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Abstract 
Intratumor heterogeneity significantly challenges the accuracy of existing prognostic models for esophageal squamous cell carcinoma 
(ESCC) by introducing biases related to the varied genetic and molecular landscapes within tumors. Traditional models, relying on 
single-sample, single-region bulk RNA sequencing, fall short of capturing the complexity of intratumor heterogeneity. To fill this gap, 
we developed a computational model for intratumor heterogeneity corrected signature (ITHCS) by employing both multiregion bulk 
and single-cell RNA sequencing to pinpoint genes that exhibit consistent expression patterns across different tumor regions but vary 
significantly among patients. Utilizing these genes, we applied multiple machine-learning algorithms for sophisticated feature selection 
and model construction. The ITHCS model significantly outperforms existing prognostic indicators in accuracy and generalizability, 
markedly reducing sampling biases caused by intratumor heterogeneity. This improvement is especially notable in the prognostic 
assessment of early-stage ESCC patients, where the model exhibits exceptional predictive power. Additionally, we found that the risk 
score based on ITHCS may be associated with epithelial-mesenchymal transition characteristics, indicating that high-risk patients may 
exhibit a diminished efficacy to immunotherapy. 
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Introduction 
Esophageal cancer ranks as the sixth leading cause of cancer-
related mortality globally, accounting for 544 000 deaths in 
2020, with >85% of these occurring in low- and middle-income 
countries, particularly in Central Asia and the Eastern Coast of 
Africa [1]. Among its types, esophageal squamous cell carcinoma 
(ESCC) is the most prevalent, constituting >90% of cases [1]. 
Despite advancements in ESCC treatment, the 5-year survival 
rate remains a mere 15.9%, with significant survival disparities 
[2]. The American Joint Committee on Cancer’s staging system, 
currently the foremost guideline for ESCC treatment, aids in 
classifying patient stages but lacks the precision needed for 
detailed stratification and accurate prognosis. This limitation 
underscores an urgent need for a more precise prognostic model 
that can facilitate accurate and personalized treatment decisions 

for ESCC patients. Addressing this gap is crucial for improving 
outcomes and equity in cancer care worldwide [3, 4]. 

In the last two decades, high-throughput sequencing technolo-
gies have significantly advanced our understanding of cancer 
biology, particularly in identifying RNA-based markers for cancer 
prognosis through transcriptomic data. Despite the development 
of several prognostic models for ESCC [5–8], their clinical 
application has been limited. This limitation may be attributed 
to a lack of high-quality, large-cohort ESCC datasets or inconsis-
tencies in data quality, leading to unstable model performance. 
Furthermore, the inconsistency of data standards between 
different centers complicates data validation. In addition to these 
factors, a major challenge, as highlighted by previous research, is 
the inadequate consideration of tumor complexity, especially the 
role of tumor heterogeneity [9–11]. Tumor heterogeneity includes 
intertumoral (between different patients) and intratumoral
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(within the same tumor) heterogeneity. In our study, intratumoral 
heterogeneity refers to spatial genetic and molecular differences 
across different regions within a tumor. [12, 13]. Most prognostic 
models for ESCC have primarily focused on intertumor hetero-
geneity by analyzing samples from single tumor regions, neglect-
ing intratumor diversity. This has led to models that may exhibit 
variability in performance across different patient populations 
and face challenges in replicability [9, 14, 15]. Recent studies 
using multiregion bulk genomic and single-cell transcriptomics 
have underscored the significance of intratumor heterogeneity in 
ESCC [16–19], indicating that integrating this variability could be 
key to developing more accurate prognostic models. 

In this study, we aimed to analyze both inter- and intratumor 
heterogeneity in ESCC by integrating multidimensional transcrip-
tomic data. This involved a critical evaluation of the efficacy of 
existing predictive models to elucidate the extent of inherent 
sampling bias. In this context, sampling bias refers to the vari-
ation in gene expression profiles that occurs when samples are 
taken from different regions of the same tumor. To address this, 
we devised a novel strategy to identify genes that are consis-
tently expressed within individual tumors but vary significantly 
across different patients. Our approach seeks to establish a gene 
expression–based signature that effectively reduces the impact 
of intratumor heterogeneity, thereby enhancing the accuracy and 
reliability of prognostic evaluations for ESCC patients. By carefully 
designing our predictive model to overcome the challenges of clin-
ical sample bias, we offer an improved prognostic risk assessment, 
providing a more robust tool for individuals diagnosed with ESCC. 

Material and methods 
Acquisition and processing of multiregion gene 
expression data 
Multiregion sample data from patients with ESCC were procured 
from the GSE33426 [20]. This particular dataset is composed 
of microarray data pertaining to 71 samples, including 59 
tumor regions and 12 normal esophageal regions, derived from 
9 ESCC patients. Detailed sample collection information is 
depicted in Fig. S1. For probe annotation, we utilized the GPL571 
[HG-U133A_2] platform annotation file corresponding to the 
Affymetrix Human Genome U133A 2.0 Array. 

Collection and analysis of single-region bulk 
RNA-seq and survival data 
The current research integrated data from three distinct ESCC 
cohorts, encompassing clinical follow-up information. This 
compilation involved 432 ESCC samples from 430 patients and 
182 normal samples, sourced from datasets GSE53625, TCGA-
ESCC, and Zhang et al. (refer  to  Supplementary Table S1). 
The transcriptomic data for GSE53625 were derived from 
microarray, whereas those for TCGA-ESCC and Zhang et al. 
were obtained via RNA sequencing. Specifically, the GSE53625 
dataset included 358 samples from 179 patients, featuring tumor 
samples along with demographic and clinical data such as 
age, gender, staging, and tumor grading. Probe were annotated 
using the GPL18109 platform file for the Agilent-038314 CBC 
Homo sapiens lncRNA + mRNA microarray V2.0. For the TCGA-
ESCC cohort, transcriptomic data for 95 ESCC specimens and 3 
normal specimens from 93 patients were acquired from TCGA 
Genomic Data Commons (GDC) (https://portal.gdc.cancer.gov/ 
repository). Transcripts per million (TPM) values were extracted 
for further analysis, focusing exclusively on primary tumor 
samples (TCGA code 01A), resulting in data for 93 primary ESCC 
tumors. Additional data, including somatic mutation profiles 

and clinical–pathological features with follow-up information 
for ESCC patients, were also retrieved from the GDC. Homologous 
recombination deficiency (HRD) and cell stemness scores were 
sourced from the TCGA PanCancer Atlas (https://pancanatlas. 
xenahubs.net). Another cohort, analyzed as per Zhang et al. [21], 
included 159 ESCC patients with accompanying clinical survival 
data and tumor staging, with the dataset comprising TPM values. 

Acquisition and processing of single-cell RNA 
data 
Three cohorts of single-cell RNA sequencing for ESCC were 
incorporated: GSE196756 (encompassing 3 tumor and 3 normal 
tissues), GSE197677 (with 18 tumor and 12 normal tissues), 
and GSE160269 (comprising 60 tumor tissues) (Supplementary 
Table S2). From these datasets, 3 tumor specimens from 
GSE196756, 4 from GSE197677, and 60 from GSE160269 were 
meticulously extracted and subsequently processed to establish 
individual Seurat objects via the Seurat package [22]. We 
implemented a filtering criterion, excluding cells exhibiting >5% 
mitochondrial gene content. Further, cells that did not meet the 
established quality control parameters (nFeature_RNA < 6000, 
nFeature_RNA > 200) were eliminated, and the presence of 
doublets was addressed using the doubletFinder_v3 function. The 
SCTransform method facilitated the normalization of the dataset. 
We then selected the principal 15 components for significant 
statistical input in the uniform manifold approximation and 
projection (UMAP) analysis. The study involved annotating three 
distinct cell types, namely, epithelial cells, immune cells, and 
stromal cells, identified through specific marker genes: KRT14, 
KRT18, EPCAM, and SFN for epithelial cells; PTPRC and JCHAIN 
(B cells) for immune cells; and PECAM1, FN1, and VWF for 
stromal cells. The chosen marker genes are based on previously 
published literature [21, 23, 24]. We applied an entropy-based 
statistic, ROGUE, to quantify the heterogeneity within various 
cell subpopulations [25]. This approach enabled the evaluation 
of heterogeneity scores for subgroups of epithelial, stromal, and 
immune cells, with higher ROGUE scores indicating a lower degree 
of heterogeneity within each subgroup. 

Analytical approach to tumor heterogeneity and 
quadrant mapping 
Intra- and intertumor heterogeneity were quantitatively analyzed 
using the multiregion gene expression data procured from the 
GSE33426 cohort. To quantify intratumor heterogeneity for each 
gene, we calculated the standard deviation (SD) of gene expression 
levels across different tumor regions. This methodology employs 
multiregion tumor sampling to evaluate heterogeneity within the 
tumor. In our analysis, we employed metrics such as SD, median 
absolute deviation (MAD), and coefficient of variation (CV) to 
measure gene expression heterogeneity, ultimately selecting SD 
as the most suitable metric for our study. 

For assessing intertumor heterogeneity, we employed the 
methodology previously described by Luo et al [10]. A random 
tumor area was selected per patient, and the SD for each gene was 
calculated. This random selection process was repeated 10 times, 
and the mean value of these iterations was used to establish 
the intertumor heterogeneity score. A quadrant system for gene 
heterogeneity (Q1–Q4) was devised based on the mean scores of 
intra- and intertumor heterogeneity. 

Compilation of prognostic gene expression 
signatures 
This investigation entailed an extensive collection of 13 prognos-
tic risk models pertaining to ESCC, which have been previously
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elucidated in the literature [6, 8, 26–36]. Among these, we 
meticulously selected 13 models that were constructed using 
the Cox proportional hazards method. Each model was closely 
associated with a distinct predictive formula, as detailed in 
Supplementary Table S3. These models employed the formula 
for signature risk score as:

∑n 

i=1

( (
coefficient of gene i

) × (
expression value of gene i

)

where “i” symbolizes the respective gene and “n” the total gene 
count. This formula, consistent across gene lists and coefficients, 
was applied across various expression matrices to ascertain the 
signature risk score for individual samples. In each of the 13 mod-
els, samples were stratified into high-risk or low-risk categories 
based on the median risk score cutoff values derived from each 
cohort.

For each tumor region, a risk score was computed. Patients 
with exclusively low-risk regions were categorized as “concordant 
low risk,” those with only high-risk regions as “concordant high 
risk,” and those with a combination as “discordant.” A model was 
regarded as exhibiting substantial sampling bias if the “discor-
dant” classification was applicable to >50% of the patients. 

Prognostic gene selection based on heterogeneity 
quartiles 
Utilizing the heterogeneity quartile gene sets, we conducted uni-
variate Cox regression analysis for the Q1, Q2, Q3, Q4, and Q1–Q4 
gene sets, with a primary focus on the Q4 gene set, which is dis-
tinguished by high intertumor heterogeneity and low intratumor 
heterogeneity. The univariate Cox analysis was performed using 
the survival package in R (https://CRAN.R-project.org/package= 
survival), applying a P-value <.05 for gene selection. The GSE53625 
dataset served as the primary training set for this screening. 

Construction and validation of an intratumor 
heterogeneity prognostic model 
A least absolute shrinkage and selection operator (LASSO) regres-
sion analysis of the univariate Cox results was conducted using 
the glmnet package [37], refining the selection to genes most 
indicative of prognostic relevance. 

To achieve a model with enhanced precision and robustness, 
we integrated a suite of nine machine learning algorithms 
with the following parameters: random survival forests (RSFs) 
(ntree = 1000), elastic net (Enet) (alpha ranging from 0.1 to 
0.9), ridge regression (α = 0), stepwise Cox regression (StepCox) 
(direction = both, forward, backward), CoxBoost (maxstepno = 500, 
K = 10, type = “verweij”), partial least squares regression for 
Cox models (plsRcox) (nt = 5), supervised principal compo-
nents (SuperPC) (type = “survival”, s0.perc = 0.5, n.threshold = 20, 
n.fold = 10, n.components = 3, min.features = 5), gradient boost-
ing machine (GBM) (n.trees = 10 000, interaction.depth = 3, 
n.minobsinnode = 10, shrinkage = 0.001), and survival–support 
vector machine (Survival-SVM) (gamma.mu = 1). Based on the 
genes selected by the univariate and LASSO analysis, models 
were trained using these algorithms and subjected to rigorous 
internal validation through 5-fold cross-validation [set.seed(123)]. 
Subsequently, external validation was performed using the TCGA-
ESCC and Zhang et al. [21] datasets. Harrell’s concordance index 
(C-index) was computed across all datasets to determine the opti-
mal model. Additionally, we evaluated the temporal accuracy of 
the models using the timeROC R package [38], calculating the area 
under the curve (AUC) over time for both the training and test sets. 

Analytical comparison of high-risk versus 
low-risk categories 
This study stratified patients from datasets GSE53625, TCGA-
ESCC, and Zhang et al. into high-risk and low-risk groups based 
on median risk scores. Differential gene expression analysis 
was conducted using the limma package [39], accommodating 
data types such as microarray (GSE53625) and RNA-seq TPM 
values (TCGA-ESCC and Zhang et al.). Gene set enrichment 
analysis (GSEA) [40] was then employed to conduct enrichment 
analysis on these stratified groups using the comprehensive 
“h.all.v2023.2.Hs.symbols.gmt” Hallmark gene set. Additionally, 
the IOBR package [41] was deployed for the quantitative 
assessment of immune cell infiltration and the characterization 
of various biological signatures in the aforementioned datasets. 

In an effort to elucidate the differential response to immune 
therapy among high-risk and low-risk patients, this study 
integrated data from six pertinent immune therapy datasets: 
IMvigor210 [42], GSE213331 [43], GSE91061 [44], GSE115821 [45], 
GSE135222 [46], and GSE126044 [47] (Supplementary Table S4). 
The comparative analysis focused on the risk score discrepancies 
between patients classified as responsive (pathological complete 
response [pCR]) and nonresponsive (nonpathological complete 
response [npCR]) to the treatment. 

Spatial transcriptomic analysis 
Spatial transcriptomics data acquisition and processing method-
ologies adhered to previously established protocols [48]. The Seu-
rat software suite was employed for downstream analysis, includ-
ing data normalization using the SCTransform function. The com-
putational tool AddModuleScore was applied to determine the 
scores for 13 specific signatures and intratumor heterogeneity 
corrected signature (ITHCS), subsequently analyzing their SDs 
to evaluate spatial heterogeneity. To assess the epithelial and 
stromal areas at the spatial level, we scored the spot using the 
ESTIMATE algorithm [49]. 

Assessing tumor heterogeneity across different 
prognostic signatures in esophageal squamous 
cell carcinoma 
In the ESCC bulk RNA-seq datasets GSE33426, GSE53625, TCGA-
ESCC, and Zhang et al., we applied the previously mentioned risk 
scoring formula to calculate the risk scores for the ITHCS and 
other reported ESCC prognostic signatures (a total of 14 prognostic 
signatures). Then, we used variance analysis to compare differ-
ences in intratumor and intertumor heterogeneity among them. 
In the single-cell datasets GSE196756, GSE197677, and GSE160269 
and the spatial transcriptomics dataset by Guo et al. [48], we 
employed the AddModuleScore function, based on the genes of 14 
prognostic signatures, to calculate signature scores for cells. Vari-
ance analysis was applied to compare differences in intratumoral 
heterogeneity at the single-cell and spatial levels. 

Statistical analysis 
Comprehensive statistical analyses, including data visualization, 
were conducted using R software version 4.3.2 (https://r-project. 
org/). Correlations between continuous variables were deter-
mined using Pearson’s correlation in cases of normal distribution 
and Spearman’s correlation for non-normally distributed data. 
Comparative analyses of continuous variables were executed 
employing Student’s t-test or Wilcoxon rank-sum test, while 
categorical variables in contingency tables were analyzed using

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://r-project.org/
https://r-project.org/
https://r-project.org/
https://r-project.org/


4 | Lu et al.

Fisher’s exact test. A two-tailed P-value threshold of <.05 was set 
for establishing statistical significance. 

Results 
The impact of sampling bias on esophageal 
squamous cell carcinoma prognostic signature 
resulting from intratumor heterogeneity 
The workflow of this study is depicted in Fig. 1A, began with 
unsupervised stratified clustering of highly variable genes across 
59 tumor regions from the multiregion GSE33426 cohort, revealing 
significant clustering consistency within different regions of the 
same tumor (Fig. 1B). This finding suggests that RNA intertu-
mor heterogeneity may be more pronounced than intratumor 
heterogeneity. Moreover, a comprehensive dimensionality reduc-
tion of the entire transcriptomic profile distinctly unveiled the 
RNA intratumor heterogeneity across various regions of the same 
ESCC. The reliance on molecular characteristics obtained from 
a single region may lead to biases in clinical strategies, encom-
passing biopsy approaches, molecular pathological diagnosis, tar-
geted therapy, and prognostic prediction. To assess the impact of 
RNA intratumor heterogeneity on the performance of molecular 
biomarkers, we applied 13 established ESCC prognostic models 
in the GSE33426 cohort, assessing for patient risk bias. Initially, 
we evaluated the performance of a recently developed RNA-Seq-
based prognostic signature (Signature 1) by Zhao et al. [26]. Using 
the same risk scoring method as the original study, tumor regions 
were classified as high-risk or low-risk. It was observed that 44% 
(4/9) of the patients exhibited discordant categorization (Fig. 1D). 
The remaining 12 predictive models demonstrated an average 
inconsistency rate of 52.9% (ranging from 33% to 67%) (Fig. 1E). 
These findings highlight that known prognostic models, which 
overlook intra-tumor heterogeneity, are susceptible to sample 
bias, reducing their effectiveness and reliability in independent 
cohorts. This limitation underscores the need for new strategies 
in the clinical application of ESCC prognostic models. 

Identification of genes with low intratumor 
heterogeneity and high intertumor heterogeneity 
The design of biomarkers can be optimized by minimizing 
sampling bias, which is induced by intratumor heterogeneity 
while maximizing the ability to distinguish between different 
tumors (intertumor heterogeneity). This approach aims to identify 
prognostic models that, compared to existing prognostic markers, 
exhibit higher reproducibility and clinical utility. Utilizing 
the GSE33426 dataset, we derived scores for intratumor and 
intertumor heterogeneity of genes. Based on these heterogeneity 
indices, genes were classified into high or low groups, resulting in 
an RNA heterogeneity quadrant chart (Fig. 2A). The quadrants 
included genes with low inter- and high intraheterogeneity 
(Q1 = 1173 genes), low inter- and low intraheterogeneity (Q2 = 6847 
genes), high inter- and high intraheterogeneity (Q3 = 4114 
genes), and high inter- and low intraheterogeneity (Q4 = 1107 
genes) (Supplementary Table S5). Genes in Q4 met the desired 
criteria: exhibiting homogenous expression within tumors, thus 
limiting sampling bias, but showing high variability between 
tumors, potentially offering valuable information for patient 
stratification. Correlation analysis between standard deviation, 
MAD, and CV indicated a significant positive correlation among 
them (SD and MAD r = 0.95, P < 2.2e-16; SD-CV r = 0.685, P < 2.2e-
16; MAD-CV r = 0.65, P < 2.2e-16) (Fig. S3A). This suggests the 
absence of significant outliers in the GSE33426 dataset, with 

stable mean values and SD being an effective measure of data 
dispersion. The RNA heterogeneity quadrant chart showed that 
genes in Q4 constituted 8.3% (1101/13 235) of all expressed 
genes, but comprised 16% of genes identified from 13 previously 
published prognostic features, indicating a 2-fold enrichment 
(Fig. 2B). This suggests that previous studies tended to select Q4 
genes even in the absence of RNA-ITH information. 

In previous research, Dunne et al. inferred from the bulk data 
of colorectal cancer that gene signatures based on inherent 
epithelial cell gene expression could significantly enhance patient 
stratification accuracy in colorectal cancer, compared to stroma-
dependent signatures [50]. From a single-cell perspective, we 
initially distinguished cell subgroups in single-cell datasets 
GSE196756, GSE197677, and GSE160269, categorizing them into 
epithelial, immune, and stromal cell groups based on marker 
genes (Fig. S2). Calculating ROGUE scores for different subgroups 
revealed that the heterogeneity of the epithelial cell subgroup in 
all ESCC single-cell datasets was significantly lower than that 
of the immune and stromal cell subgroups (Fig. 2C). Further, 
using the addmodulescore algorithm, we assessed the scores 
of genes in the Q4 quadrant across different cell subtypes. 
The results indicated that the epithelial cell subgroup scored 
significantly higher than the immune and stromal cells in the 
single-cell datasets (Fig. 2D). Additionally, we observed that the 
dispersion of gene expression in the Q4 quadrant was significantly 
lower in the single-cell datasets compared to quadrants Q1–Q3 
(Fig. S3B). These findings suggest that genes in the Q4 quadrant 
are characterized by low intratumor heterogeneity and are likely 
more derived from inherent epithelial cell genes. 

Construct an esophageal squamous cell 
carcinoma prognostic model that enhances 
prediction efficacy by minimizing intratumor 
heterogeneity 
The strategy for model development is illustrated in Fig. S4. 
To construct an ESCC prognostic model that minimally affects 
intratumor heterogeneity, we utilized the GSE53625 dataset as a 
training set. This dataset, with its larger sample size compared to 
the TCGA-ESCC and Zhang et al. cohorts, provided a more robust 
foundation for model training. Within the GSE53625 dataset, an 
initial univariate Cox analysis was conducted on genes in the Q4 
quadrant to preliminarily screen for genes correlated with prog-
nosis. The results identified several genes that conformed to the 
criteria of the univariate Cox analysis (Supplementary Table S6). 
Subsequently, we employed the lasso algorithm to refine the 
selection of feature genes, eliminating redundancy and identify-
ing the most promising prognostic markers. The lasso analysis 
determined the optimal lambda value (N = 39) when the C-index 
was at its highest (Fig. 3A). Utilizing GSE53625 as the training 
set and TCGA-ESCC and Zhang et al. as independent external 
validation cohorts, we found that among all algorithms, Step-
Cox[forward] exhibited the highest average C-index (Average C-
index = 0.813). While RSF and GBM showed superior performance 
in the training set compared to StepCox, their efficacy dimin-
ished in the external test sets, likely indicating model overfitting 
(Fig. 3B). Based on the results from StepCox, we noted that out of 
the 39 genes, 20 had a coefficient <0, suggesting their potential 
as protective factors, while 19 with a coefficient >0, indicating 
possible risk factors (Fig. 3C, Supplementary Table S7). Risk scores 
for each patient in both the training and testing sets were calcu-
lated based on the expression of these genes and their weighted 
regression coefficients. Patients were then stratified into high-risk
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Figure 1. Impact of intratumor heterogeneity on sampling bias. (A) Comprehensive overview of the study design. (B) The heatmap (top) illustrates 
unsupervised hierarchical clustering based on the 100 most variably expressed genes within the GSE33426 cohort. The x-axis represents the highly 
variable genes, and the y-axis represents the tumor samples. The heatmap (bottom) presents the sample distribution for each patient with ESCC. The 
x-axis represents the ESCC patient IDs, and the y-axis represents the tumor samples. (C) PCA using highly variable genes in the GSE33426 dataset. (D) 
Tumor samples from individual regions are represented by points (left). The median risk score across these samples is denoted by a horizontal dashed 
line. The accompanying bar chart (right) displays the proportion of patients classified into consistent low-risk, high-risk, and inconsistent-risk categories. 
(E) Bar chart shows the percentage of patients in the GSE33426 cohort categorized into low, high, and disconcordant risk groups based on an analysis of 
12 established signatures. ESCC, esophageal squamous cell carcinoma; PCA, principal component analysis. 
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Figure 2. Screening for low intratumor heterogeneity genes. (A) RNA heterogeneity quadrant chart based on the GSE33426 multiregion ESCC cohort. The 
x-axis represents intertumor heterogeneity, while the y-axis denotes intratumor heterogeneity. (B) Proportion of genes from published ESCC prognostic 
models within quadrants Q1–Q4 (left). Percentage of expected versus observed genes in each RNA heterogeneity quadrant. (C) ROGUE scores for epithelial 
cells, immune cells, and stromal cells in ESCC single-cell RNA cohorts GSE196756, GSE197677, and GSE160269. (D) Boxplot comparison of Q4 quadrant 
gene feature scores among epithelial cells, immune cells, and stromal cells in the GSE196756, GSE197677, and GSE160269 cohorts. Statistical analysis 
was performed using the Kruskal–Wallis test followed by Dunn’s test. ∗∗∗, P < .001. ESCC, esophageal squamous cell carcinoma. 

and low-risk groups according to the median value. As depicted in 
Fig. 3D–F, in the GSE53625 training data and the two additional 
test datasets, the overall survival rate (OS) of patients in the 
high-risk group was significantly lower than those in the low-risk 
group (P < .0001). Furthermore, in comparisons of progression-
free survival (PFS) and disease-specific survival (DSS) within the 
TCGA-ESCC dataset, a poorer prognosis was observed for patients 
in the high-risk group compared to those in the low-risk group 
(P < .05) (Fig. 3G and H). Across the three datasets, the predictive 
model exhibited hazard ratios (HRs) significantly >1, with no sub-
stantial heterogeneity observed in these studies (I2 = 54%, P = .11). 
To validate the accuracy of the Q4 gene set model, we compared it 
against models constructed from other quartile gene sets, includ-
ing Q1, Q2, Q3, and Q1–Q4. Following univariate Cox regression 
and lasso selection, the final number of genes in each set was 
as follows: Q1 = 33, Q2 = 39, Q3 = 43, and Q1–Q4 = 55 (Fig. S5A). The 
final model demonstrated that the Q4 gene set achieved the high-
est accuracy (Fig. S5B). These findings suggest that the StepCox 

predictive model, encompassing 39 genes, performs comparably 
or better than other models in terms of accuracy and stability, 
and effectively distinguishes survival differences among patients. 

The intratumor heterogeneity corrected 
signature outperforms other esophageal 
squamous cell carcinoma prognostic models 
Given the previously reported prognostic signatures demon-
strating good performance in predicting the prognosis of ESCC 
patients, we concurrently evaluated the discriminative and 
prognostic accuracy of 13 established multigene signatures 
alongside ITHCS. As shown in Fig. 4A and B, the C-index of ITHCS 
surpassed that of the previously reported 13 models in the overall 
dataset (most of which were primarily developed based on TCGA-
ESCC training [9/13]). The timeROC curves revealed that, in the 
GSE53625 and TCGA-ESCC datasets, the AUC values of ITHCS 
were higher than those of the remaining 13 models, with a notably 
superior AUC in GSE53625 compared to others. Although in the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data


A novel computational model ITHCS | 7

Figure 3. Development of the ITHCS. (A) Lasso regression’s 5-fold cross-validation AUC graph under varying lambda parameters. (B) C-index calculated 
after integrating 9 machine learning algorithms, using GSE53625 as the training cohort and TCGA-ESCC and Zhang et al. as validation cohorts. (C) 
Coefficient estimates for selected genes in the model are shown, with each dot representing the estimated coefficient for a gene. Error bars indicate the 
95% confidence intervals for these coefficients. (D–F) Patient OS analysis using the ITHCS risk score in the GSE53625 cohort (training set), Zhang et al. 
(external test set), and TCGA-ESCC (external test set). Patients in each dataset were divided into high-risk and low-risk groups based on median risk 
score. In all three datasets, patients in the high-risk group exhibited significantly poorer prognosis compared to those in the low-risk group. (G, H) In  
the TCGA-ESCC cohort, patient risk scores calculated using ITHCS were used to assess PFS and DSS. The results indicated that patients in the high-risk 
group had poorer PFS and DSS outcomes compared to those in the low-risk group. (I) A combined analysis based on the GSE53625, TCGA-ESCC, and 
Zhang et al. cohorts revealed that the ITHCS risk score consistently served as a risk factor associated with poorer patient prognosis, with no heterogeneity 
differences observed across the three datasets (P = .11). ITHCS, intratumor heterogeneity corrected signature; C-index, concordance index; OS, overall 
survival; PFS, progression-free survival; DSS, disease-specific survival. 
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Figure 4. Comparative prognostic accuracy of ITHCS and other models. (A, B) Circular plot depicting the comparison of the C-index between ITHCS and 
13 other signatures across three datasets. The vertical axis represents the C-index (left). Accompanying heatmaps illustrate the C-index comparison 
between ITHCS and the 13 other signatures across the three datasets, highlighting that ITHCS consistently achieves a higher average C-index than 
other models. (C) Comparative analysis of the AUC values between ITHCS and other signatures over different years. The left section presents data from 
the GSE53625 cohort, the middle from the TCGA-ESCC cohort, and the right from the Zhang et al. cohort. ITHCS, intratumor heterogeneity corrected 
signature; C-index, concordance index; AUC, area under the curve. 

Zhang et al. cohort, the AUC of ITHCS in the third year was slightly 
lower than that of Signature 11, the comprehensive results across 
the three datasets demonstrated a superior predictive accuracy 
of the ITHCS model over previously reported models. 

The ITHCS not only demonstrated the highest accuracy but 
also exhibited characteristics of reduced intratumor heterogene-
ity. Compared to other models, ITHCS predicted the lowest median 
risk deviation in multiregion samples from the same patient 
(Fig. 5A). Furthermore, only 11% (1/9) of the ESCC patients showed 
inconsistent risk classification using ITHCS, outperforming the 
previously reported 13 ESCC predictive models (Fig. 5B). When 

comparing the differences in intratumor and intertumor hetero-
geneity across the previously mentioned 14 signatures, it was 
found that ITCHS not only demonstrates the lowest level of intra-
tumor heterogeneity but also preserves a comparatively high level 
of intertumor heterogeneity, achieving the second-highest rank-
ing in this respect among the 14 signatures (Fig. 5C). In addition, 
we validated the variance of the ITHCS risk score compared to the 
13 other models’ risk scores across three bulk datasets. A larger 
variance indicates greater heterogeneity among different sam-
ples, which means higher inter-tumor heterogeneity and better 
patient differentiation. The results showed that the ITHCS model
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had a significantly higher risk score variance than the other 13 
models, indicating a more distinct patient stratification capability 
(Fig. 5D). These findings suggest that ITHCS effectively mitigates 
sampling bias in bulk analysis, facilitating its application in single 
biopsy–based patient risk stratification. 

At the single-cell level, we assessed the heterogeneity of risk 
deviation between ITHCS and other models. In the GSE197677 
dataset, among four tumor samples, ITHCS exhibited the lowest 
risk deviation, indicating its low heterogeneity at the single-cell 
level (Fig. 5G and H). In the GSE196756 dataset, ITHCS’s average 
risk deviation was second to last, slightly higher than Signature 4 
(Fig. S6A and B). In the GSE160269 dataset, ITHCS showed the low-
est average risk deviation (Fig. S6C and D). Given that GSE160269 
contains single-cell data from 60 samples, these results are more 
objectively robust. Hence, at the single-cell level, ITHCS also 
presents the lowest intratumor heterogeneity. Additionally, we 
evaluated the risk deviation of ITHCS and other models at the 
spatial level. Although previous research differentiated epithelial 
and stromal regions, in this study, we reassessed the epithelial and 
stromal areas of the sections using the ESTIMATE algorithm, as 
shown in Fig. S7A–C. This outcome was nearly consistent with 
our previous regional divisions [48]. Subsequently, we assessed 
the risk distribution of ITHCS scores versus those from other 
models within three ESCC samples. For each sample, we calcu-
lated the risk scores across all spots for the 14 signatures and 
then determined each signature’s variance. The average variance 
across these samples was used to evaluate the overall hetero-
geneity differences between the signatures. Our findings revealed 
that ITHCS displayed the lowest level of spatial heterogeneity 
in the three ESCC samples (Fig. 5I). These results from multidi-
mensional transcriptomic data analyses suggest that ITHCS not 
only effectively mitigates the impact of intratumor heterogene-
ity but also retains the distinctive characteristics of intertumor 
heterogeneity. 

Intratumor heterogeneity corrected signature as 
an independent prognostic factor with distinct 
stratification for early-stage esophageal 
squamous cell carcinoma patients 
Exploring the correlation of ITHCS with clinical features in bulk 
datasets, we observed that a higher proportion of patients in 
the high-risk group were in advanced stages (GSE53625: 53% 
versus 40%; TCGA-ESCC: 41% versus 23%; Zhang et al.: 56% ver-
sus 41%, Fig. S8A). When comparing ITHCS with other clini-
cal characteristics such as age, gender, and drinking habits, no 
significant differences were found in the GSE53625 and TCGA-
ESCC datasets (Fig. S8B and C). A significant mutant gene (SMG) 
analysis was conducted in the TCGA-ESCC cohort. The muta-
tion spectrum revealed TP53 (87%) and TTN (30%) as the two 
most common mutant genes in ESCC (Fig. S8D). Overall, patients 
in the high-risk and low-risk groups did not exhibit significant 
differences in mutant genes. Comparing high-risk groups with 
low-risk groups, no significant differences were found in levels 
of TMB and MSI (TMB: P = .70, MSI: P = .52) (Fig. S8E). Addition-
ally, no significant correlations were observed between genomic 
instability-related features such as HRD, loss of heterozygos-
ity (LOH), and the ITHCS score (Fig. S8F), nor was a significant 
correlation observed between stemness score and ITHCS score 
(Fig. S8G). 

After multivariate Cox analysis of clinical features such as age, 
gender, TNM staging, and ITHCS scores in the three bulk datasets, 
ITHCS remained significantly associated with prognosis, indicat-
ing its role as an independent prognostic factor (Fig. 6A). Although 

the TNM staging system is significant in monitoring the prognosis 
of ESCC patients, some patients in Stages I and II still experience 
rapid recurrence or metastasis leading to death postsurgery. This 
may reflect the limitations of the TNM staging system in the 
risk stratification of early-stage patients. Thus, we focused on the 
capability of ITHCS for risk stratification in early-stage patients. 
As shown in Fig. 6B–D, TNM staging has limitations in differenti-
ating between stage I and II ESCC patients, with the current TNM 
staging system showing limited prognostic differentiation in all 
three datasets. Subsequently, we grouped patients in Stages I and 
II and stratified them into high- and low-risk groups based on 
their risk scores. The results demonstrated that risk stratification 
based on ITHCS significantly differentiated early-stage patients 
(Fig. 6E–G). Compared with other models, while Signatures 2, 4, 
7, 9, and 13 were observed to stratify early-stage risk in two 
datasets, only ITHCS showed significant statistical significance 
across all three datasets (Fig. S9A–C). These findings indicate that 
the ITHCS score is not only an independent prognostic factor but 
also provides a more effective assessment of survival in early-
stage patients. 

Intratumor heterogeneity corrected signature 
associated with epithelial–mesenchymal 
transition and immune therapy resistance 
Based on the median values of patients in the GSE53625, TCGA-
ESCC, and Zhang et al. cohorts, patients were classified into high-
risk and low-risk groups. In the GSE53625 dataset, it was observed 
that 1390 genes were significantly upregulated in the high-risk 
group (accounting for 10.3% of all genes), while 1098 genes were 
significantly elevated in the low-risk group (representing 8.1% of 
all genes). In TCGA-ESCC, 782 genes were upregulated in the high-
risk group (6.5% of all genes), and 759 genes were upregulated in 
the low-risk group (6.5% of all genes). In Zhang et al., 893 genes 
were upregulated in the high-risk group (7.5% of all genes), with 
2258 genes upregulated in the low-risk group (10.5% of all genes) 
(Fig. 7A). Subsequently, the GSEA results from the HALLMARK 
gene set indicated that GSE53625, TCGA-ESCC, and Zhang et al. 
were enriched in 23, 39, and 5 significantly different HALLMARK 
features, respectively (Table S8). Notably, only the EMT feature was 
commonly enriched across all three datasets (Fig. 7B). The GSEA 
results revealed significant enrichment of the EMT pathway in 
high-risk group patients across all three datasets, with respective 
normalized enrichment scores (NESs) of 1.74 (GSE53625), 1.56 
(TCGA-ESCC), and 1.35 (Zhang et al.) (Fig. 7C). 

Immune cell infiltration, especially the infiltration of CD8+ 
T cells, is often a crucial determinant in tumor prognosis. It 
was hypothesized that patients in the high-risk group might 
exhibit lower levels of immune cell infiltration. To assess this, 
we employed the CIBERSORT to evaluate differences in immune 
cell infiltration between high-risk and low-risk groups. However, 
there were no significant differences observed in immune cell 
infiltration between patients in the high-risk group and those 
in the low-risk group (Fig. S10A). Further comparisons of the 
expression of CD8 effector and immune checkpoint–related genes 
revealed no notable statistical differences between the high and 
low-risk groups (Fig. S10B and C). 

A previous study has indicated a correlation between high 
EMT features and resistance to tumor immune therapy [51]. We 
synthesized six immune therapy datasets and calculated the 
risk scores for each patient using the ITHCS formula. Results 
indicated that in the IMvigor210, GSE213331, GSE91061, and 
GSE115821 datasets, patients with npCR had significantly higher 
ITHCS risk scores than those with pCR (Fig. 7D). Although no

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
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Figure 5. Tumor heterogeneity assessment in different transcriptomic levels using ITHCS. (A) Box plots in the GSE33426 cohort, comparing the standard 
deviation of ITHCS risk scores with those of 13 other models for patients’ multiregion samples. (B) In the GSE33426 cohort, ITHCS evaluation (left) is 
illustrated by a bar graph, demonstrating the percentage of patients categorized into low-consistency risk, high-consistency risk, and inconsistent risk 
groups based on ITHCS risk scoring. (C) Comparison of intratumor and intertumor heterogeneity among 14 signatures in the GSE33426 cohort. The x-
axis represents intratumor heterogeneity, while the y-axis represents intertumor heterogeneity. (E) On the left, the UMAP plot of the GSE197677 dataset 
shows the distribution of single cells within the samples. On the right, the bar chart presents the average variance of the 14 signature scores for the 
samples. Lower variance indicates reduced intratumor heterogeneity, with the x-axis representing log2-transformed variance values. (F) In the spatial 
transcriptomics cohort, a comparison of mean risk deviation between ITHCS and 13 other models in three tumor samples, with the x-axis showing the 
SD post-log2 transformation. The right panel presents a slice diagram illustrating the distribution of the ITHCS signature in spots. ITHCS, intratumor 
heterogeneity corrected signature; UMAP, uniform manifold approximation and projection. 

significant statistical differences were observed in the remaining 
two datasets, npCR patients exhibited higher risk scores than 
pCR patients ( Fig. S11A and B). Additionally, we compared the 
EMT scores between patients with pCR and npCR across these 
immunotherapy datasets. Notably, within the IMvigor210 dataset, 
npCR patients had significantly higher EMT scores than pCR 
patients. While other datasets did not show a statistical difference 
in EMT scores, the general trend suggested that npCR patients 

tended to have higher EMT scores than their pCR counterparts 
(Fig. 7E, Fig. S11C and D). Based on these findings, we propose 
that the defining genes in ITHCS largely derive from those 
associated with low intratumor heterogeneity and are closely 
linked to characteristics of epithelial or stromal cells. This 
implies that patients in the high-risk category, displaying elevated 
EMT features, may experience less favorable outcomes from 
immunotherapy.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae631#supplementary-data
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Figure 6. ITHCS demonstrates superior performance in early-stage risk stratification of ESCC. (A) Multivariate Cox regression analysis was conducted 
on the GSE53625, TCGA-ESCC, and Zhang et al. cohorts. ITHCS risk scores were identified as independent prognostic factors in all three datasets, as 
indicated by orange labels. (B–D) Kaplan–Meier analysis for Stage I and Stage II patients was performed in the GSE53625, TCGA-ESCC, and Zhang et al. 
cohorts. The results indicate that the prognosis differences between Stage I and Stage II patients in these datasets are not significant. (E–G) The ITHCS 
risk scores were applied for risk stratification of Stage I and II patients in the GSE53625, TCGA-ESCC, and Zhang et al. cohorts. Findings reveal that 
the ITHCS risk scoring effectively distinguishes between high-risk and low-risk patient groups in all three datasets. ITHCS, intratumor heterogeneity 
corrected signature; KM, Kaplan–Meier.
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Figure 7. Potential biological differences between high-risk and low-risk patients as identified by ITHCS. (A) Proportion and number of differentially 
expressed genes in high-risk and low-risk groups across GSE53625, TCGA-ESCC, and Zhang et al. cohorts. (B) Intersection results of GSEA in GSE53625, 
TCGA-ESCC, and Zhang et al. (C) Enrichment results of the HALLMARK EMT pathway in GSE53625, TCGA-ESCC, and Zhang et al. cohorts. (D) Differences in 
npCR and pCR between high-risk and low-risk groups in immune therapy datasets IMvigor210, GSE213331, GSE91061, and GSE115821, with significantly 
higher risk scores observed in the high-risk group. (D) Differences in ITHCS risk scores between npCR and pCR in immunotherapy datasets IMvigor210, 
GSE213331, GSE91061, and GSE115821. Risk scores for npCR are notably higher than those in the low-risk group. (E) Differences in EMT scores between 
npCR and pCR in immunotherapy datasets. In the IMvigor210 dataset, npCR scores significantly exceed those of pCR, with no significant statistical 
differences observed in other datasets. GSEA, gene set enrichment analysis; EMT, epithelial–mesenchymal transition; pCR, pathological complete 
response; npCR, nonpathological complete response.
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Discussion 
Intratumor heterogeneity is a pervasive and yet unresolved con-
founding factor in the discovery and application of biomarkers 
in cancer [16, 52, 53]. Consistent with reports in hepatocellular 
carcinoma, renal clear cell carcinoma, lung, and breast cancer, 
molecular biomarkers derived from a single biopsy may inaccu-
rately represent a patient’s prognostic risk, either overestimat-
ing or underestimating it, when intratumor heterogeneity is not 
taken into account [10, 54–56]. In the realm of ESCC, multiregion 
sequencing analyses have revealed that existing ESCC models 
exhibit considerable discrepancies in risk assessment, ranging 
from 33% to 67%. This highlights the critical need for integrating 
multiregion sampling or spatial analysis and accounting for intra-
tumor heterogeneity in the design of tumor biomarkers. In this 
study, we embarked on an analysis of the multiregion transcrip-
tomic spectrum of ESCC, with the objective of identifying genes 
that exhibit low intratumor heterogeneity. We integrated multi-
ple machine learning algorithms to develop a potent signature 
characterized by low intratumor heterogeneity. Consequently, we 
established an ESCC prognostic signature named ITHCS, compris-
ing 39 genes. This signature maintained its generalizability and 
accuracy across the TCGA-ESCC and Zhang et al. cohorts. 

Previous research has shown that multiregion tumor sequenc-
ing, by adequately accounting for intratumor heterogeneity, can 
contribute substantially to the construction of more refined 
prognostic models [9–11]. Furthermore, the selection of different 
regions within the same tumor for sequencing contributes to the 
stability of the results. In comparisons of the ITHCS with other 
models, ITHCS demonstrated superior predictive accuracy over 
13 other signatures. Beyond multiregion bulk RNA-seq, where 
ITHCS displayed optimal stability in intratumor heterogeneity 
and maximal intertumor heterogeneity diversity, its advantages 
were equally evident at single-cell transcriptomic and spatial 
transcriptomic levels, underscoring its reliability at the micro 
level. Intriguingly, none of the 39 genes comprising ITHCS 
overlapped with the 96 genes reported in the past 13 models. 
Further investigation into these 39 genes in the context of ESCC 
revealed that except for CCND1, which is commonly amplified in 
ESCC and can act as an independent prognostic factor [57, 58], the 
remaining 38 genes were rarely reported in ESCC. Generally, when 
the impact of intratumor heterogeneity is overlooked, intertumor 
heterogeneity gets amplified with data extracted at various tumor 
levels. In this study, we adopted the approach of Biswas et al. 
[9] in lung cancer, constructing a heterogeneity quadrant chart 
comprising both intratumor and intertumor heterogeneity. All 39 
genes in the model originated from the Q4 quadrant, maintaining 
high intertumor heterogeneity while ensuring stable intratumor 
heterogeneity. 

Although TNM staging plays a crucial role in the diagnosis and 
treatment of ESCC patients, it currently fails to provide detailed 
risk stratification for early-stage ESCC patients, particularly those 
at Stage I. We further explored the association of ITHCS with the 
clinical features of ESCC patients. Given the limited number of 
Stage I patients in the GSE53625, TCGA-ESCC, and Zhang et al. 
datasets, we evaluated Stages I and II patients as early-stage ESCC 
and found that traditional TNM staging does not significantly 
differentiate the prognostic differences between Stages I and II, 
which is influenced by the cohort size. However, when assessed 
using ITHCS, it markedly distinguished early-stage ESCC patients. 
Compared to the other 13 models, ITHCS most distinctly differen-
tiated the survival of early-stage ESCC patients. 

Upon stratifying ESCC patients into high-risk and low-
risk groups based on median values, we observed that genes 

upregulated in the high-risk ESCC group were significantly 
enriched in the EMT pathway. This enrichment might explain 
the poorer prognosis observed in high-risk patients. Intratumor 
heterogeneity manifests across multiple dimensions, including 
genomic, epigenomic, transcriptomic, and proteomic variations. 
Adhering to the central dogma of molecular biology, RNA serves as 
the executor of DNA, meaning that variations and modifications 
at the DNA level are expressed through RNA. Consequently, 
genomic heterogeneity and DNA epigenetic modifications are 
naturally reflected in RNA heterogeneity. Previous research has 
primarily focused on identifying the highest level of mutations 
and copy number variations in tumor evolution. However, we 
propose that transcriptomic heterogeneity might better reflect 
the biological phenotype and clinical pathological features of 
tumors. Therefore, biomarker design based on transcriptomic 
heterogeneity could be more direct, preferable, and superior to 
upstream omics heterogeneity, potentially circumventing the 
overall heterogeneity of tumors. While proteins, as the ultimate 
functional executors, also exhibit proteomic heterogeneity in 
tumors [59], proteomic measurement techniques are more 
expensive and complex than transcriptomic sequencing, leading 
to relatively scarce proteomic data and limited applications. Thus, 
ITHCS holds promise for using single-region ESCC samples to 
predict patient prognosis. Future studies should further explore 
biomarker design based on proteomic heterogeneity. 

ITHCS has shown promising results, but further validation is 
needed before it can be translated into clinical practice. Future 
studies will focus on experimental validation, and developing a 
quantitative polymerase chain reaction panel based on the ITHCS 
gene signature could be highly beneficial. Furthermore, to effec-
tively integrate ITHCS into clinical workflows and demonstrate 
its practical benefits, further validation studies and real-world 
research are necessary. We will conduct additional clinical trials 
and experiments, collecting more data from ESCC patients, to 
assess the tool’s practicality and potential for clinical decision-
making in future studies. In summary, to our knowledge, this 
study is the first to combine multiregion RNA-seq datasets, single-
cell transcriptomics, and spatial transcriptomics to explore intra-
tumor heterogeneity in ESCC while circumventing this hetero-
geneity in the construction of an ESCC predictive model. By inte-
grating multiple machine learning algorithms, we developed the 
prognostic signature ITHCS, capable of overcoming sampling bias. 
A higher ITHCS risk score is significantly associated with poor 
prognosis in ESCC patients and demonstrates exceptional efficacy 
in identifying early-stage patients. Additionally, the ITHCS risk 
score may correlate with tumor EMT characteristics. In conclu-
sion, ITHCS offers more reliable prognostic insights for ESCC 
patients and may assist clinicians in selecting personalized treat-
ment strategies. However, it is necessary to further refine the 
ITHCS prognostic model in prospective studies and large cohorts 
with multiregion ESCC samples. 

Key Points 
• The extensive intratumor heterogeneity in esophageal 

squamous cell carcinoma (ESCC) introduces significant 
sampling bias, undermining the reliability of prognostic 
models. 

• The ITHCS predictive model is designed to minimize the 
effects of intratumor heterogeneity and circumvent the 
issues associated with sampling bias effectively. 
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• The ITHCS model demonstrates superior accuracy in 
prognostic monitoring for early-stage ESCC patients. 
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