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Abstract

Gene polymorphism originates from single-nucleotide polymorphisms (SNPs), and the analysis and study of SNPs are of great
significance in the field of biogenetics. The haplotype, which consists of the sequence of SNP loci, carries more genetic information
than a single SNP. Haplotype assembly plays a significant role in understanding gene function, diagnosing complex diseases, and
pinpointing species genes. We propose a novel method, DeepHapNet, for haplotype assembly through the clustering of reads and
learning correlations between read pairs. We employ a sequence model called Retentive Network (RetNet), which utilizes a multiscale
retention mechanism to extract read features and learn the global relationships among them. Based on the feature representation
of reads learned from the RetNet model, the clustering process of reads is implemented using the SpectralNet model, and, finally,
haplotypes are constructed based on the read clusters. Experiments with simulated and real datasets show that the method performs
well in the haplotype assembly problem of diploid and polyploid based on either long or short reads. The code implementation of
DeepHapNet and the processing scripts for experimental data are publicly available at https://github.com/wjj6666/DeepHapNet.
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Introduction
The human genome is composed of two sets of homologous chro-
mosomes, which are derived from the paternal and the mater-
nal respectively. Homologous chromosomes exhibit a remarkable
similarity, with ∼99% of their base pairs being identical, and the
combination of different genetic loci has an important impact
on biological phenotypes. Haplotype refers to the combination
of a group of correlated single-nucleotide polymorphism (SNP)
allelic loci located on one chromosome or in a certain region.
Diploid individuals have two haplotypes, and two sets of sequence
collections can be obtained through haplotype assembly. Genome
assembly refers to the process of using DNA fragments (i.e. reads)
obtained by sequencing technology to splice these fragments into
longer and continuous sequences (i.e. contigs) through compu-
tational methods and bioinformatics tools and ultimately con-
struct a near-complete or complete genome sequence. Haplo-
type assembly focuses more on further analyzing the genetic
variations and gene combinations on a single chromosome (i.e.
haploid) in organisms based on genome assembly. Since organ-
isms are usually diploid or polyploid genetically, that is, there are
two or more alleles at each genetic locus, the goal of haplotype
assembly is to reconstruct the complete or nearly complete hap-
lotype sequence on each chromosome of the organism through
computational methods and bioinformatics algorithms, based on
the reads obtained by sequencing and known genetic variation
information.

The application of haplotype assembly is useful in many
research fields. First, in population genetics research, haplotype
assembly helps to analyze the differences between alleles, trace
individual kinship, and understand biological migration patterns
and evolutionary history [1]. Second, haplotype assembly is
helpful in discovering excellent allelic variations and exploring
heterosis theory in agriculture, especially in the genetic breeding
of major crops such as rice, corn, potatoes [2], wheat [3], and other
plants such as strawberries [4] and lychees [5]. Third, in biological
theory and medical research, haplotype assembly helps to explore
pathogenesis, dig out pathogenic genes, and find new methods
for disease treatment. Researchers used haplotype technology to
analyze the pathogenic roots of patients with skin acne, cerebral
palsy, and deafness and finally found that they were all autosomal
recessive genetic diseases caused by heterozygous mutations on
chromosomes [6]. In addition, the haplotype genome sequencing
of fetuses can be used to detect potential genetic diseases [7]. In
view of the above three problems that haplotypes can solve, it
can be said that obtaining a high-quality haplotype genome of a
species will promote the more profound development of related
industries of the species and has epoch-making significance for
advancing plant molecular breeding, accelerating the breeding
of new varieties, and human disease prevention, diagnosis, and
research [8].

The limitations of sequencing technology still pose challenges
to haplotype assembly. Next-generation sequencing (NGS)
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technologies [9], such as Illumina sequencing, are characterized
by high sequencing depth, low cost, and relatively short read
lengths. Due to the short read lengths, the number of variant
sites covered by reads is limited, which is insufficient to provide
sufficient evidence for phasing, resulting in low continuity of
haplotype assembly. Third-generation sequencing technologies
offer higher sequencing speed and accuracy [10, 11]. Single-
molecule real-time (SMRT) sequencing can generate long reads
with an average length of 10–15 kb. Although the error rate is
relatively high, at ∼15%, effective error correction can be achieved
through multiple sequencing runs. Oxford Nanopore has an
average read length range of 20–50 kb, with the longest reaching
the Mb level, and its sequencing accuracy is similar to that of
PacBio, at ∼86%. The errors are usually random sequencing errors.
If both the positive and negative strands of DNA are sequenced,
the accuracy can reach ∼96%. PacBio HiFi provides base-level
resolution and 99.9% single-molecule read accuracy, which is
comparable to short-read sequencing and Sanger sequencing
in terms of accuracy [12]. Long-read sequencing data can span
repeated sequences and complex structural variant regions,
and the highly continuous genome sequences can provide more
information conducive to phasing, significantly improving the
quality of haplotype assembly.

The input data for haplotype assembly is a vast set of reads,
each from an unknown haplotype. Many methods for haplotype
assembly have been developed based on different sequencing
technologies. These methods can be commonly divided into the
following two categories.

Reference-based haplotype assembly
These methods assume that reference sequences, aligned reads,
and called variants can be used as inputs to partition all reads into
k subsets (k being the ploidy), and eventually assemble to obtain
the corresponding k distinct haplotypes. Such methods assemble
based on grouped reads, but factors such as sequencing errors of
reads, read length, and coverage make haplotype assembly chal-
lenging, and the difficulty of assembly rises with increasing bio-
logical ploidy. As mentioned before, in order to realize the k-split
of the reads and assemble the accurate haplotypes, noisy sections
must be corrected. For this purpose, several multiple combinato-
rial optimization models have been proposed. This includes min-
imum fragment removal [13], minimum SNP removal [14], mini-
mum fragment cut [15], and minimum error correction (MEC) [16].
Since most of these models are shown to be Non-deterministic
Polynomial-hard (NP-hard), researchers have proposed to apply
heuristic strategies for haplotype assembly. Representative meth-
ods include HapCUT [17], HapCUT2 [18], and WhatsHap [19].
HapCUT2 iteratively searches for subsets of variant loci using a
maximum cut approach in read-overlap graphs, capable of taking
various sequencing data as input, including short, long reads,
and Hi-C reads. WhatsHap leverages dynamic programming to
assembly haplotype, obtaining the optimal fragment grouping
for each locus through backtracking. However, these methods
can only solve the diploid haplotype assembly problem. Methods
that can handle both diploid and polyploid haplotype assembly
include HapTree [20], Ranbow [21], and H-PoP [22]. In recent
years, there have been several methods for haplotype assembly
of polyploid species or virus quasispecies using deep learning
models. GAEseq [23] and CAECseq [24] are two haplotype assem-
bly models based on the graph auto-encoder and convolutional
auto-encoder, respectively. XHap [25] leverages the transformer’s
attention mechanism [26] to learn correlations between reads.
However, the kernel k-means clustering algorithm is used to

cluster the reads simply based on the correlation between the
learned features.

De novo haplotype assembly
These methods do not rely on known genome reference
sequences. They use algorithms such as the de Bruijn graph or
overlap–layout–consensus (OLC) to connect reads into longer con-
tigs, forming a preliminary draft genome. The phase information
of sequencing data (such as the interactions on chromosomes
in Hi-C data and strand-specific signals in Strand-Seq) is used
to infer allelic differences on homologous chromosomes, thus
dividing the draft genome into different haplotype sequences.
Numerous tools have been developed such as Phasebook [27],
WHdenovo [28], ALLHiC [29], and FALCON-Unzip [30]. Phasebook
employs a divide-and-conquer strategy for clustering and phasing
reads, followed by assembly based on the OLC assembly paradigm.
WHdenovo is a method for haplotype-aware de novo assembly of
related diploid individuals using pedigree sequence maps. ALLHiC
developed new assisted assembly software for polyploid species
and used it to complete a haplotype-aware genome assembly of
tetraploid sugarcane based on heterozygous site information.
FALCON-Unzip takes the contigs from FALCON and phases
the reads based on heterozygous SNPs identified in the initial
assembly, and then, a set of partially phased primary contigs and
fully phased haplotigs are generated. In addition to this, there are
several representative methods, such as Dipasm [31], which uses
only two types of input data (HiFi and Hi-C) and does not rely on
parental sequences and is able to assemble haplotypes without
the use of reference sequences but is prone to misclassification
of highly heterozygous regions. Hifiasm [32] is an assembly tool
based on OLC algorithms that supports assembly using single or
multiple long-read datasets. HiCanu [33] is an improved version
of Canu [34], optimized for PacBio HiFi data. De novo haplotype
assembly methods use supplemental data to phase haplotypes,
so they are generally independent of species heterozygosity and
are able to deal with haplotype assembly in polyploid highly
heterozygous species, but supplemental data are costly to obtain
in real experimental scenarios.

The de novo haplotype assembly strategy may rely on
supplementary data, which can be costly to obtain, such as
parental data. Therefore, our method is based on reference
genome strategy and actively addresses the influencing factors
of biological ploidy, sequencing coverage, and read length.

In this paper, we propose DeepHapNet, a haplotype assembly
method based on unsupervised learning, which employs a multi-
scale retention (MSR) mechanism based on the RetNet (Retentive
Network) [35] model to learn global relationship among reads.
Then, we use a deep spectral clustering model to learn the feature
representation of reads and thus classify reads into k clusters (k is
the ploidy) and finally assemble haplotypes based on the clusters
of reads.

Methods
DeepHapNet is a haplotype assembly method based on genome
reference, which takes sequencing data and genome reference as
the original input data and output haplotype sequences. Deep-
HapNet can be divided into five steps, which are shown in Fig. 1.
(i) Data preprocessing. First, DeepHapNet aligns reads against
genome reference and constructs an SNP matrix. Each read is
represented by one row in the SNP matrix. Next, each read in
the SNP matrix is processed by one-hot encoding. (ii) Embedding.
The convolutional auto-encoder is used for transforming each
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Figure 1. DeepHapNet pipeline.

read to a low-dimensional representation. (iii) Feature extraction.
Based on the low-dimensional representations of reads and the
RetNet model, feature extraction is performed to learn the feature
representation of reads. (iv) Deep clustering. The clustering layer
employs the SpectralNet model to learn the similarity between
pairs of reads based on the input features and then clusters the
reads to generate clustering labels. Reads in the same cluster

come from the same haplotype. (5) Obtaining haplotype. The reads
clustering results are obtained by iteratively running previous
steps, and DeepHapNet uses an optimization algorithm to further
refine the clustering results. Finally, the haplotype consensus is
obtained by majority voting based on all reads in the same cluster.
Each haplotype consensus result refers to one haplotype. The
details of DeepHapNet are illustrated below.
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Data preprocessing
Based on the reads and genome reference, Burrows-Wheeler
Aligner-MEM (BWA-MEM) [36] is used to align the reads with
the genome reference to obtain the Sequence Alignment/Map
(SAM) file. Then, SNP loci and genotype information are extracted
from the SAM file to construct the SNP matrix. The SNP matrix
is filtered to remove homozygous genotype loci, retaining only
heterozygous SNP loci and their corresponding genotypes. Let M
be a matrix with m rows and n columns, m is the number of reads,
and n is the number of SNPs. Since the reads that cover only one
SNP locus do not provide any information needed for haplotype
phasing, we remove these reads from M.

Mij∈{A,T,C,G,-}in M. If Mij = ′A′, it means the allele about j-th
SNP of i-th read is A. If Mij = ′-′, it means the i-th read does not
cover the j-th SNP. Next, one read in M is transformed by one-hot
encoding as follows: ′A′ → {1,0,0,0}, ′C′ → {0,1,0,0}, ′T′ → {0,0,0,1},
′G′ → {0,0,1,0}, ′-′ → {0,0,0,0}. The i-th read is converted to a matrix
ti with four rows and n columns.

Embedding
We used a convolutional encoder from CAECSeq [24] to map ti

to a low-dimensional latent representation hi. The convolutional
encoder consists of three 2D convolutional layers and one fully
connected layer. The convolutional layers are able to capture
localized features by applying a set of convolutional kernels to
the input data. By operating on local regions of the input data,
the spatial hierarchy of data is preserved, and the output feature
maps can represent the features of each part of the input, facili-
tating the analysis of the 2D spatial features of reads. The stacking
of three convolutional layers allows the model to learn a hierarchy
of features from low to high levels.

Feature maps are converted to 1D vectors by the flatten oper-
ation and input to the fully connected layer to obtain a low-
dimensional latent representation hi. The operations of the con-
volutional encoder can be formalized as Equations (1–3).

T0 = ti (1)

Tl = σ
(
Tl−1 ∗ Wconv

l−1 + Bconv
l−1

)
, l ∈ {1, 2, 3} (2)

hi = Wdense
1 • Flatten

(
T3) + Bdense

1 (3)

where “∗” denotes the convolution operation, and σ is the use
of Parametric Rectified Linear Unit (PReLU) [37] as the activation
function. Wconv

l−1 and Bconv
l−1 denote the weights and biases of the l-th

convolutional layer, and Wdense
1 and Bdense

1 denote the weights and
biases of the last fully connected layer. hi is the obtained 128-
dimensional latent representation. The size of the convolutional
kernel for each layer is (4, 5), (1, 5), (1, 3), and the corresponding
filter sizes are set to 32, 64, and 128, All convolutional layers use
a stride of 1. The deconvolutional decoder can be represented as
Equations (4–6)

G0 = Reshape
(
σ

(
Wdense

2 • hi + Bdense
2

))
(4)

Gl = σ
(
Gl−1 ∗ Wdeconv

l−1 + Bdeconv
l−1

)
, l ∈ {1, 2, 3} (5)

t̃i = G3 (6)

where t̃i is the i-th reconstructed read obtained after the decoder.
The convolutional layer part of the decoder is designed to be
symmetric with the encoder part.

Feature extraction
Next, DeepHapNet utilizes the RetNet model to process genomic
sequences, effectively capturing the complex structures and vari-
ation patterns within genomic data and providing rich and precise
feature representations for subsequent clustering analysis. For an
L-layer RetNet model, it stacks MSR and the feed-forward network
(FFN). The core of MSR is the retention mechanism. Retention
through multiscale gated enables each attention head to model
multiscale information without affecting each other.

In the previous step, we can get the low-dimensional represen-
tation of all reads. All these low-dimensional representations are
first stacked to form an embedding matrix. Then, the embedding
matrix is populated with a virtual dimension to form a 3D tensor
X0. The output Xl is computed using X0 as input through the L-
layer RetNet model, and we set L = 3 in DeepHapNet. The specific
calculation formula is shown in Equations (7) and (8).

Yl = MSR
(
LN

(
Xl)) + Xl (7)

Xl+1 = FFN
(
LN

(
Yl)) + Yl (8)

where LN(•) is LayerNorm, and FFN(X) = gelu(XW1)W2, W1, and W2

are parameter matrices.
The parallel representation of retention is used in DeepHapNet.

Given the input matrix X, the definition of the retention layer can
be seen in Equations (9–11).

Q = (
XWQ

) ⊙
�, K = (XWK)

⊙
�, V = XWV (9)

�n = einθ , Dnm =
{

γ n−m, n ≥ m
0, n < m

(10)

Retention(X) =
(
QKT

⊙
D

)
V (11)

where � is a complex conjugate of Θ, D combines causal mask-
ing and exponential decay along relative distances into a single
matrix. WQ, WK, and WV, are learnable matrices. The parallel
representation enables us to train the models with Graphics
Processing Units (GPUs) efficiently.

The retention in each layer of RetNet is divided into h heads;
each head is parameterized with different Wq, Wk, and Wv, while
each head uses a different γ -constant. We set h = 4 in our model.
Formally, given input X, the MSR layer is defined as shown in
Equations (12–15).

γ = 1 − 2−5−arange(0,h) (12)

headi = Retention (X, γi) (13)

Y = GroupNormh

(
Concat

(
head1 . . . , headh

)
(14)

MSR(X) = (
swish

(
XWG

) ⊙
Y

)
WO (15)

where swish is the activation function used to generate the gating
threshold, WG and WO are learnable parameters, and, since each
header uses a different γ parameter, the output of each header
needs to be normalized before concat.

Deep clustering
Based on the feature of reads obtained from the RetNet model,
SpectralNet is used as a clustering module to cluster reads into
k clusters. The reads in the same cluster come from the same
haplotype. Then, haplotypes are constructed by calculating the
consensus based on majority voting in each reads cluster.

SpectralNet is a neural network approach for spectral
clustering that overcomes two limitations of the original spectral
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clustering algorithm, which are poor scalability, and out-of-
sample. The entire training of SpectralNet can be divided into
three parts. (i) SpectralNet takes features as input; an affinity
matrix is computed by a Siamese network [38] using a given
distance metric; (ii) SpectralNet learns a map that embeds
input data points into the eigenspace of their associated graph
Laplacian matrix while optimizing the clustering objective, Fθ;
and (iii) in the eigenspace, the k-means [39] algorithm is used to
learn the clustering result.

X3 is the feature representation of reads output from the last
layer of the RetNet model, and xi denotes each data point of X3.
A Siamese network maps each data point xi into an embedding
zi through the function zi = Gθsiamese (xi) Typically, this network is
trained to minimize the contrastive loss (see Equation (16)). After
the Siamese network has been trained, we employ it to construct
a batch affinity matrix A that serves as the basis for training
the SpectralNet. The specific calculation formula is shown as
Equation (17).

Lsiamese
(
θsiamese; xi; xj

)

=
{ ∥∥zi − zj

∥∥ 2,
(
xi, xj

)
is a positive pair

max
(
c − ∥∥zi − zj

∥∥ , 0
)2,

(
xi, xj

)
is a positive pair,

(16)

Aij =
⎧⎨
⎩exp

(
−‖zi− zj‖ 2

2σ 2

)
, xj is among the nearest neighbors of xi

0, otherwise,
(17)

where c is a margin (typically set to 1), and σ is the SD of the
Gaussian distribution.

SpectralNet employs a general neural network to implement
the map Fθ, yi = Fθ (xi), with an orthogonality constraint enforced
on its last layer. This model is trained by minimizing the loss
LSpectralNet, as defined in Equation (18).

LSpectralNet (θ) = 1
m2

m∑
i,j=1

Aij

∥∥yi − yj

∥∥2 (18)

Finally, SpectralNet performs k-means on y1, . . . ,ym to obtain
clustering results.

Obtaining haplotype
In summary, DeepHapNet employs an unsupervised approach
to learn the similarities among reads and subsequently clusters
them for haplotype assembly. This is accomplished through an
iterative training process of the neural network. Specifically, each
training epoch comprises the following two steps:

(1) In the previous step, we can get the feature representation
and clustering label of each read. Then, we use the loss func-
tion (see in the section Loss Function) to train the convolutional
encoder model (Embedding) and RetNet (Feature Extraction);

(2) After getting the optimized features, we use SpectralNet
again to obtain clustering labels for the reads.

These two steps are repeated iteratively for 2000 epochs,
enabling us to derive the clustering results.

Next, we utilize a heuristic algorithm to further optimize the
clustering results. Based on the labels of reads, a heuristic algo-
rithm is used to make possible adjustments to the labels of each
read. Specifically, if a read is assigned a different label from its
current one, and this new label potentially results in a better MEC
score, the label will be changed. The heuristic algorithm itera-
tively tries possible label adjustments for each read. However, the

heuristic algorithm is prone to falling into local optimal solutions,
especially when the solution space is complex or the quality of
the solutions varies widely. We apply the simulated annealing [40]
algorithm to optimize this heuristic algorithm, in order to enhance
its robustness against initial values or random fluctuations.

The clustering labels, in conjunction with the set of reads
derived from the model’s training process, serve as inputs to the
heuristic algorithm. This heuristic algorithm subsequently out-
puts the optimized clustered reads, which are then subjected to a
majority voting method to obtain the consensus as the ultimate
haplotype sequences. The pseudo-code of this heuristic algorithm
is shown in Supplementary Algorithm 1.

Loss function
We design the loss function as L = Lcon + β2Lreg + λLAE, with β2 and
λ being the weight parameters. The purpose is to motivate the
model to learn the features of the reads more efficiently in order
to accurately cluster the reads from the same haplotype.

The relationship of paired reads is effectively handled using
contrastive loss [41] in the following form:

Lcon = 1
2m

∑m

i,j
Eij

(
1 − Sij

)2 + (
1 − Eij

)
max

(
0, Sij − β1

)2 (19)

Using the features X3 output by the RetNet model, we obtain
the similarity matrix S through S = X3· (X3

)T, whose element
Sij represents the similarity between the i-th read and the j-th
read. The expected similarity matrix E is constructed based on
the clustering results. Eij = 1 is considered a positive sample pair if
i-th read and j-th read belong to the same haplotype; otherwise,
Eij = 0 is considered a negative sample pair. β1 is a hyper-parameter
used to differentiate the similarity bounds between the positive
and negative pairs. The loss function is constructed to encourage
consistency between the model output similarity matrix and the
expected similarity matrix, thus indirectly minimizing the MEC
score.

The design of the regularized loss function is improved based
on XHap. Since pairs of reads with overlapping loci can provide
stronger evidential support for haplotype phasing, strong con-
straints should be imposed on pairs of reads with overlapping
loci. Thus, we construct an m∗m dynamic weight matrix Wdy, the
specific definition is shown in Equation (20).

Wdy
(
i, j

) = overlapij ∗ max
(
leni, lenj

)
(20)

where overlapij denotes the total number of overlapping loci
between i-th read and j-th read. leni denotes the number of valid
loci for i-th read.

Whether the i-th read and j-th read are strongly positively or
strongly negatively correlated can be reflected by considering
their overlap (Equation (21)). ksim is the total number of SNP
overlap loci where the two read genotypes are consistent, and
kdissim is the total number of SNP overlap loci that have conflicting
genotypes, and then, the correlation between the i-th read and the
j-th read is calculated as Equation (21).

Cij = ksim − kdissim

ksim + kdissim
(21)

The computation of Cij for the origin of reads pairs behaves
consistently with the similarity matrix S predicted by the
model. Therefore, the regularization loss is defined as follows:

Lreg =
m∑

i,j=1

WijFij
(
Sij − Cij

)
(22)
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where Fij is the value of the mask matrix at position (i,j). If there
is an overlap between two reads, the corresponding value in the
matrix is 1; otherwise, it is 0.

The loss function for the convolutional encoder training pro-
cess is described in the following Equation (23).

LAE = 1
m

m∑
i=1

(
t̃i − ti

)2
(23)

LAE represents the mean square error between the recon-
structed data t̃i and the original data ti, where m is the number of
samples in the batch.

Results
Hyper-parameter setting and experimental
environment
We first use simulated short read data of 30× coverage of
tetraploid potatoes to train DeepHapNet, and the Adam optimizer
[42] is used to optimize and find the best hyper-parameters.
Finally, we obtain the hyper-parameter values: learning rate = 1e-
4, β1 = 1, β2 = 100, λ = 0.1. During the experiment, the overall
training epoch is 2000, and the batch size is set to

⌈ m
5

⌉
.

DeepHapNet is implemented in Python 3.7.16 using the Linux
server with 2 Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, 503Gi
RAM, and 6 NVIDIA GeForce RTX 4090 with 24GB memory.

Evaluation metrics
Grouping the given reads into k clusters {C1,C2, . . . . . . ,Ck}, the
corresponding MEC score can be calculated as

MEC (M, H) =
m∑

i=1

min HD
(
Mi − Hj

)
(24)

where Mi denotes the i-th read, and Hj denotes the j-th recon-
structed haplotype (j = 1,2, . . . ,k). The MEC score is often used
as a metric to characterize the accuracy of haplotype assembly
methods. In addition, we calculated the vector error rate (VER),
also called the switch error rate (SWER), defined as the number
of times a homolog is erroneously extended by part of another
homolog [20]. Such erroneous extensions are also called switches
between homologs, and the measure is equal to two times the
number of wrong phasings for pairs of consecutive SNPs for
diploids. For polyploids, the measure is calculated by finding the
minimum number of crossing-overs needed to reconstruct the
true haplotypes from the estimates. The SWER [43] is defined
in diploid assembly as the proportion of positions where the
phase of the reconstructed haplotype is incorrectly switched. In
our experimental results, SWER denotes the switch error rate of
diploids and VER denotes the switch error rate of polyploids. Note
that only MEC can be computed in the absence of ground truth.

Experimental data
To evaluate the performance of our proposed method, DeepHap-
Net, we compare it with other tools using both simulated and real
datasets of diploid and polyploid species.

Simulated short read data
A randomly selected 10 kb region of Solanum tuberosum chromo-
some 5 is used as the genome reference. We use the same tools
and methods described in XHap to simulate haplotypes and reads.
We use the technology-specific simulator ART [44] to generate
paired-end reads from Illumina MiSeq technologies. The average

length of single Illumina reads is set to the maximum allowed
by ART (2 × 250 bp), and we set the average insert-sizes length
to 550 bp, and SD 10 bp. For evaluation of the effect of sequenc-
ing depth on haplotype assembly, 10×, 20×, and 30× average
coverage are considered per homolog for each of these insert
sizes, generating ∼200–600 reads. The log-normal model from
Haplogenerator [45] is used to introduce independent mutations,
creating k sequences, with the mean and the SD of the log distance
between the SNPs being set to 3.0349 and 1.293, respectively,
corresponding to an expected SNP frequency of 1 per 21 bp with
an SD of 27 bp [46, 47]. We employ BWA-MEM to align reads to
the genome reference and use the same tool involved in XHap to
derive the SNPs matrix from the above alignment to ensure a fair
comparison.

Simulated long read data
A 100 kb region of the human GrCh38 genome is randomly
selected as the genome reference, and PacBio reads with an
average length of ∼9000 bp are generated using the PBSIM2 [48]
simulator with default parameter settings. Based on the average,
the software generates reads with random lengths following the
built-in distributions derived from empirical data. The sequencing
coverage is set to 80×, 90×, and 100×. Additionally, in the step of
generating haplotypes, the mean and the SD of the log distance
between the SNPs are set to 6.0698 and 1.293. We use the same
method described in the section Simulated Short Read Data to
generate SNPs matrix.

Real human data
The Genome in a Bottle consortium provides the NA12878 dataset,
which contains aligned PacBio SMRT whole-genome reads for a
human subject, achieving a coverage depth of 44×. We adhere
to the benchmark testing practices outlined by Wagner et al.
[49]. Based on the Binary Alignment/Map (BAM) and Browser
Extensible Data (BED) files, reads are filtered to select those that
cover high-confidence regions on a specific chromosome, while
excluding reads that only cover a single SNP site as they do not
contain useful information for the phasing process. Specifically,
reads aligned to chromosome 21 are selected, totaling 172 363
reads, which cover 28 719 SNPs. Finally, an SNP matrix is con-
structed as input for the model.

Real S. tuberosum data
Using the tetraploid S. tuberosum cultivar RH89-039-16 chromo-
some 5 as the genome reference, paired Illumina HiSeq 2000
reads (2 × 100 bp in length) data are available from the National
Center for Biotechnology Information (NCBI) under the accession
number SRR6173308. From this genome reference, 10 regions of
10 kb length are randomly selected as sample genome references.
Reads are aligned to these genome references using BWA-MEM
and then construct the SNP matrix.

Performance in simulated data
We compare DeepHapNet’s performance on haplotype assembly
with methods such as XHap, CAECSeq, H-PoP, HapTree, and Hap-
CUT2.

Performance in simulated short reads data
Tables 1–3 represent the performance of each tool when
using simulated paired-end short reads for diploid, triploid,
and tetraploid haplotype assembly. The experimental results
show that DeepHapNet is able to produce complete haplotype
reconstruction results, while the other tools produce haplotypes
in blocks, i.e. they do not fully phased haplotypes, and therefore
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Table 1. Performance in diploid haplotype assembly using simulated short reads.

Coverage MEC SWER Blocks

DeepHapNet 10 37 +/− 13.76 0.015 +/− 0.014 1.00 +/− 0.00
20 14 +/− 2.24 0.003 +/− 0.003 1.00 +/− 0.00
30 21 +/− 3.61 0.001 +/− 0.002 1.00 +/− 0.00

XHap 10 38 +/− 13.43 0.012 +/− 0.013 1.00 +/− 0.00
20 14 +/− 2.24 0.003 +/− 0.005 1.00 +/− 0.00
30 22 +/− 5.42 0.003 +/− 0.003 1.00 +/− 0.00

CAECSeq 10 63 +/− 19.60 0.012 +/− 0.005 1.00 +/− 0.00
20 23 +/− 12.13 0.004 +/− 0.002 1.00 +/− 0.00
30 50 +/− 17.24 0.006 +/− 0.002 1.00 +/− 0.00

H-PoP 10 67 +/− 25.77 0.009 +/− 0.007∗ 5.00 +/− 2.61
20 70 +/− 37.43 0.000 +/− 0.000∗ 5.00 +/− 2.19
30 141 +/− 52.55 0.000 +/− 0.001∗ 6.40 +/− 2.33

HapCUT2 10 88 +/− 41.53 0.012 +/− 0.015∗ 5.80 +/− 3.66
20 71 +/− 38.12 0.003 +/− 0.002∗ 2.80 +/− 1.17
30 142 +/− 51.02 0.002 +/− 0.002∗ 2.60 +/− 0.80

HapTree 10 79 +/− 34.48 0.013 +/− 0.017∗ 2.40 +/− 1.02
20 70 +/− 37.93 0.005 +/− 0.003∗ 2.40 +/− 1.02
30 141 +/− 51.77 0.002 +/− 0.002∗ 2.40 +/− 0.80

Note: The bold values in the table indicate the optimal results for that metric.

Table 2. Performance in triploid haplotype assembly using simulated short reads.

Coverage MEC VER Blocks

DeepHapNet 10 28 +/− 15.54 0.015 +/− 0.010 1.00 +/− 0.00
20 29 +/− 11.57 0.017 +/− 0.011 1.00 +/− 0.00
30 47 +/− 18.61 0.006 +/− 0.003 1.00 +/− 0.00

XHap 10 35 +/− 10.25 0.048 +/− 0.013 1.00 +/− 0.00
20 50 +/− 14.39 0.028 +/− 0.014 1.00 +/− 0.00
30 50 +/− 15.70 0.009 +/− 0.009 1.00 +/− 0.00

CAECSeq 10 54 +/− 11.05 0.066 +/− 0.033 1.00 +/− 0.00
20 71 +/− 23.50 0.031 +/− 0.025 1.00 +/− 0.00
30 87 +/− 29.78 0.006 +/− 0.003 1.00 +/− 0.00

H-PoP 10 64 +/− 21.91 0.026 +/− 0.015∗ 5.60 +/− 1.02
20 94 +/− 40.73 0.005 +/− 0.005∗ 5.40 +/− 1.50
30 117 +/− 50.94 0.001 +/− 0.001∗ 4.40 +/− 0.49

Note: The bold values in the table indicate the optimal results for that metric.

cannot compute the true SWER/VER, which is marked with “∗” in
the tables. Each sequencing coverage setup is randomly initialized
five times, and the pipeline is run to record the haplotype whose
initialization produced the lowest MEC score. For each sequencing
coverage, the report results consist of the mean and SD of all
metrics for the five simulated data sets. As shown in Table 1,
in experiments using short read data for diploid haplotype
assembly, DeepHapNet and XHap lead the other tools and perform
comparably, while H-PoP produces more fragmented blocks and
performs poorly in terms of continuity. Reconstructing polyploid
haplotypes is more challenging as species ploidy increases. As
shown in Tables 2 and 3, DeepHapNet outperforms other tools
in all evaluation metrics in experiments using short read data
for triploid and tetraploid haplotype assembly. Since HapTree
and HapCUT2 can only perform diploid haplotype assembly, the
performance evaluation of these two tools is ignored in Tables 2
and 3.

Performance in simulated long read data
Tables 4–6 represent the performance of each tool when using
simulated long reads for diploid, triploid, and tetraploid haplo-
type assembly. The experimental results show that DeepHap-
Net outperforms other tools in MEC and SWER/VER metrics at

all coverage levels, especially in tetraploid haplotype assembly.
There is no significant difference between XHap and CAECSeq in
sequencing coverage of 80×, 90×, and 100×, and XHap is slightly
better than CAECSeq in MEC. H-PoP is more difficult to obtain
assembly results from long reads in diploid or polyploid assembly
and will produce more haplotype blocks.

Performance in real data
Performance in diploid human data
Due to the large size of the SNP matrix, we use the method in XHap
to reconstruct the overlapping haplotype blocks and phase them
together to obtain the complete reconstructed haplotype. Each
haplotype block is 250 SNPs long, and adjacent blocks overlap
50 SNPs. In addition, the reads that contain information about
only one SNP locus are filtered out. The results of the bench-
mark experiments are shown in Table 7; we were unable to get
HapTree’s experimental results because the tool reported an error
when running these data. In terms of continuity, DeepHapNet,
XHap, and CAECseq are able to produce fully phased haplotypes,
while H-PoP and HapCUT2 produce more haplotype blocks. In
terms of accuracy, CAECseq performs the worst on both MEC and
SWER metrics. In terms of MEC and SWER, DeepHapNet’s perfor-
mance is about equal to XHap’s, with XHap being slightly better.
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Table 3. Performance in tetraploid haplotype assembly using simulated short reads.

Coverage MEC VER Blocks

DeepHapNet 10 341 +/− 24.91 0.033 +/− 0.006 1.00 +/− 0.00
20 106 +/− 9.20 0.010 +/− 0.006 1.00 +/− 0.00
30 91 +/− 12.63 0.008 +/− 0.005 1.00 +/− 0.00

XHap 10 579 +/− 52.72 0.059 +/− 0.010 1.00 +/− 0.00
20 306 +/− 33.06 0.077 +/− 0.015 1.00 +/− 0.00
30 400 +/− 35.95 0.081 +/− 0.016 1.00 +/− 0.00

CAECSeq 10 484 +/− 24.38 0.086 +/− 0.008 1.00 +/− 0.00
20 207 +/− 18.28 0.050 +/− 0.019 1.00 +/− 0.00
30 417 +/− 545.06 0.040 +/− 0.032 1.00 +/− 0.00

H-PoP 10 468 +/− 39.52 0.026 +/− 0.009∗ 2.20 +/− 0.75
20 135 +/− 19.93 0.012 +/− 0.004∗ 1.80 +/− 0.75
30 112 +/− 35.44 0.008 +/− 0.007∗ 2.20 +/− 0.40

Note: The bold values in the table indicate the optimal results for that metric.

Table 4. Performance in diploid haplotype assembly using simulated long reads.

Coverage MEC SWER Blocks

DeepHapNet 80 414 +/− 51.38 0.003 +/− 0.004 1.00 +/− 0.00
90 509 +/− 94.85 0.004 +/− 0.006 1.00 +/− 0.00
100 582 +/− 47.47 0.003 +/− 0.003 1.00 +/− 0.00

XHap 80 415 +/− 53.16 0.004 +/− 0.003 1.00 +/− 0.00
90 511 +/− 95.79 0.004 +/− 0.007 1.00 +/− 0.00
100 582 +/− 47.47 0.003 +/− 0.003 1.00 +/− 0.00

CAECSeq 80 416 +/− 52.82 0.003 +/− 0.005 1.00 +/− 0.00
90 521 +/− 102.95 0.003 +/− 0.003 1.00 +/− 0.00
100 587 +/− 45.26 0.004 +/− 0.005 1.00 +/− 0.00

H-PoP 80 507 +/− 69.01 0.002 +/− 0.003∗ 15.80 +/− 10.70
90 647 +/− 183.93 0.004 +/− 0.004∗ 24.00 +/− 4.05
100 726 +/− 167.85 0.002 +/− 0.003∗ 26.00 +/− 16.77

HapCUT2 80 478 +/− 59.68 0.003 +/− 0.007∗ 5.60 +/− 2.87
90 597 +/− 187.53 0.007 +/− 0.007∗ 5.80 +/− 2.79
100 671 +/− 163.57 0.008 +/− 0.004∗ 5.00 +/− 1.90

HapTree 80 468 +/− 59.89 0.007 +/− 0.006∗ 1.00 +/− 0.00
90 585 +/− 182.70 0.005 +/− 0.007∗ 1.40 +/− 0.49
100 666 +/− 169.06 0.007 +/− 0.005∗ 1.20 +/− 0.40

Note: The bold values in the table indicate the optimal results for that metric.

Table 5. Performance in triploid haplotype assembly using simulated long reads.

Coverage MEC VER Blocks

DeepHapNet 80 95 +/− 20.14 0.008 +/− 0.005 1.00 +/− 0.00
90 79 +/− 15.14 0.010 +/− 0.012 1.00 +/− 0.00
100 98 +/− 18.23 0.006 +/− 0.006 1.00 +/− 0.00

XHap 80 108 +/− 16.85 0.011 +/− 0.008 1.00 +/− 0.00
90 86 +/− 18.06 0.021 +/− 0.011 1.00 +/− 0.00
100 125 +/− 30.18 0.013 +/− 0.013 1.00 +/− 0.00

CAECSeq 80 260 +/− 230.64 0.031 +/− 0.042 1.00 +/− 0.00
90 117 +/− 28.92 0.029 +/− 0.018 1.00 +/− 0.00
100 128 +/− 34.02 0.024 +/− 0.016 1.00 +/− 0.00

H-PoP 80 248 +/− 59.53 0.009 +/− 0.006∗ 34.60 +/− 21.37
90 188 +/− 41.97 0.045 +/− 0.019∗ 11.80 +/− 6.11
100 219 +/− 52.67 0.018 +/− 0.007∗ 17.60 +/− 10.78

Note: The bold values in the table indicate the optimal results for that metric.

We utilized three GPUs to run each data block in parallel, with a
maximum GPU memory usage of 16GB. Detailed information on
resource consumption is shown in Supplementary Table S2.

Performance in tetraploid potato data
Due to the lack of ground truth about potato, the performance
of each tool can only be evaluated by MEC. We benchmark

DeepHapNet with other tools XHap, CAECseq, and H-PoP in a
benchmark experiment, running the algorithm five times for
each region of data, and finally preserving the haplotype with the
minimum MEC. The total number of SNP loci and reads contained
in each region is shown in Supplementary Table S1. As shown in
Table 8, XHap outperforms the other tools in all 10 regions of data
experiments.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae656#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae656#supplementary-data
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Table 6. Performance in tetraploid haplotype assembly using simulated long reads.

Coverage MEC VER Blocks

DeepHapNet 80 243 +/− 23.85 0.004 +/− 0.004 1.00 +/− 0.00
90 281 +/− 43.25 0.003 +/− 0.005 1.00 +/− 0.00
100 237 +/− 23.13 0.003 +/− 0.002 1.00 +/− 0.00

XHap 80 412 +/− 45.26 0.022 +/− 0.007 1.00 +/− 0.00
90 506 +/− 41.33 0.020 +/− 0.008 1.00 +/− 0.00
100 441 +/− 48.39 0.023 +/− 0.014 1.00 +/− 0.00

CAECSeq 80 400 +/− 143.01 0.018 +/− 0.014 1.00 +/− 0.00
90 418 +/− 70.08 0.009 +/− 0.006 1.00 +/− 0.00
100 493 +/− 241.36 0.028 +/− 0.026 1.00 +/− 0.00

H-PoP 80 739 +/− 136.38 0.017 +/− 0.010∗ 24.00 +/− 14.75
90 856 +/− 113.82 0.018 +/− 0.005∗ 27.60 +/− 12.52
100 802 +/− 135.68 0.020 +/− 0.010∗ 29.40 +/− 5.57

Note: The bold values in the table indicate the optimal results for that metric.

Table 7. Performance comparison of DeepHapNet with other tools in human data.

MEC VER Blocks

DeepHapNet 126 618 0.004 1
XHap 124 730 0.003 1
CAECSeq 158 632 0.014 1
H-PoP 124 133 0.000∗ 282
HapCUT2 128 290 0.002∗ 298

Note: HapTree reported an error. The bold values in the table indicate the optimal results for that metric.

Table 8. MEC scores for DeepHapNet with other benchmarking tools on real potato data.

Region #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

DeepHap-
Net

88 1264 72 1115 28 18 435 1227 779 218

XHap 93 1650 92 1500 45 26 574 1787 1397 291
CAECseq 114 1446 137 1436 88 32 544 1459 1098 292
H-PoP 204 1694 148 1697 81 20 686 1740 1188 338

Note: The bold values in the table indicate the optimal results for that metric.

Discussion
To validate the accuracy of DeepHapNet, we conduct experiments
using both simulated and real datasets. To assess the robustness
of DeepHapNet under various influencing factors (such as
ploidy, sequencing coverage, and read length), we employ
different types of simulated and real datasets. The experimental
results demonstrate that DeepHapNet effectively performs
haplotype assembly for diploid, triploid, and tetraploid organisms,
DeepHapNet exhibits better generalization capabilities in terms
of sequencing coverage, whether using simulated short reads
with 10×–30× coverage or long reads with 80×–100× coverage.
Additionally, DeepHapNet can accept short reads or long reads,
and its performance is better compared to other tools. Similar
to other haplotype assembly tools, DeepHapNet’s performance is
highly dependent on the quality of alignment and subsequent SNP
calling. In addition, DeepHapNet only uses SNPs for phasing, so it
may not be able to reconstruct haplotypes in genomes with high
levels of insertions, deletions, and structural variants. Errors in
the reference genome may lead to inaccurate SNP calling, which
directly affects haplotype assembly. We will address these issues
in future work.

Conclusion
In this paper, we propose a deep learning model based on unsu-
pervised learning to solve the haplotype assembly problem of

diploid and polyploid. DeepHapNet adopts RetNet, a large lan-
guage model autoregressive infrastructure, to learn the features
of reads and the relationship of global reads through MSR. Clus-
tering is performed directly based on the features of reads using
the SpectralNet model. Then, we further optimize the clustering
results and extract consensus as haplotype sequences based on
the reads in each cluster.

Benchmark experiments show that DeepHapNet is able to
effectively solve the haplotype assembly problem and construct
well-phased haplotypes. Compared with existing haplotype
assembly methods, DeepHapNet exhibits better accuracy and
robustness, particularly when dealing with complex polyploid
data. DeepHapNet also boasts broad applicability, capable of
handling biological data of various ploidies, including diploid,
triploid, and tetraploid. However, there are still challenges and
future research directions worth exploring. For instance, how to
further improve the efficiency and accuracy of DeepHapNet in
processing large-scale genomic data, as well as how to apply it
to a wider range of genomic research fields, are both issues that
merit further investigation.

Key Points

• Haplotype assembly is important for the analysis of
structural variation among haplotypes, evolutionary
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studies on the genetic origins of species, sex chromo-
some evolution, studies on deleterious mutations, and
probing the molecular mechanisms of hybrid domi-
nance formation.

• Based on unsupervised deep learning, a novel haplotype
assembly method is proposed.

• To investigate the performance of DeepHapNet with the
other five haplotype assembly methods, some related
computational experiments are analysed in simulated
and real datasets.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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