, typically requiring concen-
trations exceeding 5 mg/ml [15, 17, 21, 42, 50, 58, 59]. Here, the
CMPs with biofunctions were able to self-assemble into higher-
order structures at lower concentrations, potentially supporting
cell adhesion and stimulating differentiation through interactions
involving their functional motifs. Moreover, these novel protein-
based materials required lower concentrations to achieve their
functions compared to previously reported elastin- and collagen-
based materials, as well as polycaprolactone or chitosan-based
materials [60–63]. These results indicate that the designed CMPs
may become candidates supporting bone tissue engineering.

In this study, we adopted AI tools to explore de novo generation
of functional, self-assembling CMPs at specific temperatures. The
designed CMPs could assemble into nanofibres and hydrogels at
low concentrations [17, 18], decreasing the dependence of their
functions on dosage and ambient temperature. The designed
CMPs were more effective at supporting cell regeneration than
commercially available collagen I. Moreover, many CMPs retained
the triple-helical conformation in the liquid phase. Liquid-phase
collagens are in much demand for use as dietary supplements
[64]. Further investigations are needed to explore the potential
uses of the designed CMPs.

Materials and methods
Network architecture and model evaluation
The dataset for training the diffusion model was based on 30
aa G-X-Y repeats from natural human collagen. We collected
44 sequences from 28 types of human collagen to build
the library, and the training set contained 7270 sequences
(Supplementary Data 1). ColDiff is a diffusion model [29]
integrating UNet for feature extraction on the encoder side and
sample size recovery on the decoder side. The features of collagen
sequences were extracted using the one-hot encoding method.
We attempted CNN, ResNet, and SA for network architecture. The
initial data point was denoted as X0, and variable Xt was achieved

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
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Figure 5. Cell regeneration ability of designed CMPs. (A) Cell proliferation rate determined by cultivating MC3T3-E1 cells supplemented with 2 mg/ml
samples and cell counting. (B) Cell adhesion assay and correlated mRNA level measured by cultivating MC3T3-E1 cells supplemented with CMPs
or collagen I hydrogels. (C) Cell area calculated using ImageJ after cultivation. (D) Staining of MC3T3-E1 cells with phalloidin and visualization by
fluorescence microscopy (scale bar = 50 μm).
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through adding Gaussian noise to X0 for T steps. By reversing the
noise, the network was trained to recover the original data.

The formula for ResNet [37] is shown below, where x stands for
the input, F(x) is the output from the layer, Wi is the parameter to
feed the CNN layer, and Ws represents certain convolution con-
figurations to make the dimensions of input and output identical.

Y = F
(
x, (Wi)

) + Ws ∗ x

The formula for the self-attention mechanism [38] is shown
below, where Q, K, and V are vectors of queries, keys, and values
of dimension dk, where dk is the size of the attention key.

Attention (Q, K, V) = softmax
(

QKT√
dk

)
V.

The ColNet network for collagen Tm prediction was integrated
by ResNet and self-attention through network optimization
(Fig. S4). ColNet learned collagen features [30] and predicted
Tm values by treating the process as a regression prediction
problem. The learning rate and batch size were optimized based
on the mean squared error between predicted and real Tm values.
The accuracy of the model was defined as Pearson’s correlation
between predicted and real Tm values.

Collagen mimetic peptide synthesis and
recombinant expression and purification
CMPs were chemically synthesized by Genscript (Nanjing, China)
and Sangon (Shanghai, China) (Supplementary Data 4). Recom-
binant expression of CMPs was carried out in E. coli BL21 (DE3)
using pET-22b (+) and P. pastoris GS115 using pPIC9k. All genes
encoding CMPs were optimized and synthesized by Genscript
(Nanjing, China) and cloned into pET-22b(+) via NdeI-BlpI sites
and into pPIC9k via SnaBI-AgeI sites. Plasmids were transformed
into E. coli using chemical transformation, and cultivated using
Terrific Broth supplemented with 50 μg/ml ampicillin, followed by
IPTG induction when the OD600 value reached 1.0. The cultivation
was continued at 20◦C for 20 h. Plasmids were transformed into
P. pastoris using electroporation [65]. Minimal dextrose medium
(20 g/L glucose, 13.4 g/L YNB, 4× 10−5 g/L biotin and 20 g/L agar)
was used for selecting histidine-defective strains. Yeast strains
were cultivated using yeast extract peptone dextrose medium (1%
yeast extract, 2% peptone, 2% glucose). Protein purification was
carried out using affinity chromatography with a His-Trap column
(GE Healthcare, New York, USA) and subjected to gel filtration
using a Superdex 75 column (GE Healthcare) and eluted with PBS
(pH 7.5).

CD spectroscopy
The sample solution was prepared at 0.2 mg/ml in PBS (pH 7.5)
and incubated at 4 ◦C for 12 h before CD measurement. CD spectra
were recorded using a Photophysics Chirascan instrument with a
Peltier temperature controller (Model 110-OS; Hellma, Shanghai,
China) at 4◦C, and quartz cuvettes with an optical path length
of 1 mm (Model 110-OS; Hellma). The wavelength for scanning
ranged from 190 to 250 nm. The change in ellipticity at 220 nm
during heating (0◦C–70◦C at 1◦C/min) was recorded, and Tm values
were calculated based on melting curves.

Transmission electron microscopy and scanning
electron microscope
Samples were prepared from 1 to 100 mg/ml in PBS (pH 7.5)
and incubated at 4◦C. The obtained solution was loaded onto a

copper grid and allowed to absorb for 1 min, and the excessive
solvent was removed using filter paper. Samples were negatively
stained using 0.75% phosphotungstic acid prior to imaging using
a Hitachi H-7650 electron microscope (Hitachi, Tokyo, Japan).
The sample width was evaluated using ImageJ (https://imagej.
net/downloads). The morphology and microstructure of the CMP
sponge were characterized using SEM SU8220 (Hitachi). The CMP
gel was prepared to sponge by lyophilization. The dried samples
were loaded to SEM pucks and proceeded to imaging.

Blood clotting assays
CMPs were used to prepare hydrogels for swelling rate determi-
nation [50]. Hydrogels were cultivated with mouse blood (Gibco,
Shanghai, China) at 25◦C and rinsed with PBS. Excess liquid was
removed using filter paper, and the initial weight of hydrogels
and after blood swelling was recorded to calculate the swelling
rate. In addition, CMP sponges were mixed with anticoagulant
mouse blood at a concentration of 2 mg/ml, and the mixture was
supplemented with 10 mM CaCl2. Coagulation testing was carried
out at 37◦C for 10 min. The absorbance at 540 nm was recorded
before and after coagulation to evaluate the blood clotting speed.
The swelling rate was calculated using the following formula:

Swellingrate(%) = 1 − Weight of hydrogel before cultivation
Weight of hydrogel after cultivation.

Cell adhesion and proliferation assay
Cell adhesion and proliferation were assessed using MC-3 T3 cells
[15]. A 24-well cultivation plate was filled with 104 MC-3 T3 cells
(ATCC) and cultivated using Gibco MEM (Invitrogen, Shanghai,
China), 10% (v/v) foetal bovine serum and 1% (v/v) penicillin–
streptomycin supplemented with 2 mg/ml lyophilized dried CMP
or collagen I. A CCK-8 kit was used to record the cell proliferation
rate during 5 days of cultivation. For cell adhesion testing, CMP
and collagen I samples were supplemented at 2 ml to cultivate
cells. During cell adhesion testing, 104 precultivated MC-3 T3 cells
were loaded onto the plate and cultivated for 12 h to allow cell
adhesion, the plate was washed with PBS, cultivation medium was
added, and cell counting was performed using a CCK-8 Kit. Gene
expression levels were measured by real-time quantitative PCR
(RT-qPCR). Primers were as described in a previous study [15] and
are listed in Table S1. Gene expression levels were normalized
against GAPDH. Cell adhesion and proliferation were calculated
using the following formula:

Celladhesion(%) = Adherent cells
Seeding cells

Proliferationrate(%) = Total cells after cultivation
Total cells before cultivation

Molecular dynamics simulation
The crystal structure of (Pro-Pro-Gly)10 was obtained from the
Protein Data Bank (PDB; 1K6F). The structure with the G9E muta-
tion was generated using Rosetta Remodel [66]. MD simulation
was carried out using Gromacs-2020 [67, 68], which has been
successfully utilized in the literature [69, 70]. The triple-helix-
formed collagen was embedded with FF14sb force field [71], and
the simulation box was filled with SPC/E water in a cubic box
where the distance between the edge of the cubic box and the
protein was 12 Å. The rigid bonds were used as the constraints for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
https://imagej.net/downloads
https://imagej.net/downloads
https://imagej.net/downloads
https://imagej.net/downloads
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae622#supplementary-data
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water molecules. The system was neutralized by Na+ and Cl− ions,
and the total number of atoms in the system was ∼150 000. The
system was initially energy-minimized using the steepest descent
method. Hydrogen bond lengths were restrained using SETTLE
and LINCS algorithms [72]. Long-range electrostatic interactions
were calculated with the fourth-order particle mesh Ewald (PME)
method [73], while nonbonded interactions had a cutoff distance
of 1.2 nm, switching at 1 nm. The system was equilibrated by
isochoric-isothermal ensemble (NVT) at 300 K for 100 ps and
proceeded to isothermal-isovolumetric ensemble (NPT) at 300 K
for 200 ps. The pressure p = 1 atm and a time step of 1 fs were
used for the given two methods. The simulation was carried out
at 300 K for 300 ns using a time step of 2 fs, and the trajectory was
used for analysis. We calculated the RMSD, RMSF, and hydrogen
bond formation frequencies at the atomic level by selecting the
group of ‘Protein’.

Key Points

• CMPs were designed by combinatory uses of the diffu-
sion model and supervised model.

• Synthetic CMP peptides confirmed the designed CMPs
can in high correlation to the predicted Tm values.

• The designed CMPs can self-assemble into higher order,
forming nanofibre and hydrogel.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.

Funding
This study was funded by the Natural Science Foundation
of Jiangsu Province (BK20202002), the Starry Night Science
Fund of Zhejiang University Shanghai Institute for Advanced
Study (Grant No. SN-ZJU-SIAS-0013), China Postdoctoral Science
Foundation (2023 M741403), Jiangsu Funding Program for
Excellent Postdoctoral Talent (2023ZB037), the National First-class
Discipline Program of Light Industry Technology and Engineering
(QGJC20230102).

Data availability
All code and data used in this study can be found in the
GitHub repository: https://github.com/wangxinglong1990/Colla
gen_design.

Supporting information
The data supporting the findings of this study are available within
the article and its Supplementary Information. Other data and
reagents are available from the corresponding authors upon rea-
sonable request. Source data are provided in this paper.

References
1. Bielajew BJ, Hu JC, Athanasiou KA. Collagen: quantifica-

tion, biomechanics and role of minor subtypes in carti-
lage. Nat Rev Mater 2020;5:730–47. https://doi.org/10.1038/
s41578-020-0213-1.

2. Sorushanova A, Delgado LM, Wu Z. et al. The collagen
Suprafamily: from biosynthesis to advanced biomaterial devel-
opment. Adv Mater 2019;31:e1801651. https://doi.org/10.1002/
adma.201801651.

3. Han S-B, Won B, Yang S-c. et al. J Ind Eng Chem 2021;98:289–97.
https://doi.org/10.1016/j.jiec.2021.03.039.

4. An B, Lin Y-S, Brodsky B. Collagen interactions: drug design and
delivery. Adv Drug Deliv Rev Reviews 2016;97:69–84. https://doi.
org/10.1016/j.addr.2015.11.013.

5. Ahmad MI, Li Y, Pan J. et al. Collagen and gelatin: structure,
properties, and applications in food industry. Int J Biol Macromol
2023;254:128037–51. https://doi.org/10.1016/j.ijbiomac.2023.12
8037.
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