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Abstract 
Human leukocyte antigen class I (HLA-I) and class II (HLA-II) proteins play an essential role in epitope binding and presentation to 
initiate an immune response. Accurate prediction of peptide-HLA (pHLA) binding and presentation is critical for developing effective 
immunotherapies. However, current tools can predict antigens exclusively for pHLA-I or pHLA-II, but not both; have constraints 
on peptide length; and commonly show unsatisfactory predictive accuracy. Here, we developed a convolution and attention-based 
model, CapHLA, trained with eluted ligand and binding affinity mass spectrometry data, to predict peptide presentation probability 
(PB) and binding affinities (BA) for HLA-I and HLA-II. In comparison with 11 other methods, CapHLA consistently showed improved 
performance in predicting pHLA BA and PB, particularly in HLA-II and non-classical peptide length datasets. Using CapHLA PB and 
BA predictions in combination with antigen expression level (EP) from transcriptomic data, we developed a neoantigen quality model 
for predicting immunotherapy response. In analyses of clinical response among 276 cancer patients given immunotherapy and overall 
survival in 7228 cancer patients, our neoantigen quality model outperformed other genetics-based models in predicting response to 
checkpoint inhibitors and patient prognosis. This study provides a versatile neoantigen screening tool, illustrating the prognostic value 
of neoantigen quality. 
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Introduction 
Peptide fragments produced from cancer-associated gene variants 
can serve as tumor neoantigens that bind with human leukocyte 
antigen (HLA) molecules to form peptide-HLA (pHLA) complexes 
which are eventually presented on the cell surface [1]. This 
process is a crucial prerequisite for proficient T-cell recognition 
that ultimately results in initiating a potent immune response 
[2]. HLAs are generally categorized as either HLA class I (HLA-I) 
or HLA class II (HLA-II). HLA-I binds peptides 8–15 amino acids in 
length derived from intracellular proteins following proteasomal 
degradation. These peptides are recognized on the cancer cell 
surface by CD8+ T cells. By contrast, HLA-II binds peptides 12–20 
amino acids in length generated by protease-mediated digestion 
of extracellular proteins, which are subsequently recognized by 
CD4+ T cells. CD4+ and CD8+ T cells can collaborate to eradicate 
tumors [1]. 

Due to the high specificity, along with polymorphisms in HLA 
in the human population, only a limited subset of peptides can 
strongly bind to HLA for presentation on the cell surface. Mass 
spectrometry (MS) analysis of HLA-eluted ligands (EL) can provide 
valuable insight into peptide processing via HLA-mediated pre-
sentation that enable estimation of the probability a given peptide 
will be presented in vivo [3] [4]. Alternatively, binding affinity 
(BA) data can be used to verify peptides will indeed bind with 
HLAs. Thus, a number of tools have been developed to predict the 

likelihood a peptide fragment will serve as an effective antigen, 
but such tools trained only with EL data [5] [6] [7] or incorporating 
EL and BA data by pseudo-labeling [8] [9] [10] (Table 1), may lead 
to inadvertent loss of critical affinity-related information vital for 
T-cell recognition of a peptide. In addition, although various 
methods have been proposed for predicting peptide binding 
to HLA-I or HLA-II, these methods cannot accommodate both 
complexes, while those that do accommodate both remain 
unsatisfactory in prediction accuracy [11] [12]. These issues 
thus present the need for a versatile and reliable approach to 
predicting presentation probability and BA for both HLA-I and 
HLA-II, regardless of peptide length. 

Most immunotherapies, including checkpoint inhibitors, 
exhibit efficacy in only a limited subset of patients [13]. The 
variability of response to immune checkpoint blockade (ICB) 
underscores the important to identify predictive biomarkers. 
Promising predictive biomarker is the tumor mutation/neoanti-
gen burden (TMB/TNB). Nevertheless, relying solely on the 
number of mutant or neoantigen does not fully exploit the wealth 
information embedded in the entire repertoire of neoantigens 
and has demonstrated success in certain studies [14] [15] [16] 
while yielding inconclusive results in others [17] [18] [19]. Many 
studies have demonstrated that some neoantigens are more 
immunogenic than others [20] [21], a fact could prove critical 
in comprehending the responsiveness of cancer patients to
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Table 1. Method and feature comparison of CapHLA and prior works. 

Method Reference Predict 
BA 

Predict 
EL 

HLA-I HLA-II Peptide 
length 

Web 
server 

Core 
module 

CapHLA This paper � � � � 7–25 � Convolution 
+attention 

TripHLApan Wang et al., 2024 � � � 7–25 BiGRU+ 
attention 

NetMHCIIpan4.3 Jonas et al., 2023 � � � 8-None � MLP 
BigMHC Albert et al., 2023 � � 8-None Ensemble of other methods 
MixMHCpred Gfeller et al., 2023 � � 8–14 Motif deconvolution 
MixMHC2pred Guillaume et at., 

2023 
� � 12–21 � Motif deconvolution 

DeepNeo Kim et al., 2023 � � � 9,15 � Convolution 
TransPHLA Chu et al., 2022 � � 8–15 � Transformer 
DeepSeqPanII Liu et al., 2022 � � 8–26 RNN 
NetMHCpan4.1 Reynisson et al., 

2020 
� � � 8-None � MLP 

MHCflurry2.0 Timothy et al., 2020 � � � None-15 MLP 

Cells with ‘�’ indicate that the method has the given feature. ‘None’ indicate no limitation of peptide length. MLP, multilayer perceptron; RNN, recurrent 
neural network. 

immunotherapy treatment but has not been adequately captured 
by the basic mutation/neoantigen load approach. 

In this study, we developed a novel convolution and attention-
based model, CapHLA, in order to provide a comprehensive and 
accurate algorithm for predicting peptide BA and presentation 
probability with both HLA-I and HLA-II. Through analysis of 
immunogenic neoantigen validation data, results obtained 
with the CapHLA model demonstrate that the probability 
of peptide presentation and peptide BA are both essential 
for determining neoantigen immunogenicity. Based on those 
findings, we then developed a neoantigen quality scoring model 
that incorporates neoantigen presentation probability, with 
BA, and antigen expression level (i.e., a PAE score) to predict 
response to ICB treatment and patient survival in several cancers, 
which demonstrated significantly improved performance than 
previously described methods. 

Methods 
Dataset 
The training dataset consists of 518,806 positive pHLA-I and 520 
831 positive pHLA-II MS experimental validation data from the 
Immune Epitope Database (IEDB) [22] up to 2020, as well as data 
from published paper [6] [23] (Fig. S1A). The external validation 
dataset includes 51,984 pHLA-I data from published paper [23] 
and 48,238 pHLA-II data from the IEDB, spanning post-2020 to 
December 12, 2022 (Fig. S1C). The negative dataset comprises 
sequence segments randomly selected from the source proteins 
of the IEDB HLA immunopeptidomes. The length distribution and 
number of negative pMHC EL data corresponding to each allele 
are matched to those in the positive dataset. While false-negative 
peptides may potentially occur, their frequency and proportion 
are extremely low and can be considered negligible. This strategy 
for constructing negative samples ensures the dataset remains 
balanced. 

Similarly, we compiled a dataset of 114,055 pHLA-I and 52,020 
pHLA-II BA data from the IEDB, all predating 2020, for training 
the CapHLA-BA model (Fig. S1B). For external validation, we used 
a separate dataset containing 699 pHLA-I and 1743 pHLA-II BA 
data from the IEDB’s records post-2020 to December 13, 2022 
(Fig. S1D). BA values are measured as EC50 values in nanomolar 
(aff) and were rescaled to the interval [0,1] by applying 1- log(aff ) 

log(50,000)
, 

representing continuous target values [24]. 

CapHLA 
The fundamental concept behind CapHLA revolves around inte-
grating of convolutional and attention-based mechanisms. The 
architectural framework consists of a series of techniques for 
model construction and optimization, incorporating four key sub-
modules: 

(1) The encoding block: In this block, both HLA proteins and 
peptides undergo one-hot encoding, resulting in numerical matri-
ces. To accommodate variable input lengths, peptides are padded 
to a maximum length of 25 with X. The HLA molecule is repre-
sented as a pseudo-sequence of 34 amino acids [25]. Each amino 
acid in a peptide sequence is encoded as a 21-number one-hot 
vector (20 common amino acids + X). The resulting HLA and 
peptide one-hot matrices are concatenated to form a 59 × 21 
matrix. While attempts were made with BLOSUM [26] and  ProtVec  
[27] amino acid encodings, these had little influence on model 
performance. 

(2) The convolution block: This block includes a pointwise 
convolution with an expansion factor of 2 to project the number 
of channels, followed by a GLU activation layer, a 1-D depthwise 
convolution, and batch normalization immediately after the 1-
D depthwise convolution to aid in training deep models, then a 
SiLU activation layer. Finally, the block concludes with a pointwise 
convolution. The configuration specifies 3200 channels, a kernel 
size of 9, and a stride of 1. 

(3) The attention block [28]: This block employs a multi-head 
self-attention mechanism to capture the intricate interactions 
between HLA molecules and peptides. It operate by mapping 
the query (Q) to a set of key-value (K-V) pairs and deriving an 
output. The K-V pairs are used to store sequence elements in 
memory, with the attention score (weight) calculated based on 
the correlation or similarity between Q and K. Model selection was 
conducted for both the layer and head of the multi-head attention 
mechanism, with final parameters specifying one layer and nine 
heads. 

(4) The feature selection block: This block processes the fea-
tures extracted by the preceding attention block via a dense layer. 
The convolution module first flattens the 21x59 matrix into 1239 
linear features. A linear layer with 800 hidden variables is applied, 
followed by a SiLU activation layer, batch normalization, another 
linear layer with 64 hidden variables, and a ReLU activation layer. 
Finally, a linear layer generates a 2D vector for EL and a one-
dimensional BA. A softmax function is used to convert 2D vector
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into presentation probabilities. pHLA presentation probabilities 
higher than 0.5 are considered to positive pHLA. 

Notably, the convolution block, attention block, and feature 
Selection block are interconnected through prenorm residual 
units with a dropout ratio 0.2, facilitating the training and 
regularization of deeper models. The sole distinction between 
the architecture of CapHLA-EL and CapHLA-BA models lies in the 
format of their final output data. 

CapHLA training 
Model training was conducted on the RedHat Linux release 7.7 
system. The GPUs used were two NVIDIA Tesla V100-PCIE with 
CUDA 11.4. The programming language utilized was Python 3.8.13, 
and the model was implemented using PyTorch 1.7.0. The Adam 
optimizer was used to minimize binary cross entropy loss dur-
ing training. In this study, model evaluation during the train-
ing phase was performed using a fivefold cross-validation (CV) 
approach. This methodology involves dividing the training dataset 
into five equal partitions, with four of these partitions utilized 
for model training and the remaining partition reserved for eval-
uation under the same parameter settings. The training and 
evaluation process is repeated five times, ensuring that each 
portion of the data is used four times for training and once for 
evaluation. In each iteration, different negative data is introduced 
to enhance the model’s generalization. Finally, the average value 
of the five models was taken as the final output, yielding results 
that outperform any individual model. 

Predictive performance metric calculation 
For each EL data predictive model, the following metrics were 
calculated: 

Accuracy = TP + TN 
TP + FP + FN + TN 

Sensitivity(Recall) = 
TP 

TP + FN 

Specificity = 
TN 

FP + TN 

Precision = 
TP 

TP + FP 

F1 socre = 
2 ∗ Precision ∗ Recall 

Precision + Recall 

MCC = (TP ∗ TN) − (FN ∗ FP)√
(TP + FN) ∗ (TN + FP) ∗ (TP + FP) ∗ (TN + FN) 

where TP is true positive, FP is false positive, FN is false negative 
and TN is true negative. Area under the receiver operating char-
acteristic curve (AUROC) scores were calculated based on the area 
under sensitivity and 1 − specificity curves. AUPRC scores were 
calculated based on the area under precision and recall curves. 

For each BA data predictive model, the following metrics were 
calculated: 

MSE
(
Mean Squared Error

) = 
1 
m

∑m 

i=1

(
yi − ŷi

)2 

MAE
(
Mean Absolute Error

) = 
1 
m

∑m 

i=1

∣∣(yi − ŷi
)∣∣

R2 = 1 −
∑

i

(
ŷi − yi

)2

∑
i

(
y − yi

)2 

where yi is the ith pHLA experimental score, ŷi is the ith pHLA 
predicted score, y is the experimental mean score of all pHLA. 
Various indexes were implemented using Python scikit-learn. 

Immunogenic-validated peptide dataset 
The immunogenic-validated peptide dataset from Wells was 
obtained from the supplementary table in the publication by 
Wells et al. [29] Peptides without expression level were excluded 
from the analysis. Similarly, the immunogenic-validated peptide 
dataset from Puig-Saus was sourced from the supplementary 
table in the paper by Puig-Saus et al. [21]. The expression levels 
of peptides were quantified using gene abundance calculated 
through our pipeline. The quality control and mapping procedures 
for raw data were the same as those used in ICB cohort pipeline. 
Gene abundance was quantified by featureCounts (v2.0.2) [30]. 

PAE score 
The foundation of the PAE score lies in its integration of pHLA 
presentation probability, BA, and peptide expression level. If the 
HLA gene remains unmutated, its expression level is usually 
sufficient, requiring only consideration of the peptide’s expres-
sion level. To incorporate both pHLA presentation probability (PB) 
and BA into a unified measure, we adopted the composite score 
(PB − 0.5) ∗ BA, thereby amplifying the influence of PB within the 
scoring framework. Incorporating peptide expression levels into 
the model required careful consideration. We hypothesized that at 
high expression levels, peptide variation was minimal, likely due 
to the saturation of HLA complexes on the cell surface. However, 
at low expression levels, significant differences became apparent. 
Therefore, we introduced an upper limit of 100 Transcripts Per 
Million (TPM) for expression levels and applied a logarithmic 
transformation. The PAE score of a peptide is calculated as PAE = 
(PB − 0.5) ∗ BA ∗ log (EP + 1). When integrating all neoantigens 
from a patient, we also incorporated variant allele frequency (VAF) 
and adjusted the score for each neoantigen. First, we combined 

all peptides of a mutation:

∑
i=1..n 
PBi>0.5 
BAi>0.5 

((PBi−0.5)∗(BAi) log(EPi+1)) 
√

I(PBi>0.5) 
, which I(j) 

evaluates to 1 if the statement j is true, 0 otherwise. Only peptide 
with PB greater than 0.5 and BA greater than 0.5 are considered. 
Finally, we combined all mutation from a patient with VAF: 

PAE =
∑

k=1..m 

VAFk 

VAF 

⎛ 

⎜⎜⎜⎝

∑
i = 1..n 

PBi>0.5 
BAi>0.5

(
(PBi − 0.5) ∗ (BAi) log (EPi + 1)

)

√
I (PBi > 0.5) 

⎞ 

⎟⎟⎟⎠ 

where VAF is the mean vaf of all mutaions. 

ICB cohort 
To validate the performance of the PAE model, we collected data 
from five publicly available cohorts receiving ICB across three 
cancer types. Specifically, three melanoma cancer cohorts treated 
with anti-PD(L)1: the Hugo dataset [31], Riaz dataset [16], and Liu 
dataset [32]. One non-small cell lung cancer cohort treated with 
anti-PD(L)1, the Ravi dataset [33], and one clear cell renal cell car-
cinoma (ccRCC) cohort treated with anti-PD(L)1, the Miao dataset 
[34]. Due to the requirement for RNA-seq data, the available data 
is relatively limited. For all patient cohorts, where approval for 
access to raw exome-seq and RNA-seq data was obtained, we 
predicted somatic mutations and neoantigens using our in-house 
pipelines. Whole-exome sequencing data were aligned to the hg19 
reference genome using Burrows-Wheeler Aligner (v0.7.15) [35]. 
Duplicate reads were removed with Picard (v2.23.3), and we per-
formed fix-mate information and base quality score recalibration 
with Genome Analysis Toolkit (GATK, v4.1.9) [36]. MuTect2 [37], 
Strelka2 [38], VarScan2 [39], Vardict [40] and SomaticSniper [41]
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were used to call somatic mutations. A mutation that was repeat-
edly called by any two of these software programs was retained. 
We used Oncotator (v1.9.9) [42] to annotate protein sequence 
change in somatic mutations. Peptides of fixed lengths containing 
mutated amino acids were extracted with homemade scripts. 
HLA-I and HLA-II genotypes were called using HD-HLA (v1.7.0) 
[43]. All tools used in processing and calling mutant peptides 
were run with default settings. RNA-seq data were first processed 
by fastp (v0.20.1) [44] to remove low quality reads from raw 
data using default parameters. High-quality reads were aligned 
to human genome by STAR (v2.7.5) [45] using the parameters— 
outFilterMultimapNmax 1 and ENCODE options. Transcript abun-
dance was quantified by StringTie (v2.1.4) [46] using the default 
parameters. The overall expression of each somatic variant was 
calculated as the product of the transcript expression (summed 
across all overlapping protein-coding transcripts). 

TCGA data processing 
Variant data, copy number variation, gene expression, and clinical 
data were obtained from the Pan-Cancer Atlas consortium’s pub-
lications. These datasets were retrieved from the publication page 
at https://gdc.cancer.gov/about-data/publications/pancanatlas. 
Additionally, HLA-I genotypes for each sample were sourced from 
the pan-cancer landscape paper [47]. To ensure the confidentiality 
of the results obtained through Cox proportional hazards analysis, 
we applied a filter to exclude cancer types with fewer than 100 
samples and a mortality ratio lower than 0.1. After filtration, we 
obtained 7228 samples across 23 tumor types. 

Statistical analyses 
All computations and statistical analyses were conducted within 
the python computing environment. For the analysis of patient 
survival data, the Kaplan–Meier estimator was employed, and 
P values for log-rank tests were calculated using the lifelines 
package. To facilitate model comparison, we generated 5000 boot-
strap resamples for each cohort. Each resample was then used 
to assess the predictive or prognostic performance of five dis-
tinct methods. To determine statistical significance, the P values 
derived from the 5000 bootstraps of each approach were com-
pared using a two-sided Wilcoxon signed-rank test. To assess the 
association between dichotomized PAE scores and other methods 
with ordered response categories (e.g. complete response→partial 
response→stable disease→progressive disease), an ordinal χ2 test  
was used. 

Results 
Design and training of the CapHLA deep learning 
framework 
In order to construct an accurate and comprehensive tool for 
predicting peptide presentation and binding with HLA molecules, 
we sought to integrate convolutional and attention-based mech-
anisms in a deep learning framework, which we termed CapHLA 
(Fig. 1). The overall model architecture includes four main sub-
modules (1): an encoding block, in which both HLA proteins 
and peptides are subjected to one-hot encoding, resulting in 
numerical matrices used in later process (2); a convolution block 
designed to identify functional motifs or patterns inherent in 
the HLA and peptide sequences (3); an attention block that uses 
a multi-head self-attention [28] mechanism to detect weak and 
complicated interplay between HLA molecules and peptides (4); 
and a feature selection block that uses a fully connected layer 

to process features extracted by the preceding attention block, 
cumulatively resulting in peptide presentation probability and 
pHLA BA prediction outputs. In this architecture, the convolu-
tion block, attention block, and feature selection block are inter-
linked through residual connections. The CapHLA system fea-
tures two modeling paradigms that both use the same deep-
learning framework, CapHLA-EL for predicting EL and CapHLA-
BA for BA prediction. The ablation analysis demonstrated that 
incorporating convolutional block with attention block yielded the 
highest AUROC on external validation sets for both HLA-I and 
HLA-II (Fig. S2A-B). Moreover, the complete model consistently 
outperformed others across various peptide lengths (Fig. S2C-D), 
highlighting the significance of each submodule. 

Comparison of CapHLA performance with 
existing methods 
To validate the predictive performance of CapHLA, we performed 
a comparative analysis with other current tools tailored for each 
respective data type. Beginning with the EL HLA-I dataset, we 
compared CapHLA with five methods, including the method rec-
ommended by IEDB (NetMHCpan_EL [9]) and six other state-
of-the-art methods (TripHLApan [48], BigMHC [5], MixMHC2pred 
[7], TransPHLA [10], DeepNeo-MHC [8], MHCflurry [49]) (Table 1). 
We found that CapHLA reached an area under the curve of 
0.980 in receiver operating characteristic (AUROC) analysis and 
0.979 in precision-recall curves (AUPRC) in predictions with HLA-
I EL data (Fig. 2A, Fig. S3A). By contrast, TripHLApan achieved 
the highest performance among the comparison methods, with 
AUROC and AUPRC values of 0.962 and 0.964, respectively. We also 
compared accuracy, F1 score and Matthews correlation coefficient 
(MCC) across all methods (Fig. 2B), with CapHLA demonstrated 
the best overall performance. After further stratifying for peptide 
length, CapHLA had mean AUROC and AUPRC values of 0.958 
and 0.961, respectively (Fig. 2C, Fig. S3B). These results indicated 
that CapHLA had higher predictive accuracy than other current 
methods, and across all tested peptide lengths. It should be noted 
that all methods except CapHLA exhibited a sharp decrease in 
accuracy in peptides longer than 11 residues. 

For EL HLA-II data, we compared CapHLA with four methods, 
including the method recommended by IEDB (NetMHCIIpan_EL 
[50]) and three other recently published tools (TripHLApan [48], 
MixMHC2pred [6] and DeepNeo-MHC [8]). CapHLA had AUROC 
and AUPRC values of 0.967 and 0.970, respectively, whereas 
NetMHCIIpan_EL had the next highest accuracy, with AUROC 
and AUPRC values of 0.937 and 0.950, respectively (Fig. 2D, 
Fig. S3C). When considering accuracy, F1 score and MCC together, 
these results indicated that CapHLA could provide superior 
performance than other available models in EL prediction for 
both HLA-I and HLA-II (Fig. 2E). When testing accuracy across 
different peptide lengths, CapHLA consistently showed the 
highest accuracy among the tested methods for all peptide 
lengths, reaching mean AUROC and AUPRC scores of 0.969 and 
0.972 (Fig. 2F, Fig. S3D). These results indicated that CapHLA 
could analyze complicated sequence features, resulting in higher 
predictive accuracy for longer peptides predictions and greater 
consistency across peptides of varying length. 

It should be mentioned that since not all methods are com-
patible with every HLA allele or all peptide lengths (e.g. DeepNeo-
MHC only supports nine and 15 aa peptides), we therefore com-
pared performance using subsets of the external validation data. 
To ensure fair evaluations, we performed pairwise comparisons 
between CapHLA and other methods using the corresponding

https://gdc.cancer.gov/about-data/publications/pancanatlas
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https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
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Figure 1. Schematic of the CapHLA model. CapHLA predominantly consists of an encoding layer, a convolutional layer, an attention layer, and a feature 
selection layer. 

subset data ( Fig. S3E-F). In these comparisons, CapHLA had con-
sistently higher accuracy in EL predictions for both HLA-I and 
HLA-II, across a wide spectrum of alleles. Detailed analysis of 
CapHLA performance for each peptide length in the validation 
dataset showed that CapHLA achieve an AUROC of >0.95 across 
8–15 aa peptides for HLA-I and 12–20 aa peptides for HLA-II 
(Fig. S4A). Analysis of CapHLA predictive accuracy across all HLA 
alleles in the validation dataset revealed that it could achieve 
AUROC values greater than 0.90 for 184 of 200 alleles (Fig. S4B), 
despite the limited availability of pHLAs for several alleles in the 
training data. 

In comparative evaluations of BA prediction between CapHLA 
and several IEDB baseline methods (including NetMHCpan_BA 
[9] and MHCflurry [49] for HLA-I or NetMHCIIpan_BA [50] and  
DeepSeqPanII [51] for HLA-II), we found that CapHLA exhibited 
consistently higher accuracy in predicting pHLA BA than other 

methods, regardless of HLA-I or HLA-II context, with a mean abso-
lute error (MAE) of <0.1 and a coefficient of determination (R2) 
exceeding 0.8 (Fig. 2G-H). Pairwise comparison between CapHLA-
BA predictions of BA with that of experimentally determined BA 
scores showed that 93.13% (pHLA-I) and 97.70% (pHLA-II) fell 
within 0.2 of the experimental value in external validation dataset 
(Fig. 2I-J), whereas predictions by the comparison methods ranged 
from 58.02% to 62.03% (pHLA-I) and range from 53.81% to 63.05% 
(pHLA-II) within 0.2 of the experimental BA. These results showed 
that CapHLA had lower prediction error than other methods. 

The attention score of CapHLA uncovers the 
underlying patterns of pHLA 
The attention block of CapHLA provides biological interpretability 
for the model. We initially aggregated the attention scores for each 
amino acid at various positions within peptides across different

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
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Figure 2. Comparison of CapHLA performance with other methods. (A-C) evaluation of CapHLA and other methods by ROC curve (A), accuracy, F1 score 
and MCC (B), AUROC per peptide length (C) using the EL HLA-I external dataset. (D-F) the same analysis as in A-C, but using the EL HLA-II external dataset. 
(G-H) comparison among methods by MSE, MAE, and R2 in the BA HLA-I (G) and HLA-II (H) external datasets. (I-J) experimental scores and predicted 
scores by CapHLA and other methods in the BA HLA-I (I) and HLA-II (J) external datasets. Orange dots represent points for which the prediction value 
deviates from the experimental value by >0.2. 

sample types ( Fig. S5). This analysis revealed that positive pHLA 
attention scores were focused on specific positions and amino 
acids, whereas negative pHLA scores remained consistent across 
all positions and amino acids. Further, the distribution of positive 
pHLA-II attention scores was obviously more diffuse than that of 
positive pHLA-I scores. This discrepancy could be attributed to 
the greater variability in the length of peptides binding with HLA-
II compared to HLA-I-binding peptides, and the relatively high 
diversity of core binding region positions across the entire peptide. 

To improve our understanding of the mechanism of pHLA bind-
ing, we next analyzed the patterns of binding and non-binding 
peptides for each HLA allele to identify the key amino acids at crit-
ical positions for pHLA binding. Attention scores for all HLA alleles 
and corresponding heatmaps are available for download from our 
Github repository. As expected, CapHLA identified patterns sim-
ilar to those described in previous studies [10]. For HLA-A∗11:01, 
CapHLA recognized that K was the predominant residue at the C-
terminal position, while V or T were the most frequent residues

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
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at position 2 (P2). This is consistent with previous studies show-
ing that P2 and the C-terminus served as anchor residues [52]. 
(Fig. 3A). We observed that peptides of varying lengths maintained 
a hydrogen bonding network by conserved anchoring sites near 
N- or C-terminus, while the central residues of such peptides were 
typically showed high variability, which was also demonstrated by 
previous studies [53] [54]. Additionally, we noted that other HLA-I 
allelic peptide patterns were consistent with structures in protein 
data bank (2FYY for B∗35:01 [55], 1M6O for B∗44:02 [56], 5VGD 
for C∗05:01 [57]) (Fig. 3B). For HLA-II-binding peptides, the amino 
acid attention patterns are generally more complex than for 
HLA-I-binding peptides, due to the extended conformation of the 
peptides within the groove [58]. In the case of HLA-DRB1∗03:01, 
CapHLA identified the first anchor residue (corresponding to the 
residue at position 4 or 5, which aligns with the position 1 in 
the binding core) as typically being I, L, or V, while the second 
to fourth residues were D, K, and R, respectively (Fig. 3C). Along 
with the attention patterns defined for other HLA-II alleles, these 
results align well with previous studies [6] and demonstrate the 
effectiveness of CapHLA attention block. 

Immunogenic peptide features 
T cell responses are typically elicited by a relatively small subset 
of peptides among numerous potential candidates. For instance, 
even when using a comprehensive consortium approach, only 
37 out of 608 tested pMHCs were found to be engaged by 
patient-matched T cells [29]. To examine whether CapHLA 
could be used to predict peptide immunogenicity, we analyzed 
the immunogenicity characteristics of experimentally validated 
peptides from a dataset published by Wells and co-workers 
(Wells dataset), including presentation probability (PB) which 
predicted by CapHLA-EL, BA that predicted by CapHLA-BA and 
expression level of each peptide by tumor cells (EP) (Fig. 4A). As 
anticipated, CapHLA-EL predicted high PB values for almost all 
of these immunogenic peptides, with only one peptide displaying 
a predicted presentation probability <0.8. Intriguingly, 191 of 591 
non-immunogenic peptides were predicted to have high PB but 
low BA. By contrast, 39 0f 41 immunogenic peptides in the Wells 
dataset had high BA scores (>0.5 representing 224 nM). In addition 
to the high PB and BA scores, we found that EP values were also 
high for these immunogenic peptides. In another experimentally 
validated dataset of immunogenic peptides from Puig-Saus et al. 
[21] (Fig. S6), we also observed high values of PB, BA, and EP, 
suggesting that these characteristics are important features of 
immunogenic peptides. 

We then used a contingency table with the Wells dataset 
to investigate whether these three features conferred different 
effects on immunogenicity predictions, and whether they could 
be used in combination. By applying a PB threshold of 0.8, 32% 
of non-immunogenic peptides were effectively filtered out, while 
97% of immunogenic peptides were retained (Fig. 4B, P = 1.3∗10−4). 
Introducing a BA threshold of >0.5 led to removal of 55% of the 
non-immunogenic peptides while retaining 91% of the immuno-
genic peptides (Fig. 4C, P = 9.8∗10−8). Further incorporating an EP 
threshold >10 TPM resulted in the elimination of 80% of non-
immunogenic peptides but retention of 76% of immunogenic 
peptides (Fig. 4D, P = 3.2∗10−11). 

Subsequent ROC analysis indicated that PB provided greater 
power than BA or EP in discriminate immunogenic from non-
immunogenic peptides (Fig. 4E). To exploit these advantages, we 
adopted a composite scoring index of (PB − 0.5) ∗ BA to effectively 
amplify the influence of PB while retaining the discriminatory 
power of BA. AUROC analysis of this PB + BA index indicated that it 

could provide an accuracy of 0.841 in immunogenicity predictions. 
When incorporating EP into this model, we speculated that there 
is less variation in immunogenicity between highly expressed 
peptides due to saturation of antigen binding with HLA complexes 
in cell surface, whereas EP may confer a markedly greater effect 
on immunogenicity of weakly expressed peptides. We thus used 
an upper EP limit of 100 TPM and applied the log value of EP to 
calculate this joint probability/affinity/expression (i.e., PAE) score, 
as follows: PAE = (PB − 0.5) ∗ BA ∗ log (EP + 1) .We found that this 
PAE index could yield an AUROC of 0.858, which suggested that 
combining these features could substantially bolster the capacity 
to predict peptide immunogenicity. 

Higher PAE scores associated with better 
response to checkpoint inhibitors 
Based on our above findings, we then tested the PAE index of 
neoantigen quality for assessing potential benefits of ICB in 
individual patients. For this analysis, we assembled data from 
whole exon sequencing and RNA-seq data from five cohorts of 
patients treated with ICB. The cohort data were processed through 
our pipeline to generate PAE scores for all patients (Fig. S7). We 
only considered neoantigens that bind with HLA-I molecules, 
since PAE scores rely on the available results of validation 
of HLA-I peptide immunogenicity, while the parameters for 
determining HLA-II peptide immunogenicity remains unknown. 
Upon integrating all neoantigens from a patient, we also 
incorporated VAF and adjusted the score for each neoantigen 
(see methods). 

This analysis was conducted using data from three cohorts 
of melanoma patients (the Hugo [31], Riaz [16], and Liu cohorts 
[32]) treated with anti–PD-1/anti–PD-L1 therapies. In the Hugo 
and Liu cohorts, higher PAE scores were observed in patients with 
significantly longer survival times (Fig. 5A, P = 8.9∗10−3; Fig. 5C, 
P = 6.9∗10−5). In addition, higher PAE was associated with better 
treatment response in the Hugo and Liu cohorts (Fig. S9A, P = 0.07; 
P = 0.008). By contrast, higher PAE scores were not significantly 
correlated with either extended survival or improved treatment 
response in the Riaz cohort. However, positive responders (either 
complete or partial responses, CR + PR) had higher PAE scores 
than non-responders (stable disease and progressive disease, 
SD + PD) (Fig. 5B, Fig. S9A). Since Riaz and colleagues specifically 
selected patients unresponsive to CTLA-4 therapy for PD-1 
treatment, predicting survival time is more challenging in these 
patients. To test non-small cell lung cancer (NSCLC) data, we 
examined patients treated with anti–PD-1/anti–PD-L1 regimens 
in a study by Ravi et al. [33] In this cohort, PAE shared a significant 
positive association with survival time and treatment response 
(Fig. 5D, P = 0.0031; Fig. S9A, P = 0.002). In a ccRCC cohort reported 
by Miao et al. [34], we observed that ccRCC patients treated 
with anti–PD-1/anti–PD-L1 strategies who had higher PAE scores 
also had significantly longer survival time and response trended 
better, albeit without reaching statistical significance (Fig. 5E, 
P = 0.014; Fig. S9A). 

To compare the performance of PAE scores with other met-
rics used for neoantigen and mutation-related markers, we also 
examined the predictive power of DeepNeo [59] immunogenicity 
neoantigen burden, CSiN [60] score, NetMHCpan [9] neoantigen 
burden and TMB (Fig. S8A-D, Fig. S9B-E) in the same cohorts 
and using the same statistical tests. To ensure unbiased com-
parison, only HLA-I-binding neoantigens were taken into consid-
eration when assessing neoantigen-related markers. We found 
that all four models had lower predictive accuracy of treatment

2FYY
2FYY
1M6O
1M6O
1M6O
5VGD
5VGD
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
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Figure 3. Heatmap visualization of cumulative attention scores for amino acids at each peptide position. Cumulative attention scores of amino acid 
binding at each peptide position for several well-characterized HLA alleles. (A) 9-mer, 10-mer, and 11-mer peptides binding with HLA-A∗11:01. (B) 11-
mer peptides binding with HLA-B∗35:01, 9-mer peptides binding with HLA-B∗44:02 and HLA-C∗05:01. (C) 15-mer peptides binding with HLA-DRB1∗03:01, 
HLA-PA1∗02:01/DPB1∗01:01, and HLADQA1∗ 02:01/DQB1∗02:02. 

response compared to PAE score. In addition, PAE score also pro-
vided the most robust prognostic capability across four cohorts, 
with the exception of the Riaz melanoma cohort, in which CSiN 
had the highest accuracy. Subsequent bootstrap analysis to eval-
uate the statistical significance of PAE improvement over the 
other four approaches, as conducted in other model comparisons 
[ 61], showed that CapHLA significantly outperformed than other 
methods in four of the five cohorts evaluated, except CSiN in the 
Riaz melanoma cohort Fig. 5F). 

Next, we evaluated whether PAE captures unique informa-
tion not reflected by established immunotherapy biomarkers. 
Specifically, we calculated the T-cell inflamed gene expression 
profile (GEP) [62], innate anti-PD-1 resistance gene signature 
(IPRES) [63], immuno-predictive score (IMPRES) [63], and MSI 
score as described in previous studies [64]. Additionally, we used 
sample gene set enrichment analysis (ssGSEA) to quantify tumor 
immune microenvironment-related gene signatures, including 
Angio [65] and myeloid inflammation [66]. The Spearman
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Figure 4. Features of immunogenic peptides. (A) a 3D plot of presentation probability, BA, and expression level of peptides from an immunogenic 
experiment. (B-D) contingency tables comparing validation status to PB status (B), PB and BA status (C), and PB, BA, and EP status (D) across all peptides. 
P values were calculated by Fisher’s exact test. (E) Various feature combinations were assessed by ROC curves for their value in predicting peptide 
immunogenicity. 

correlation between PAE score and these biomarker in each cohort 
showed that PAE functions as an independent biomarker for 
immunotherapy, with Spearman correlations below 0.5 for all 
comparisons ( Fig. 5G). 

Higher PAE can predict more favorable prognosis 
in cancers 
To investigate the relationship between neoantigen quality and 
long-term patient survival in various tumor types, we examined 
PAE association with patient prognosis in datasets from the Can-
cer Genome Atlas (TCGA). Employing Cox regression analysis, 
we calculated hazard ratios, along with the corresponding con-
fidence intervals and significance level, to evaluate associations 
between scoring with the above methods and patient survival 
(Fig. 6A) showed that PAE was significantly negatively correlated 
with mortality risk (hazard ratio < 1, p value <0.05) in the UCEC 
(n = 417), KIRP (n = 238), STAD (n = 314), and BLCA (n = 384) cohorts. 
These results indicated that patients with higher PAE score had a 
reduced risk of mortality, whereas with the other methodologies, 
samples predicted with higher immunogenicity were not signifi-
cantly associated with reduced mortality risk. In SKCM (n = 100), 
PAE score was negatively correlated with mortality risk but failed 

to reach significance (hazard ratio < 1, p value = 0.17), potentially 
due to the relatively small sample size in this cohort. 

The patients with higher PAE score also survived significantly 
longer in UCEC, SKCM, KIRP, STAD, and BLCA cohorts (Fig. 6B-F), 
while no significant associations were identified through the 
same analysis for other models (Fig. S10). Bootstrap analysis 
evaluating the statistical significance of this comparison further 
highlighted the greater reliability of CapHLA over other method-
ologies in four of the five evaluated cohorts, while TMB had higher 
predictive power in the BLCA cohort Fig. 6G). These results implied 
that if patients with higher PAE scores tended to exhibit prolonged 
survival in a specific type of cancer, then it is likely that this cancer 
type may have characteristically greater T cell infiltration [67, 68]. 
Such tumor patients may have increased likelihood of positive 
response to ICB treatment. 

Conclusions 
Peptide binding and presentation with HLA-I and HLA-II pro-
teins is an essential step for initiating robust T-cell recognition. 
Therefore, delineating effective targets of immunotherapy, epi-
tope screening, and vaccine design require accurate prediction of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae595#supplementary-data
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Figure 5. Association of PAE score with overall survival of ICB patients. (A-E) Kaplan–Meier survival curves were used to estimate overall survival stratified 
by PAE-high/−low status. P values for log-rank tests are shown. (A) the Hugo melanoma cohort. (B) the Riaz melanoma cohort. (C) the Liu melanoma 
cohort. (D) the Ravi NSCLC cohort. (E) the Miao clear cell renal cell carcinoma (ccRCC) cohort. (F) Boxplots of bootstrap P values evaluating the robustness 
of prognostic performance by PAE, DeepNeo, CSiN, NetMHCpan, and TMB, with each P value generated from a bootstrap resample of each cohort. Two-
sided Wilcoxon signed-rank test was used to compare the bootstrap P values. ∗∗∗P < 0.001. (G) Heatmaps of the pairwise spearman correlations of the 
CapHLA, IPRES, IMPRES, MSI number, IFN-γ signature, T cell inflamed GEP, Angio signature, and myeloid inflammation are shown for all cohorts. 
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Figure 6. Association analysis of PAE scores with overall patient survival in TCGA data. (A) Forest plot of hazard ratio calculated by cox proportional 
hazards analysis of the TCGA cohort. Bar plot shows the -log10 p-value of the hazard ratio. (B-F) Kaplan–Meier survival curves were used to estimate 
overall survival stratified by PAE-high/−low status in the (B) the BLCA cohort; (C) the KIRP cohort; (D) the SKCM cohort; (E) the STAD cohort; (F) and 
the UCEC cohort. P values for log-rank tests are shown. (G) Boxplots of bootstrap P values evaluating the robustness of prognostic performance by PAE, 
DeepNeo, CSiN, NetMHCpan, and TMB, with each P value generated by bootstrap resampling of each cohort. Two-sided Wilcoxon signed-rank tests were 
used to compare the bootstrap P values. ∗∗∗P < 0.001. 
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pHLA binding and likelihood of presentation. Here, in the current 
study, we developed CapHLA, a convolution and attention-based 
model, which is a generalized pan-specific method that is not 
restricted to a single HLA allele or peptide length. Due to the use of 
a convolutional and attention model that can effectively capture 
a wider spectrum of features in amino acid sequence features, 
CapHLA showed consistently higher accuracy, especially in pre-
dicting pHLA-II and non-classic length peptide binding, compared 
to other advanced tools, including the approach recommended 
by the IEDB. These results thus suggest that CapHLA can provide 
a comprehensive and higher accuracy solution for predicting 
pHLA binding and presentation. Moreover, prediction of peptide 
binding and surface presentation for both HLA-I and HLA-II using 
the same model provides greater convenience and comparability 
across studies to facilitate independent functional investigations. 

In recent neoantigen prediction models, EL datasets are 
increasingly favored, while attention to BA data has waned. 
However, BA data provide highly relevant quantitative insights 
into BA that can complement the likelihood that a peptide will 
be presented in vivo. Through the analysis of recently published 
immunogenicity-validated neoantigens dataset, we underscore 
BA is a key parameter in immunogenic neoantigens. Based 
on these findings, we established PAE score as an informative 
quality index for screening neoantigens that incorporates peptide 
features of BA, presentation probability, and expression level to 
substantially bolster the predictive capacity for reliable prediction 
of peptide immunogenicity. Furthermore, by integrating all 
neoantigens within a patient sample, PAE score could potentially 
serve as a biomarker for predicting response to ICB treatment, as 
evidenced in our analysis of ICB cohorts and TCGA cohorts. 

Supplementary Data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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