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Abstract 
Drug repositioning, which involves identifying new therapeutic indications for approved drugs, is pivotal in accelerating drug discovery. 
Recently, to mitigate the effect of label sparsity on inferring potential drug–disease associations (DDAs), graph contrastive learning 
(GCL) has emerged as a promising paradigm to supplement high-quality self-supervised signals through designing auxiliary tasks, 
then transfer shareable knowledge to main task, i.e. DDA prediction. However, existing approaches still encounter two limitations. 
The first is how to generate augmented views for fully capturing higher-order interaction semantics. The second is the optimization 
imbalance issue between auxiliary and main tasks. In this paper, we propose a novel heterogeneous Graph Contrastive learning method 
with Gradient Balance for DDA prediction, namely GCGB. To handle the first challenge, a fusion view is introduced to integrate both 
semantic views (drug and disease similarity networks) and interaction view (heterogeneous biomedical network). Next, inter-view 
contrastive learning auxiliary tasks are designed to contrast the fusion view with semantic and interaction views, respectively. For the 
second challenge, we adaptively adjust the gradient of GCL auxiliary tasks from the perspective of gradient direction and magnitude 
for better guiding parameter update toward main task. Extensive experiments conducted on three benchmarks under 10-fold cross-
validation demonstrate the model effectiveness. 
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Introduction 
To solve the dilemma of high investment and low success rate in 
new drug development, computational-based drug repositioning 
(DR), which targets at learning from multi-source heterogeneous 
biological data and identifying new therapeutic indications for 
approved or late-stage clinical trial drugs, has gradually emerged 
as a complementary and promising solution. 

Since the drug–disease association (DDA) network can be nat-
urally formed as a bipartite graph structure, growing efforts have 
been devoted to exploiting the advantages of graph neural net-
works (GNNs) for effectively integrating multiple biological rela-
tionships. Existing GNN-based solutions are generally divided into 
three mainstream branches from the perspective of biological 
network types. 

(1) Similarity network-based methods. Under the assumption that 
similar drugs are more inclined to treat similar diseases 
and vice versa [1], this line of researches first calculates 
the similarity scores between each pair of drugs and dis-
eases through diverse measurement modalities, then the 
obtained similarity features are applied to predict underlying 
DDAs [2, 3]. 

(2) Association network-based methods. This line focuses on prop-
agating and aggregating information from heterogeneous 
association networks, which comprise multiple types of 
biological entities and various interaction relationships, e.g. 
drug–protein and protein–disease etc., to capture potential 
associations between drugs and diseases [4–6]. 

(3) Dual networks fusion-based methods. Above two kinds of 
networks are not mutually exclusive, to benefit from both 
of their advantages, emerging approaches design dedicated 
model architecture to integrate similarity network with asso-
ciation network, thereby generating more comprehensive 
representations for drugs and disease [7–9]. 

Despite their widespread applications, the performance of 
GNN-based DDA approaches is susceptible to the scale of labeled 
training samples. Unfortunately, due to the labor-intensive 
and time-consuming process of wet experiments, the number 
of validated DDAs is insufficient compared with the holistic 
interaction space, which is also known as the issue of label 
sparsity [10, 11]. Specifically, we assume that the numbers of 
drugs, diseases, and drug-disease positive samples are m, n, and 
k, respectively, thus there is a guarantee that k � m × n holds.
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Under such circumstances, plagued by label sparsity, prior GNN-
based solutions fall short of fully capturing intricate semantic 
correlations between drugs and diseases. 

To mitigate the effect of sparse supervised signals, graph con-
trastive learning (GCL), as the representative of self-supervised 
learning techniques, has been introduced for DDA prediction 
[12, 13]. The general processing flow involves firstly performing 
graph augmentation to generate different views of original graph. 
Afterwards, contrastive objectives are defined to maximize and 
minimize the consistency of positive as well as negative node pairs 
between the original and augmented views, respectively. At last, 
the GCL tasks served as auxiliary tasks are jointly optimized with 
the main task (i.e. DDA prediction) based on multi-task learning 
paradigm [14]. 

Although GCL shines in combating against the issue of label 
sparsity, existing approaches devised for DDA prediction still 
suffer from two limitations. (i) Random perturbation strategies, 
including node and edge dropout, noisy representations etc., 
are frequently utilized for graph augmentation [5, 12, 15]. 
However, as demonstrated in literature [13], such strategies 
lead to performance degradation. We argue that the augmented 
views built by random perturbation fail to capture higher-
order interaction semantics (i.e. drug–drug and disease–disease 
relationships) implicit in the original DDA network. (ii) The 
imbalance phenomenon of gradient direction and magnitude 
between GCL auxiliary tasks and main task is detrimental to 
the prediction accuracy of target task [16]. More concretely, 
let L(i) 

GCL and LDDA denote the loss of i-th GCL auxiliary task 
and main task respectively, θ refers to the shared parameters, 
which is optimized by jointly multi-task training. G(i) 

GCL and GDDA 

denote the corresponding gradients w.r.t. θ , i.e.  G(i) 
GCL = ∇θL(i) 

GCL, 
GDDA = ∇θLDDA. Intuitively, larger gradient magnitude (L2 norm,
‖.‖) dominates the overall optimization trend. Thus, if ‖G(i) 

GCL‖ �
‖GDDA‖, the optimizer inclines to update shared parameters 
toward the i-th GCL auxiliary task rather than main task, resulting 
in serious issue of optimization imbalance (please refer to Section 
Adaptive Gradient Balance for details). However, till now, this 
issue is seldom considered in the field of DR. To sum up, how to 
design meaningful GCL auxiliary tasks and solve the optimization 
imbalance issue are two intractable challenges. 

To deal with the first challenge, distinct from random perturba-
tion, we expect to construct separate drug and disease similarity 
networks, which are deemed as semantic views, while we consider 
the DDA network as interaction view. Instead of directly generating 
contrastive sample pairs between the semantic and interaction 
views, a fusion view is introduced to integrate both higher-order 
relationships (drug–drug and disease–disease) and interaction 
information (drug–disease). Afterwards, we decide to contrast the 
fusion view with semantic and interaction views, respectively. 
Such a contrastive paradigm guarantees the mutual information 
between paired nodes across views is maximized. 

As for the second challenge, in order to prevent GCL auxiliary 
tasks from dominating the optimization process, a simple and 
straightforward solution is to introduce weight hyperparameters 
for each auxiliary task, i.e. G(i)′

GCL = λi∇θL(i) 
GCL, where  λi is a hyper-

parameter. However, tuning the weights for multiple GCL tasks by 
grid or random search is extremely time-consuming. More impor-
tantly, since the gradient magnitudes are dynamically changing 
during the training process, such fixed task hyperparameters trap 
in local optimum. Inspired by prior works [17, 18], in this paper, we 
explore to flexibly adapt the gradient of GCL auxiliary tasks from 
the perspective of gradient direction and magnitude for better 
transferring knowledge to main task. 

To this end, we propose a novel heterogeneous Graph Con-
trastive learning method with Gradient Balance for identifying 
potential DDAs (abbreviated as GCGB). GCGB consists of four 
crucial components, i.e. node representation learning, DDA pre-
dictor, inter-view contrastive learning (CL), and adaptive gradient 
balance. 

Specifically, drug and disease similarity networks are con-
structed in advance. Moreover, to enrich graph connectivity, the 
original DDA network integrated with two protein-related bipar-
tite graphs (i.e. drug-protein and disease-protein) composes a het-
erogeneous interaction network. Subsequently, the constructed 
similarity networks and interaction network, which are treated as 
semantic views and interaction view respectively, are taken as the 
input of the first module. This module firstly utilizes dual graph 
transformer (GT) networks [19, 20] to perform message propaga-
tion and aggregation on these views, then at each GT layer, multi-
head self-attention mechanism [21] is employed to fuse node rep-
resentations from both semantic and interaction views. Next, the 
second module introduces two additional composition operators 
to calculate the probability that a given drug is effective in treating 
a specific disease. After that, the third module designs inter-view 
CL auxiliary tasks to alleviate label sparsity. More concretely, let 
the final fused drug and disease embeddings produced by mean-
pooling across all GT layers be the fusion view. We contrast the 
fusion view with semantic and interaction views, respectively. The 
positive samples are the identical nodes within different views, 
while the negative ones are the disparate nodes within different 
views. Finally, the fourth module adaptively alters the gradient 
of above auxiliary tasks by simultaneously considering gradient 
direction and magnitude. Briefly, if the gradient magnitude of i-th 
GCL auxiliary task is larger than the counterpart of main task, 
i.e. ‖G(i) 

GCL‖ > ‖GDDA‖, we detect if the directions of these two 
gradients are conflicting, and further rectify G(i) 

GCL by measuring 
the magnitude proximity with GDDA. 

In a nutshell, the main contributions of this paper can be 
summarized as follows: 

• A novel heterogeneous GCL method with gradient balance, 
namely GCGB, is proposed for inferring potential DDAs. To the 
best of our knowledge, it is the first time that optimization 
imbalance phenomenon between GCL auxiliary tasks and 
main task is considered in DR. 

• We design effective inter-view CL auxiliary tasks through 
contrasting the fusion view with semantic and interaction 
views respectively, thereby maximizing the mutual informa-
tion between paired nodes across views. 

• To prevent auxiliary tasks from dominating the optimization 
process, we adaptively alter the gradient of GCL auxiliary 
tasks from the perspective of gradient direction and magni-
tude for better guiding parameter update toward main task. 

• Extensive experiments demonstrate that GCGB outperforms 
the competitive baselines on three commonly-used bench-
marks under 10-fold cross-validation. Furthermore, we also 
conduct detailed case studies to predict candidate drugs for 
different diseases, rendering it a practical and trustworthy 
tool for DR. 

Materials and preliminaries 
Datasets 
We verify the effectiveness of our proposed method on three 
commonly-used benchmarks, i.e. B-dataset [22], C-dataset [23], 
and F-dataset [24]. Please refer to the supplementary material
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Table 1. Statistic of three benchmark datasets 

Dataset Node number Association number Sparsity 

Drug Disease Protein Drug-Disease Drug-Protein Disease-Protein 

B-dataset 269 598 1021 18416 3110 5898 11.45% 
C-dataset 663 409 993 2532 3672 10691 0.93% 
F-dataset 592 313 2741 1933 3152 47470 1.04% 

for details of these benchmarks. Table 1 shows the statistic of 
above datasets. Specifically, let m, n, and  k denote the number 
of drugs, diseases, and DDAs, respectively, the sparsity ratio is 
calculated as k 

m×n . We observe that all datasets encounter varying 
degrees of sparsity, C-dataset and F-dataset are much sparser 
than B-dataset. Hence, how to effectively mitigate the issue of 
label sparsity is essential for DDA prediction. 

Biological networks construction 
Herein, we will successively introduce the DDA network, heteroge-
neous interaction network, and homogeneous similarity network. 

DDA network. Let  VDR and VDI denote the set of drugs and dis-
eases, respectively. The DDA network is deemed as an undirected 
bipartite graph GDDA = {VDR,VDI,EDDA}, where  EDDA ⊆ VDR × VDI 

denotes the associations that have been experimentally validated 
between drugs and diseases. An adjacency matrix w.r.t. GDDA is 
represented as ADDA ∈ {0, 1}|VDR |×|VDI |, where  Auv 

DDA = 1 if drug u can 
treat disease v, otherwise Auv 

DDA = 0. 
Heterogeneous interaction network. It can be treated as an undi-

rected heterogeneous information network, which consists of 
three node types, i.e. drug (DR for short), disease (DI), and protein 
(PR), and three edge types, i.e. drug–disease (DDA), drug–protein 
(DRP), and disease–protein (DIP). Formally, let VPR denote the set 
of proteins. The heterogeneous interaction network is defined 
as GHIN = {V ,EHIN,T V ,T E }, where  V = VDR ∪ VDI ∪ VPR and 
EHIN = EDDA ∪ EDRP ∪ EDIP refer to the set of nodes and edges, 
respectively. Moreover, two type mapping functions, i.e., φ : V → 
T V and ψ : EHIN → T E assign the corresponding type to each 
node and edge, where T V = {DR, DI, PR}, T E = {DDA, DRP, DIP}. 
GHIN could be represented by a series of adjacency matrices 
{Ae : e ∈ T E }. Taking the edge type DRP ∈ T E as an example, 
ADRP ∈ {0, 1}|VDR |×|VPR | is an adjacency matrix where nonzero 
values indicate the existence of interactions between drugs and 
proteins. 

Homogeneous similarity network. For drug similarity network, it 
is denoted as GDR, and the corresponding adjacency matrix is 
ADR ∈ {0, 1}|VDR |×|VDR |, where  Auj 

DR = 1 if drug j is the top-K nearest 
neighbor of drug u, otherwise Auj 

DR = 0. In practice, following 
prior works [7, 25], we comprehensively calculate both the drug 
fingerprint similarity and Gaussian interaction profile (GIP) kernel 
similarity for each drug pair. Analogously, the disease similarity 
network is denoted as GDI, the adjacency matrix w.r.t. GDI is 
represented as ADI ∈ {0, 1}|VDI |×|VDI |, where  Avj 

DI = 1 if disease j is 
the top-K nearest neighbor of disease v, otherwise Avj 

DI = 0. We also 
simultaneously measure disease phenotype similarity as well as 
GIP kernel similarity for each disease pair. 

Methodology 
The overall architecture of GCGB is shown in Fig. 1. In the follow-
ing subsections, we will elaborate on each component. 

Node representation learning 
The constructed similarity networks (GDR, GDI) and interaction 
network (GHIN) are deemed as semantic views and interaction 
view, respectively. We separate the overall procedure of node 
representation learning into three sub-steps, i.e. semantic view 
feature extraction, interaction view feature extraction, and layer-
wise feature fusion. 

Semantic view feature extraction 
Since semantic views are homogeneous information networks in 
essence, we employ the basic GT network [19] to obtain drug and  
disease representations from GDR and GDI, respectively. 

Taking GDR as an example, let h(l) 
DR,u ∈ R

d denote the d-
dimensional embedding of drug u at l-th layer on GDR. We exploit 
multi-head attention mechanism to estimate the importance of 
each neighbor node and aggregate the neighborhood message 
by attention weights. Concretely, as for the drug node u and its 
neighbor node j ∈ NGDR (u), drug  u is transformed into a query 
vector, i.e. Q(l) 

h = W(l) 
Q,hh(l) 

DR,u, while neighbor node j is mapped 
into a key vector, i.e. K(l) 

h = W(l) 
K,hh(l) 

DR,j and a value vector, i.e. 
V(l) 

h = W(l) 
V,hh(l) 

DR,j, where  h refers to h-th head and the total head 
number is H, W(l) 

Q,h, W(l) 
K,h, and  W(l) 

V,h are learnable parameter 
matrices. Afterwards, the scaled dot-product attention of h-th 
head is calculated to capture the correlation between query and 
key vectors: 

ATTh 
GT(j, u) = Softmax

∀j∈NGDR (u) 

⎛ 

⎝K(l) 
h

�
Q(l) 

h√
d/H 

⎞ 

⎠ (1) 

where NGDR (u) denotes all the neighbor nodes of drug u on GDR. 
Next, the message from node j to u is formulated as the concate-
nation of weighted multi-head value vectors: 

MSGGT(j, u) = 
H‖

h=1 
ATTh 

GT(j, u)V(l) 
h (2) 

where ‖ refers to the concatenation operation. Finally, the (l + 1)-
th layer embedding of drug u is generated by utilizing message 
passing mechanism to aggregate information from all neighbor 
nodes and adding the h(l) 

DR,u as a residual term: 

h(l+1) 
DR,u = σ 

⎛ 

⎝ ∑
∀j∈NGDR (u) 

W(l) 
GTMSGGT(j, u) 

⎞ 

⎠ + h(l) 
DR,u (3) 

where σ(·) denotes a non-linear activation function, W(l) 
GT is an 

optimizable parameter. After the calculation of L layers, we pre-
serve the node representations of all layers for each drug {h(l) 

DR,u|l = 
[1, · · ·  , L]}|VDR | 

u=0 . 
Analogously, as for the disease similarity network GDI, we apply 

another basic GT to propagate and aggregate information from 
neighbor nodes. The corresponding node representations of all 
layers for each disease are denoted as {h(l) 

DI,v|l = [1, · · ·  , L]}|VDI | 
v=0 .
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Figure 1. The overall architecture of GCGB, which consists of four crucial components, i.e. node representation learning, DDA predictor, inter-view CL,  
and adaptive gradient balance. The primary innovations lie in the design of inter-view CL and adaptive gradient balance modules. Specifically, as for 
inter-view CL, a fusion view is introduced to integrate both higher-order relationships (drug–drug and disease–disease) and interaction information 
(drug–disease). Afterwards, we contrast the fusion view with semantic and interaction views respectively, thereby maximizing the mutual information 
between paired nodes across views. As for adaptive gradient balance, we dynamically adjust the gradient of GCL auxiliary tasks through reducing 
the proportion of conflicting gradient directions and measuring the proximity of gradient magnitudes at each training epoch, effectively achieving 
parameter update toward main task. 

Interaction view feature extraction 
The interaction view is modeled as a heterogeneous information 
network. However, the basic GT assumes that different types of 
nodes/edges share the identical feature space, making it infea-
sible to capture heterogeneous properties. In order to maintain 
graph heterogeneity, we resort to heterogeneous graph trans-
former (HGT) [20] to project each node/edge type with a specific 
transformation matrix. 

Concretely, let h(l) 
HIN,i ∈ Rd denote the d-dimensional embedding 

of node i at l-th layer on GHIN. Given an edge e = (j, i) ∈ EHIN 

linked from source node j to target node i, the corresponding 
edge and node types are ψ(e), φ(j), and  φ(i), we first project the 
representations of target node i and source node j into multi-head 
query, key, and value vectors, respectively, i.e. Q(l)′

h = Wφ(i)(l) 

Q,h h(l) 
HIN,i, 

K(l)′
h = Wφ(j)(l) 

K,h h(l) 
HIN,j and V(l)′

h = Wφ(j)(l) 

V,h h(l) 
HIN,j, where  h denotes h-th 

head and the total head number is also set to H, Wφ(i)(l) 

Q,h , Wφ(j)(l) 

K,h , and  

Wφ(j)(l) 

V,h are node type-specific parameter matrices. Afterwards, we 
calculate the h-th head attention for each edge e as follows: 

ATTh 
HGT(j, e, i) = Softmax

∀j∈NGHIN (i) 

⎛ 

⎝K(l)′�
h WA(l) 

ψ(e)Q
(l)′
h√

d/H 

⎞ 

⎠ (4) 

where NGHIN (i) refers to all the neighbor nodes of target i on GHIN. 
WA(l) 

ψ(e) is an edge type-specific parameter. Next, the edge type is 

incorporated into message passing process, thus, the message 
from node j to i through edge e is formulated as: 

MSGHGT(j, e, i) = 
H‖

h=1 
ATTh 

HGT(j, e, i)WM(l) 

ψ(e)V
(l)′
h (5) 

where WM(l) 

ψ(e) is also an edge type-specific parameter. Finally, we 
calculate the (l + 1)-th layer embedding of node i by aggregating 
information from all neighbor nodes, followed by the non-linear 
activation and residual connection: 

h(l+1) 
HIN,i = σ 

⎛ 

⎝ ∑
∀j∈NGHIN (i) 

W(l) 
φ(i)MSGHGT(j, e, i) 

⎞ 

⎠ + h(l) 
HIN,i (6) 

where W(l) 
φ(i) is a node type-specific parameter. After stacking the 

HGT blocks for L layers, the highly contextualized representation 
is produced for each node. For ease of description, the obtained 
vector representations of all layers for drug and disease nodes are 
denoted as {hDR(l) 

HIN,u|l = [1, · · ·  , L]}|VDR | 
u=0 and {hDI(l) 

HIN,v|l = [1, · · ·  , L]}|VDI | 
v=0 , 

respectively. 

Layer-wise feature fusion 
After obtaining the drug and disease representations from both 
semantic and interaction views, a fusion view is introduced to



HGCL with gradient balance for DR | 5

integrate above two views at each layer through multi-head self-
attention mechanism. 

Specifically, taking drug u as an example, at l-th layer, the cor-
responding node embeddings learned from semantic and inter-

action views are h(l) 
DR,u and hDR(l) 

HIN,u, respectively. Afterwards, multi-
head self-attention mechanism is utilized to fuse these two views, 
the fused representation of drug u at l-th layer is denoted as 

h 
DR(l) 

u . Analogously, as for disease v, we denote the fused node 

representation at l-th layer as h 
DI(l) 

v . Finally, we exploit mean-
pooling to combine the fused representations across all layers, 
thereby generating the final fused drug and disease embeddings: 

h 
DR 
u = 

1 
L 

L∑
l=1 

h 
DR(l) 

u , h 
DI 
v = 

1 
L 

L∑
l=1 

h 
DI(l) 

v (7) 

DDA predictor 
Since the task of DDA prediction is normally regarded as a binary 
classification problem, DDA predictor targets at calculating the 
probability score that a given drug is able to treat a specific 
disease. 

Specifically, given a drug-disease pair (u, v) ∈ VDR ×VDI, instead 
of directly concatenating the fused drug embedding h 

DR 
u with the 

disease embedding h 
DI 
v and then feeding it into the multi-layer per-

ceptron (MLP), inspired by the idea of composition operators [26], 
we introduce the multiplication (ξMul) [27] and rotation (ξRot) [28] 
operators to further incorporate drug and disease embeddings. 
ξMul performs the element-wise vector product, while ξRot projects 
embedding vectors to complex space and utilizes the rotation of 
complex domain to describe relations. 

Thus, the concatenation of h 
DR 
u , h 

DI 
v , ξMul(h 

DR 
u , h 

DI 
v )(ξMul for short) 

and ξRot(h 
DR 
u , h 

DI 
v )(ξRot for short) is fed into MLP to estimate the 

therapeutic probability: 

yu,v = sigmoid(MLP(h 
DR 
u ‖h 

DI 
v ‖ξMul‖ξRot)) (8) 

Finally, binary cross-entropy is adopted as the loss function for 
DDA prediction: 

LDDA = −
∑

(u,v)∈S 

ŷu,v log yu,v + (1 − ŷu,v) log(1 − yu,v) (9) 

where S represents the positive and negative training samples, ŷu,v 

refers to the ground-truth label. 

Inter-view contrastive learning 
This module contrasts the fusion view with semantic and interac-
tion views respectively, and ensures that the mutual information 
between paired nodes across views is maximized. 

Specifically, we also apply mean-pooling to integrate the node 
embeddings across all layers, the corresponding representations 
of node i on GDR, GDI, and  GHIN are denoted as hDR,i = 1 

L

∑L 
l=1 h

(l) 
DR,i, 

hDI,i = 1 
L

∑L 
l=1 h

(l) 
DI,i, and  hφ(i) 

HIN,i = 1 
L

∑L 
l=1 h

φ(i)(l) 

HIN,i , respectively. After-
wards, we contrast the fusion view (Section Layer-wise Feature 
Fusion) with semantic views (i.e. GDR and GDI, Section Semantic 
View Feature Extraction). The identical nodes within different 
views are treated as positive samples, while the negative samples 
are distinct nodes within different views. It is worth noting that 
we remove the top-K nearest neighbors of node i as negative 
instances, since false negatives (i.e. highly similar nodes) discard 

Algorithm 1 Overall procedure of parameter update 

1: Input: Shared parameters θ , learning rate α, moving average 
coefficient β, relax factor ω, total auxiliary tasks N, total 
epochs T. 

2: Output: Updated shared parameters θT. 
3: Initialize m0 

DDA = m(i)0 

GCL = 0 
4: for t = 1 to  T do 
5: Gt 

DDA ← ∇θLt 
DDA 

6: Calculate mt 
DDA by Eq. 13 

7: for i = 1 to  N do 
8: G(i)t 

GCL ← ∇θL(i)t 

GCL 
9: Calculate m(i)t 

GCL by Eq. 13 
10: if m(i)t 

GCL > mt 
DDA then 

11: if cosine(Gt 
DDA, G(i)t 

GCL) <  0 then 
12: Alter gradient direction of G(i)t 

GCL by Eq. 14 
13: end if 
14: Alter gradient magnitude of G(i)t 

GCL by Eq. 14 
15: end if 
16: end for 
17: Gt 

total ← Gt 
DDA + ∑N 

i=1 G
(i)t 

GCL 
18: θ t+1 ← θ t − α × Gt 

total 
19: end for 
20: Return: θT 

the true semantic information. Accordingly, the inter-view con-
trastive loss between fusion view and semantic views can be 
formulated as the following InfoNCE loss [29]: 

L(1) 
GCL = −

∑
u∈VDR 

log 
exp((h 

DR�

u hDR,u)/τ)

∑
j∈{VDR−NGDR (u)}(exp((h 

DR�

u hDR,j)/τ)) 

−
∑

v∈VDI 

log 
exp((h 

DI�

v hDI,v)/τ)

∑
j∈{VDI−NGDI (v)}(exp((h 

DI�

v hDI,j)/τ)) 

(10) 

where τ is a temperature coefficient. Analogously, the inter-view 
contrastive loss between fusion view and interaction view (i.e. 
GHIN, Section Interaction View Feature Extraction) is calculated as 
follows: 

L(2) 
GCL = −

∑
u∈VDR 

log 
exp((h 

DR�

u hDR 
HIN,u)/τ)

∑
j∈{VDR−NGDR (u)}(exp((h 

DR�

u hDR 
HIN,j)/τ)) 

−
∑

v∈VDI 

log 
exp((h 

DI�

v hDI 
HIN,v)/τ)

∑
j∈{VDI−NGDI (v)}(exp((h 

DI�

v hDI 
HIN,j)/τ)) 

(11) 

Adaptive gradient balance 
This module aims to dynamically adapt the gradient of GCL 
auxiliary tasks from the perspective of gradient direction and 
magnitude for better transferring knowledge to main task. 

Before delving into the details of our proposed strategy, we 
start with briefly introducing the general optimization procedure 
of existing GCL-based DDA studies. Conventionally, the GCL aux-
iliary tasks are jointly optimized along with the main task, i.e. 
DDA prediction. Formally, let θ denote the shared parameters, the 
multi-task loss function is defined as Ltotal = LDDA + ∑N 

i=1 L
(i) 
GCL, 

where N means the total number of auxiliary tasks. The cor-
responding gradient of Ltotal w.r.t. θ at t-th training iteration is
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calculated as follows: 

Gt 
total = Gt 

DDA + 
N∑

i=1 

G(i)t 

GCL = ∇θLt 
DDA + 

N∑
i=1 

∇θL(i)t 

GCL (12) 

we assume that θ is updated by gradient descent with the learning 
rate α, i.e., θ t+1 = θ t − α × Gt 

total. Hence, if ‖G(i)t 

GCL‖ � ‖Gt 
DDA‖(‖ · ‖

is L2 norm), the optimizer inclines to update shared parameters θ 
toward the i-th GCL auxiliary task rather than main task, resulting 
in serious issue of optimization imbalance. A straightforward 
solution is to add weight hyperparameters for each auxiliary task, 
i.e. Gt′

total = Gt 
DDA +

∑N 
i=1 λiG

(i)t 

GCL. However, as mentioned by [16, 
18], task hyperparameters retain a linear increase with the num-
ber of defined auxiliary tasks, and tuning the hyperparameters 
for multiple GCL tasks is burdensome. More importantly, since 
gradient magnitudes are dynamically changing during the entire 
optimization process, such fixed task hyperparameters trap in 
local optimum. 

In this paper, our goal is to balance Gt 
DDA and G(i)t 

GCL at each 
epoch through adaptively adjusting the direction and magnitude 
of G(i)t 

GCL. Specifically, the moving average of gradient magnitude is 
utilized to take into account the variance over training 
iterations [30]: 

mt 
DDA = β × mt−1 

DDA + (1 − β) × ‖Gt 
DDA‖

m(i)t 

GCL = β × m(i)t−1 

GCL + (1 − β) × ‖G(i)t 

GCL‖
(13) 

where β is a hyperparameter, m0 
DDA and m(i)0 

GCL are both initialized 
with 0. When m(i)t 

GCL > mt 
DDA, inspired by prior works [17, 18], 

we firstly alter the gradient direction by projecting the gradient 
of i-th auxiliary task G(i)t 

GCL to the normal plane of main task 
gradient Gt 

DDA, if these two gradients conflict with each other 
(cosine(Gt 

DDA, G(i)t 

GCL) <  0). The gradient direction modification is 
formulated as follows: 

G(i)t 

GCL = G(i)t 

GCL − 
G(i)t 

GCL · Gt 
DDA

‖Gt 
DDA‖2 

Gt 
DDA (14) 

where · refers to dot product. Please note that when m(i)t 

GCL ≤ 
mt 

DDA, even through these two gradient directions are con-
flicting, G(i)t 

GCL remains the same as before, thereby preventing 
overfitting. 

Next, since larger gradient magnitude dominates the overall 
optimization trend, we further alter the magnitude proximity 
between G(i)t 

GCL and Gt 
DDA by introducing a relax factor ω to enhance 

the flexibility of magnitude scaling [16]: 

G(i)t 

GCL = ω × ‖Gt 
DDA‖

‖G(i)t 

GCL‖
G(i)t 

GCL + (1 − ω) × G(i)t 

GCL (15) 

Through the above process, we succeed in adjusting the gra-
dient of GCL auxiliary tasks at each training iteration from the 
perspective of gradient direction and magnitude. The overall pro-
cedure of parameter update is summarized in Algorithm 1. It is 
worth noting that the moving average coefficient β is empirically 
set to 0.9. Thus, just one hyperparameter, i.e. relax factor ω, needs 
to be tuned, irrespective of the number of GCL auxiliary tasks. 
Furthermore, time complexity analysis of GCGB can be found in 
the supplementary material. 

Experiments 
In this section, we first outline the experimental setup in Section 
Experimental Setup. After that, we compare GCGB with compet-
itive baselines in Section Main Results and Analyses. The head-
to-head comparison between GCGB and a baseline is discussed 
in Section Head-to-head Comparison. Subsequently, the abla-
tion studies are provided in Section Ablation Studies. Section 
Robustness against Label Sparsity discusses the robustness anal-
ysis against label sparsity. The effectiveness of adaptive gradient 
balance is then described in Section Effectiveness of Adaptive 
Gradient Balance. Finally, detailed case studies to evaluate the 
performance consistency among different disease and drug cat-
egories, and further predict candidate drugs for two neurode-
generative diseases are presented in Section Case Studies. More 
carefully designed experiments, such as cold-start scenario and 
generalization evaluation etc., are available in the supplementary 
material. 

Experimental setup 
Evaluation metrics 
To validate the prediction performance of GCGB, seven evaluation 
metrics are adopted, including area under the receiver operat-
ing characteristic (ROC) curve (AUC), area under the precision– 
recall (PR) curve (AUPR), accuracy, precision, recall, F1-score, and 
Matthews correlation coefficient (MCC). For all evaluation met-
rics, higher scores indicate better performance. 

Implementation details 
Since all the benchmark datasets solely comprise positive DDAs, 
we firstly generate negative samples through randomly pairing 
the drugs and diseases which have unconfirmed associations. 
Hence, these datasets are carefully balanced to ensure equal 
number of positive and negative samples. Moreover, to avoid the 
bias of experimental results, 10-fold cross-validation is employed 
to evaluate the predictive performance. 

When constructing the drug and disease similarity networks, 
the nearest neighbor number K is set to 20. Besides, throughout 
our experiments, we set the node embedding dimension d = 256. 
As for dual GT networks, the number of layers and heads are 2 and 
4, respectively. The temperature coefficient τ in Equations 10-11 is 
tuned among {0.05, 0.2, 0.5, 1} (The parameter sensitivity analysis 
is provided in supplementary material). The trade-off parameters 
β (in Equation 13) and  ω (in Equation 15) are both empirically set to 
0.9. The overall model parameters are initialized with Xavier and 
are optimized by Adam with an initial learning rate α = 0.0002. 

Baselines 
The competitive baselines are categorized into the following four 
groups: (i) deep learning (DL)-based method, including HNet-
DNN [31]; (ii) graph representation learning (GRL)-based methods, 
including HINGRL [32], RLFDDA [33], and SFRLDDA [1]; (iii) GNN-
based methods, including DRHGCN [34], DDAGDL [35], DRWBNCF 
[36], and AMDGT [7]; (iv) GCL-based methods, including SGCD [5], 
SADR [12], and DRGCL [37]. The elaborate descriptions of baselines 
are provided in supplementary material. 

Main results and analyses 
As shown in Table 2, our proposed GCGB is substantially supe-
rior to all the competitive baselines on three benchmarks. GCGB 
also presents statistically significant improvements in terms of 
most evaluation metrics (with Welch’s t-test P-value < 0.05 or 
P-value < 0.01). It is worth noting that the precision scores
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Table 2. Test results compared with baselines on three benchmark datasets 

Dataset Model Evaluation criteria 

AUC AUPR Accuracy Precision Recall F1 MCC 

B-dataset HNet-DNN 0.8927 ± 0.002 0.8919 ± 0.001 0.8101 ± 0.001 0.7825 ± 0.001 0.8281 ± 0.002 0.8047 ± 0.001 0.6211 ± 0.002 
HINGRL 0.8845 ± 0.003 0.8774 ± 0.002 0.8035 ± 0.002 0.8006 ± 0.003 0.8084 ± 0.004 0.8045 ± 0.004 0.6071 ± 0.004 
RLFDDA 0.8728 ± 0.006 – 0.7907 ± 0.006 0.7821 ± 0.008 0.8060 ± 0.008 0.7938 ± 0.006 – 
SFRLDDA 0.8364 ± 0.280 0.8271 ± 0.490 0.7588 ± 0.600 0.7503 ± 0.610 0.7757 ± 0.770 0.7628 ± 0.600 0.5178 ± 1.200 
DRHGCN 0.9092 ± 0.002 0.9106 ± 0.002 0.8268 ± 0.002 0.8678 ± 0.001 0.7711 ± 0.001 0.8166 ± 0.001 0.6577 ± 0.001 
DDAGDL 0.8421 ± 0.003 0.8315 ± 0.002 0.7646 ± 0.003 0.7616 ± 0.004 0.7703 ± 0.002 0.7659 ± 0.004 0.5292 ± 0.003 
DRWBNCF 0.9004 ± 0.001 0.9018 ± 0.002 0.5991 ± 0.002 0.9810 ± 0.002 0.2021 ± 0.004 0.3352 ± 0.003 0.3260 ± 0.003 
AMDGT 0.9317 ± 0.002 0.9302 ± 0.003 0.8593 ± 0.002 0.8612 ± 0.003 0.8619 ± 0.002 0.8616 ± 0.003 0.7215 ± 0.003 
SGCD 0.9235 ± 0.003 0.9224 ± 0.002 0.8506 ± 0.004 0.8458 ± 0.005 0.8631 ± 0.003 0.8536 ± 0.003 0.7018 ± 0.004 
SADR 0.9211 ± 0.004 0.9209 ± 0.003 0.8525 ± 0.005 0.8512 ± 0.003 0.8599 ± 0.004 0.8548 ± 0.003 0.7046 ± 0.005 
DRGCL 0.9247 ± 0.003 0.9230 ± 0.005 0.8546 ± 0.006 0.8544 ± 0.008 0.8626 ± 0.007 0.8582 ± 0.006 0.7133 ± 0.008 
GCGB (Ours) 0.9369 ± 0.004∗∗ 0.9344 ± 0.004∗ 0.8766 ± 0.008∗∗ 0.8728 ± 0.011 0.8826 ± 0.009∗∗ 0.8773 ± 0.008∗∗ 0.7534 ± 0.015∗∗ 

C-dataset HNet-DNN 0.9460 ± 0.002 0.9399 ± 0.001 0.8838 ± 0.001 0.8778 ± 0.002 0.8820 ± 0.001 0.8799 ± 0.001 0.7674 ± 0.002 
HINGRL 0.9372 ± 0.004 0.9457 ± 0.005 0.8698 ± 0.002 0.8851 ± 0.004 0.8500 ± 0.004 0.8672 ± 0.003 0.7403 ± 0.002 
RLFDDA 0.9636 ± 0.005 – 0.9006 ± 0.012 0.9035 ± 0.014 0.8972 ± 0.022 0.9002 ± 0.013 – 
SFRLDDA 0.9519 ± 0.520 0.9586 ± 0.320 0.8934 ± 1.290 0.8824 ± 1.630 0.9080 ± 1.750 0.8949 ± 1.260 0.7873 ± 2.580 
DRHGCN 0.9324 ± 0.003 0.9427 ± 0.004 0.8652 ± 0.002 0.9192 ± 0.001 0.8008 ± 0.002 0.8559 ± 0.002 0.7366 ± 0.003 
DDAGDL 0.8693 ± 0.003 0.8935 ± 0.004 0.8168 ± 0.002 0.7874 ± 0.004 0.7721 ± 0.002 0.7797 ± 0.003 0.6230 ± 0.003 
DRWBNCF 0.9234 ± 0.004 0.9419 ± 0.004 0.8663 ± 0.004 0.8984 ± 0.002 0.8370 ± 0.004 0.8612 ± 0.004 0.7449 ± 0.003 
AMDGT 0.9672 ± 0.003 0.9696 ± 0.003 0.9052 ± 0.003 0.8912 ± 0.003 0.9250 ± 0.004 0.9078 ± 0.003 0.8122 ± 0.004 
SGCD 0.9564 ± 0.004 0.9555 ± 0.006 0.8974 ± 0.003 0.8658 ± 0.005 0.8717 ± 0.003 0.8695 ± 0.003 0.7432 ± 0.004 
SADR 0.9550 ± 0.005 0.9584 ± 0.003 0.8994 ± 0.005 0.8768 ± 0.003 0.8853 ± 0.004 0.8806 ± 0.004 0.7683 ± 0.003 
DRGCL 0.9606 ± 0.003 0.9619 ± 0.004 0.9041 ± 0.006 0.8988 ± 0.005 0.9045 ± 0.006 0.9013 ± 0.008 0.8077 ± 0.010 
GCGB (Ours) 0.9713 ± 0.004∗ 0.9746 ± 0.004∗∗ 0.9226 ± 0.009∗∗ 0.9162 ± 0.013 0.9305 ± 0.012∗∗ 0.9232 ± 0.008∗∗ 0.8455 ± 0.018∗∗ 

F-dataset HNet-DNN 0.9188 ± 0.002 0.9157 ± 0.001 0.8426 ± 0.002 0.8502 ± 0.002 0.8413 ± 0.002 0.8457 ± 0.001 0.6851 ± 0.001 
HINGRL 0.9366 ± 0.006 0.9449 ± 0.004 0.8645 ± 0.005 0.8832 ± 0.004 0.8402 ± 0.003 0.8612 ± 0.006 0.7300 ± 0.004 
SFRLDDA 0.9164 ± 0.640 0.9266 ± 0.810 0.8414 ± 1.300 0.8345 ± 1.340 0.8520 ± 2.430 0.8430 ± 1.390 0.6834 ± 2.620 
DRHGCN 0.9207 ± 0.004 0.9375 ± 0.002 0.8583 ± 0.001 0.9309 ± 0.001 0.7739 ± 0.002 0.8452 ± 0.002 0.7269 ± 0.002 
DDAGDL 0.9239 ± 0.007 0.9235 ± 0.002 0.8513 ± 0.004 0.8475 ± 0.005 0.8567 ± 0.004 0.8521 ± 0.005 0.7026 ± 0.003 
DRWBNCF 0.8958 ± 0.005 0.9200 ± 0.004 0.8296 ± 0.002 0.8752 ± 0.003 0.8237 ± 0.004 0.8341 ± 0.004 0.7232 ± 0.002 
AMDGT 0.9584 ± 0.005 0.9607 ± 0.003 0.8908 ± 0.003 0.8730 ± 0.003 0.9146 ± 0.003 0.8928 ± 0.005 0.7815 ± 0.004 
SGCD 0.9496 ± 0.003 0.9550 ± 0.004 0.8940 ± 0.004 0.8663 ± 0.005 0.9175 ± 0.005 0.8894 ± 0.004 0.7711 ± 0.004 
SADR 0.9504 ± 0.006 0.9578 ± 0.005 0.8914 ± 0.003 0.8719 ± 0.005 0.9123 ± 0.004 0.8916 ± 0.005 0.7785 ± 0.004 
DRGCL 0.9525 ± 0.005 0.9602 ± 0.004 0.8985 ± 0.007 0.8879 ± 0.008 0.9152 ± 0.006 0.9005 ± 0.008 0.7843 ± 0.009 
GCGB (Ours) 0.9676 ± 0.006∗∗ 0.9714 ± 0.006∗∗ 0.9219 ± 0.009∗∗ 0.9152 ± 0.011 0.9364 ± 0.013∗∗ 0.9230 ± 0.010∗∗ 0.8445 ± 0.021∗∗ 

The reported results are in the form of (mean ± standard deviation) under 10-fold cross-validation. For fair comparison, all the baselines are compared under 
identical evaluation settings. Specifically, as for the approaches with publicly released codes, we reproduce the experiments according to the best parameters 
recommended in their original papers. For those methods without released codes, the predictive performances are directly taken from the original papers, “-” 
indicates that the corresponding experimental result is not reported in previous works. The best score is in bold, and the second best score is underlined. “∗” 
and “∗∗” denote that our proposed method significantly outperforms the strongest baseline at corresponding metric based on Welch’s t-test (“∗” refers to 
P-value < 0.05, “∗∗” refers to P-value < 0.01). 

obtained by DRWBNCF and DRHGCN are much higher than their 
recall scores, indicating that these methods are prone to identify 
the known DDAs as negatives, whereas our approach exhibits 
slighter performance fluctuation across all metrics. 

In the following, we will compare GCGB with each group of 
baselines in turn and discuss the superiority of our approach. 
Firstly, the performance of DL-based method, i.e. HNet-DNN is 
relatively mediocre, since it extracts drug and disease features 
from Euclidean space, while neglects the non-Euclidean geomet-
ric property [35]. 

Secondly, compared with GRL-based methods, which apply 
different representation learning strategies to obtain the embed-
dings of drugs and diseases from both similarity and associa-
tion networks, GCGB achieves far better performance. We argue 
that GRL-based baselines neglect the crucial neighborhood infor-
mation which is conducive to producing discriminative repre-
sentations for drugs and diseases, leading to the compromised 
effectiveness. 

Thirdly, to adequately aggregate neighbors’ messages within 
graph structures, GNN-based methods are proposed. We observe 
that GCGB significantly outperforms these methods, the main 
reason lies in their inability to relieve the issue of label sparsity, 
resulting in ineffectively capturing intricate semantic correlations 
between drugs and diseases. On the contrary, in this paper, self-
supervised GCL auxiliary tasks are explicitly introduced to combat 
against the label scarcity and further enhance the representation 
capacity. 

Finally, GCGB consistently prevails over GCL-based baselines, 
indicating the benefits of inter-view CL and adaptive gradient bal-
ance. Specifically, SGCD and SADR either utilize representational 
or structural perturbation strategies to construct augmented 
views. However, blindly corrupting graph topological structures 
causes the absence of necessary associations between drugs 
and diseases, thereby leading to performance degradation [13]. 
Moreover, even if DRGCL defines an inter-view CL auxiliary task 
by aligning topology and semantic information, thus obviating
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Figure 2. Head-to-head comparison between GCGB and the strongest baseline AMDGT on three benchmarks. 

the need for input data augmentation, it still ignores the 
imbalance phenomenon of gradient direction and magnitude 
between GCL auxiliary tasks and main task. To bridge the 
gap, in this paper, we innovatively contrast the fusion view 
with semantic and interaction views, respectively, to capture 
higher-order interaction semantics. Moreover, the optimization 
imbalance phenomenon between GCL auxiliary tasks and 
main task is significantly alleviated to improve predictive 
performance. 

Head-to-head comparison 
The DDA prediction is formulated as a binary classification 
task. Intuitively, the higher the predicted scores for positive 
class, the better the model performs. Therefore, we take a step 
further to conduct the head-to-head comparison between our 
proposed GCGB and the strongest baseline AMDGT (please refer 
to Table 2). For better visualization, following the setting in [38], 
we subsample the labeled positive DDAs down to 1000 samples, 
the performance comparison results on three datasets are shown 
in scatter plots of Fig. 2, in which each point denotes a DDA 
sample, and the x-axis refers to the output results of our model, 
while the y-axis represents the predicted scores of AMDGT. 
We observe that the majority of data points are located below 
the diagonal, suggesting that GCGB not only correctly predicts 
the label of positive DDAs, but also consistently assigns higher 
confidence scores then AMDGT. It is worth noting that those 
points scattered above the diagonal do not necessarily indicate 
wrong predictions, and the points gathered in the lower left 
corner are hard samples that are difficult to predict for both 
methods. 

Ablation studies 
To evaluate the effect of different components within GCGB, we 
conduct model ablation studies over several variants under 10-
fold cross-validation. The average results are reported. As pre-
sented in Table 3, the ablation results manifest that each com-
ponent contributes to the final performance. 

Firstly, we replace the HGT with basic GT when modeling the 
interaction view in Section Interaction View Feature Extraction. 
From the results, ablated model performs worse than GCGB, 
indicating that HGT is capable of sufficiently encoding informa-
tive interaction patterns and capturing heterogeneous properties 
within interaction view. 

Secondly, we remove the adaptive gradient balance module 
introduced in Section Adaptive Gradient Balance. In other words, 

we do not adjust the gradient of GCL auxiliary tasks at each 
training iteration. Unfortunately, the corresponding ablation per-
formance decreases by a certain margin, clearly revealing that 
the optimization imbalance phenomenon between auxiliary and 
main tasks is detrimental to the predictive performance (in-
depth analysis about the effectiveness of adaptive gradient bal-
ance is provided in Section Effectiveness of Adaptive Gradient 
Balance). 

Thirdly, we simultaneously ignore the inter-view contrastive 
loss between fusion view and semantic views (Equation 10) as  
well as the adaptive gradient balance module. The corresponding 
ablation result drops dramatically, which shows the significance 
of this inter-view CL auxiliary task. 

Finally, we also jointly remove the inter-view contrastive loss 
between fusion view and interaction view (Equation 11) as well as  
the adaptive gradient balance module. As expected, this ablation 
variant results in a drastic performance drop. Above observations 
demonstrate that the fusion view could integrate both higher-
order relationships (drug-drug and disease-disease) and interac-
tion information (drug-disease). Moreover, these two inter-view 
CL auxiliary tasks are effective in learning high-quality drug 
and disease representations through supplementing additional 
training pseudo-labels. 

Robustness against label sparsity 
To mitigate the effect of label sparsity encountered by GNN-
based methods, we contrast the fusion view with semantic and 
interaction views, respectively. Herein, we aim to illustrate the 
effectiveness of GCGB in alleviating label sparsity. Specifically, we 
separate the diseases into five groups according to their sparsity 
degrees, i.e. the number of known associations with drugs, and 
report the comparison results with AMDGT under 10-fold cross-
validation in Fig. 3. Based on the results, we have the follow-
ing observations: (i) The sparsity degree of diseases exhibits a 
clear long-tail distribution, i.e. a significant majority of diseases 
have few interactions with drugs (please refer to the dark blue 
region at the bottom of stacked bar chart). (ii) Compared with 
AMDGT, GCGB consistently achieves better AUC and AUPR per-
formance on three datasets, especially for highly sparse diseases, 
indicating the robustness of GCGB in handling label scarcity. 
Moreover, We further study the robustness of GCGB against label 
sparsity by evaluating the model performance on different spar-
sity level of training data. Please refer to Section S3.2 Perfor-
mance on Sparsified Datasets in the supplementary material for 
details.
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Table 3. Ablation studies on three benchmark datasets 

Dataset Model Evaluation criteria 

AUC AUPR F1 MCC 

B-dataset GCGB (entire model) 0.9369 0.9344 0.8773 0.7534 
w/o HGT 0.9340 0.9297 0.8697 0.7340 
w/o Gradient balance 0.9278 0.9247 0.8654 0.7281 
w/o Semantic view contrastive 0.9073 0.9057 0.8427 0.6942 
w/o Interaction view contrastive 0.9188 0.9148 0.8487 0.7034 

C-dataset GCGB (entire model) 0.9713 0.9746 0.9232 0.8455 
w/o HGT 0.9653 0.9658 0.9139 0.8270 
w/o Gradient balance 0.9614 0.9642 0.9097 0.8226 
w/o Semantic view contrastive 0.9413 0.9461 0.8895 0.7885 
w/o Interaction view contrastive 0.9578 0.9584 0.8990 0.8014 

F-dataset GCGB (entire model) 0.9676 0.9714 0.9230 0.8445 
w/o HGT 0.9626 0.9664 0.9104 0.8208 
w/o Gradient balance 0.9596 0.9639 0.9036 0.8084 
w/o Semantic view contrastive 0.9257 0.9342 0.8879 0.7740 
w/o Interaction view contrastive 0.9334 0.9381 0.8947 0.7927 

Figure 3. The stacked bar chart displays the corresponding number of diseases, positive and negative training samples partitioned by disease sparsity 
degree. The line chart shows the corresponding AUC and AUPR results of GCGB and AMDGT w.r.t. different disease sparsity degree. 

Effectiveness of adaptive gradient balance 
In the ablation studies, we have demonstrated that removing 
the adaptive gradient balance module indeed leads to the 
performance degradation (w/o Gradient balance in Table 3). 
Herein, taking C-dataset as an example, we will present in-depth 
analysis about the effectiveness of adaptive gradient balance from 
the perspective of gradient direction and magnitude. 

As for gradient direction, Fig. 4a and b depicts the proportion 
of conflicting gradient directions between two inter-view CL aux-
iliary tasks and main task at each training epoch without (or with) 
our proposed adaptive gradient balance module. It is obvious that 
the conflicting proportion is drastically reduced by performing 
optimization balance. Please note that as introduced in Section 
Adaptive Gradient Balance, in order to avoid overfitting, we rec-
tify the gradient direction of i-th auxiliary task only if m(i)t 

GCL > 
mt 

DDA. 
Besides, as for gradient magnitude, Fig. 4c and d displays the 

change of gradient magnitudes during the entire training epochs 
without (or with) the adaptive gradient balance. The visualization 
results in Fig. 4c lead us to the following observations. Firstly, 
gradient magnitudes of GCL auxiliary tasks are much larger than 
the counterpart of main task. Secondly, the gradient magnitudes 
are dynamically changing during the training process. Above 

observations highlight the gradient magnitude imbalance 
between GCL auxiliary tasks and main task. To alleviate this 
intractable issue, we innovatively perform magnitude scaling for 
each auxiliary task. Hence, as shown in Fig. 4d, the magnitudes 
of G1 

GCL and G2 
GCL are in close proximity to the counterpart of 

GDDA, thereby preventing GCL auxiliary tasks from dominating 
the optimization process. 

Case studies 
Performance consistency among different disease and drug 
categories 
Herein, we conduct systematic and unbiased validations to 
evaluate the predictive performance of GCGB among different 
disease and drug categories. Specifically, the corresponding 
experiments are carried out on the B-dataset. The reasons why 
we select B-dataset are listed below: (i) The DDAs number on 
B-dataset is an order of magnitude more than the ones of 
other two datasets (please refer to Table 1 for details). (ii) Since 
GCGB performs relatively worse on B-dataset than on other 
two datasets, it is more meaningful to verify the performance 
consistency on B-dataset (please refer to Table 2 for details). 
(iii) Last but not least, the diseases in B-dataset are collected 
from Comparative Toxicogenomics Database (CTD) database
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Figure 4. The proportion of conflicting gradient directions and the magnitude of gradients between the GCL auxiliary tasks and main task at each training 
epoch on C-dataset under 10-fold cross-validation. The solid lines stand for the average result, the upper and lower range represent 95% confidence 
interval. 

Table 4. Predictive performance w.r.t. different disease categories 

Category Evaluation criteria 

AUC AUPR F1 MCC 

Animal diseases 0.9710 0.9622 0.8708 0.7906 
Cardiovascular diseases 0.9233 0.9285 0.8797 0.7361 
Chemically-induced disorders 0.9445 0.9541 0.9098 0.7911 
Congenital, hereditary, neonatal diseases 0.9474 0.9207 0.8672 0.7832 
Digestive system diseases 0.9427 0.9449 0.8858 0.7579 
Endocrine system diseases 0.9630 0.9437 0.8852 0.8232 
Eye diseases 0.9470 0.9183 0.8497 0.7715 
Hemic and lymphatic diseases 0.9485 0.9351 0.8797 0.7840 
Immune system diseases 0.9376 0.9236 0.8718 0.7750 
Infections 0.9701 0.9436 0.7913 0.7380 
Mental disorders 0.9354 0.9401 0.8865 0.7566 
Musculoskeletal diseases 0.9324 0.9097 0.8370 0.7293 
Neoplasms 0.9628 0.9511 0.8842 0.8121 
Nervous system diseases 0.9331 0.9337 0.8764 0.7483 
Nutritional and metabolic diseases 0.9395 0.9223 0.8568 0.7559 
Otorhinolaryngologic diseases 0.9213 0.9042 0.8131 0.7150 
Pathological conditions, signs and symptoms 0.9294 0.9390 0.8820 0.7337 
Respiratory tract diseases 0.9268 0.9213 0.8481 0.7359 
Skin and connective tissue diseases 0.9318 0.9260 0.8721 0.7548 
Stomatognathic diseases 0.9441 0.9585 0.9043 0.7802 
Urogenital diseases 0.9380 0.9314 0.8722 0.7627 
Wounds and injuries 0.9648 0.9386 0.8663 0.7992 

( https://ctdbase.org/), and the diseases in other two datasets 
are derived from Online Mendelian Inheritance in Man (OMIM) 
database. As for C-dataset and F-dataset, in order to obtain the 
information about disease categories, we map the OMIM ID of 
each disease to the International Classification of Diseases 10th 
Revision (ICD-10) code through OMIM website(https://www.omim. 
org/), whereas only 29.1% (119/409) and 29.7% (93/313) of the 
diseases in C-dataset and F-dataset can be converted to ICD-10 
codes, respectively. Hence, we exclude these two datasets from 
our experiments. 

As for B-dataset, the corresponding disease categories are 
generated by mapping disease names to the MEDIC-Slim classes, 
which are from the MeSH tree structures of disease branches. 
Moreover, to search the corresponding drug categories, we map 
the DrugBank ID of each drug to the 1st level of Anatomical Thera-
peutic Chemical (ATC) codes. Please note that one disease or drug 
can be assigned to multiple categories. The final numbers of dis-
ease and drug categories are 22 and 14, respectively. Table 4 and 
Table 5 present the predictive results of GCGB among different 
disease and drug categories. The consistent model performance is 
observed from above tables, revealing that GCGB has no predictive 
preference toward certain disease or drug categories. The 

statistical data for each category are provided in the supplementary 
material. 

Drug prediction for neurodegenerative diseases 
To further verify the predictive reliability of GCGB, following 
prior studies [7, 34, 39], we conduct detailed case studies to 
predict potential drugs for two neurodegenerative diseases, i.e. 
Alzheimer’s and Parkinson’s diseases (AD and PD for short) from 
the unknown DDAs within F-dataset. 

AD is the most common dementing illness, which currently 
affects more than 55 million people worldwide. The specific brain 
abnormalities (amyloid-β plaques and tau protein neurofibrillary 
tangles) influence the neurodegenerative process. However, the 
mechanisms leading to the accumulation of plaques as well as 
tangles are unknown, and removing amyloid-β has not halted 
neurodegeneration [40]. There are no efficacious medications that 
have been licensed for use in individuals with AD [41]. Moreover, 
PD is a progressive neurodegenerative disorder typically charac-
terized by the loss of dopaminergic neurons in the substantia 
nigra, which affects approximately 1–2% of the population aged 60 
and older [42]. This disease presents with muscle stiffness, tremor, 
bradykinesia, and postural instability. Currently, the treatments of

https://ctdbase.org/
https://ctdbase.org/
https://ctdbase.org/
https://www.omim.org/
https://www.omim.org/
https://www.omim.org/
https://www.omim.org/
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Table 5. Predictive performance w.r.t. different drug categories 

Category Evaluation criteria 

AUC AUPR F1 MCC 

Alimentary tract and metabolism 0.9380 0.9420 0.8815 0.7551 
Blood and blood forming organs 0.9407 0.9619 0.9139 0.7510 
Cardiovascular system 0.9377 0.9381 0.8779 0.7503 
Dermatologicals 0.9289 0.9381 0.8796 0.7290 
Genito-urinary system and sex hormones 0.9221 0.9029 0.8363 0.7172 
Systemic hormonal preparations 0.9328 0.9465 0.8880 0.7333 
Antiinfectives for systemic use 0.9130 0.8988 0.8304 0.6929 
Antineoplastic and immunomodulating agents 0.9351 0.9431 0.8983 0.7590 
Musculo-skeletal system 0.9285 0.9303 0.8726 0.7346 
Nervous system 0.9426 0.9496 0.9038 0.7748 
Antiparasitic products, insecticides and repellents 0.9096 0.8800 0.8128 0.7043 
Respiratory system 0.9383 0.9466 0.8889 0.7579 
Sensory organs 0.9328 0.9465 0.8880 0.7333 
Various 0.9504 0.9519 0.8999 0.7972 

Table 6. Top-10 predicted drugs for Alzheimer’s and Parkinson’s diseases 

Disease Rank Predicted drug DrugBank ID Researched or not 

Alzheimer 1 Phenobarbital DB01174 Yes 
2 Primidone DB00794 No 
3 Cyproheptadine DB00434 No 
4 Buspirone DB00490 Yes 
5 Scopolamine DB00747 Yes 
6 Citalopram DB00215 Yes 
7 Doxorubicin DB00997 No 
8 Fluoxetine DB00472 Yes 
9 Haloperidol DB00502 Yes 
10 Imipramine DB00458 Yes 

Parkinson 1 Buspirone DB00490 Yes 
2 Biperiden DB00810 Yes 
3 Risperidone DB00734 Yes 
4 Carbamazepine DB00564 No 
5 Rivastigmine DB00989 Yes 
6 Clonazepam DB01068 Yes 
7 Amantadine DB00915 Yes 
8 Gabapentin DB00996 Yes 
9 Primidone DB00794 No 
10 Levodopa DB01235 Yes 

PD primarily revolve around alleviating symptoms and improving 
quality of life, there still lack established disease-modifying drugs 
[ 43]. In conclusion, due to a massive number of patients and the 
absence of effective therapeutic options, it is of significant clinical 
implications to identify potential candidate drugs for the above 
two neurodegenerative diseases. 

Table 6 lists the top-10 candidate drugs discovered by GCGB 
for each disease and whether these predicted drugs have been 
studied for delaying disease progression by existing literatures 
(the evidences are available in supplementary material). Please 
note that AD and PD have no cure till now, the candidate drugs 
discovered by wet experimental-based and computational-based 
DR methods at most could delay the progression and alleviate 
symptoms. From the results in Table 6, we observe that as for 
AD, 7 out of 10 drugs have been researched in relevant medi-
cal literatures, and 8 predicted drugs have therapeutic potential 
for PD, indicating that GCGB is a trustworthy computational-
based DR approach. However, the follow-up systematic preclinical 

experiments and randomized clinical trials are required to verify 
the practical effects of predicted drugs. Besides, to further demon-
strate the model generalization, following [35, 37, 44], we also 
predict top-10 potential drugs for breast cancer, please refer to 
the supplementary material for the results. 

Discussions 
Influence of protein targets 
Considering that proteins play a variety of essential roles in living 
organisms, to enrich the graph connectivity, we integrate two 
protein-related bipartite graphs into the original DDA network, 
thereby composing the heterogeneous interaction network. How-
ever, plenty of disorders, e.g. infectious diseases caused by bacte-
ria or viruses, are not associated with the up-regulation or down-
regulation protein targets. Hence, we aim to examine whether 
GCGB can still achieve satisfactory performance when predicting



12 | Cui et al.

Table 7. Performance of GCGB when predicting DDAs for specific 
diseases without directly connected proteins 

Dataset Evaluation criteria 

AUC AUPR F1 MCC 

B-dataset 0.9393 0.9308 0.8734 0.7612 
C-dataset 0.9724 0.9744 0.9240 0.8484 
F-dataset 0.9648 0.9783 0.9266 0.8363 

Table 8. Performance comparison on the virus-drug dataset 

Model Evaluation criteria 

AUC AUPR 

DRRS 0.8214 0.8172 
IRNMF 0.8122 0.7610 
VAD 0.8372 0.8318 
AntiViralDL 0.8450 0.8494 
GCGB 0.8821 0.8847 

DDAs for specific diseases with no directly connected protein 
targets. Specifically, we firstly collect all the diseases that have no 
first-order neighboring nodes of protein type on the interaction 
view GHIN. The numbers of such specific diseases are 456, 272, 
and 41 on the B-dataset, C-dataset, and F-dataset, respectively. 
Afterwards, all DDA pairs associated with above specific diseases 
are selected to evaluate the model performance. From the aver-
age results presented in Table 7, we observe that GCGB achieves 
consistent performance compared with the corresponding results 
listed in Table 2, and even gains slight performance improvement 
on several metrics, indicating that GCGB is not adversely affected 
by the absence of disease–protein interaction relationships. The 
major reason attributes to that the drug and disease representa-
tions are initially updated through two different views, i.e. seman-
tic views and interaction view. Despite the absence of disease– 
protein interactions, the disease nodes could still aggregate infor-
mation from their neighboring diseases and drugs from above two 
views, thereby refining the disease representations. 

Furthermore, to analyze the generalization of GCGB for iden-
tifying antiviral drugs, we evaluate the model performance on a 
virus–drug association dataset constructed by [15], and compare 
GCGB with the competitive baselines, including DRRS [45], IRNMF 
[46], VAD [47], and AntiViralDL [15]. According to the reported 
results in [15], the average AUC and AUPR criteria are shown in 

Table 8. We observe that GCGB surpasses all the baselines by a 
large margin, suggesting that GCGB is capable of discovering new 
antiviral drugs for clinical and biological research. 

Performance on extremely sparse scenarios 
In the supplementary material (Section S3.2 Performance on Spar-
sified Datasets), we have evaluated the model performance on 
varying sparsity degrees of training data. Herein, we are interested 
in exploring the performance when applying GCGB to extremely 
sparse scenarios. Specifically, we merely sample 2, 1, and 0.5% 
training instances, and update the learnable parameters of GCGB 
on the extremely sparse labeled data. Through 10-fold cross-
validation, the average results are recorded in Table 9. We observe 
that compared with the results obtained from entire datasets 
(Table 2), the corresponding performance on Table 9 drops by a 
large margin. The primary reason behind such failures is that 
even through the semantic view feature extraction submodule is 
not influenced by reducing the number of DDAs (semantic views 
are constructed according to multiple similarity measurement 
modalities), the extremely limited resources are insufficient for 
generating general and informative node representations from 
the interaction view, which further motivates our focus on zero-
shot or few-shot DR, since 92% of total 17 080 diseases have no 
available medications, and up to 85% of rare diseases do not have 
even one developed drug [48]. We leave this exploration for future 
study. 

Conclusion 
This paper proposes a novel heterogeneous GCL approach with 
gradient balance for inferring potential DDAs, namely GCGB. 
The primary innovations lie in the design of inter-view CL and 
adaptive gradient balance modules. Specifically, the fusion view 
is contrasted with semantic and interaction views respectively, 
thereby maximizing the mutual information between paired 
nodes across views. Furthermore, the gradients of GCL auxiliary 
tasks are dynamically adjusted from the perspective of gradient 
direction and magnitude for better guiding parameter update 
toward main task. Extensive experiments demonstrate that our 
approach consistently outperforms the competitive baselines 
on three commonly-used benchmarks under 10-fold cross-
validation. 

Regarding the future work, we would like to extend our 
research from the following two aspects. Firstly, due to the 
underlying black-box nature of artificial neural networks, 

Table 9. Performance of GCGB on extremely sparse scenarios 

Dataset Data scale Evaluation criteria 

AUC AUPR F1 MCC 

B-dataset 2% 0.7557 0.7502 0.7017 0.4494 
1% 0.7539 0.7473 0.6988 0.4473 
0.5% 0.7499 0.7423 0.6750 0.4327 

C-dataset 2% 0.7747 0.7784 0.7396 0.4981 
1% 0.7720 0.7759 0.7132 0.4857 
0.5% 0.7616 0.7655 0.6276 0.4189 

F-dataset 2% 0.7656 0.7539 0.6754 0.4701 
1% 0.7418 0.7322 0.5160 0.3747 
0.5% 0.7348 0.7303 0.4573 0.3246 
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the major limitation of GCGB lies in the lack of necessary 
transparency and interpretability, since the intermediate decision 
process is absent. We plan to investigate how to enhance the 
model interpretability through designing reinforcement learning-
based models and formulating the DDA prediction as a sequential 
decision task. Secondly, in order to predict candidate drugs 
for diseases with limited or even no treatment options, we 
expect to transfer the implicit medical knowledge from well-
annotated disorders to low-resource ones, such as rare diseases, 
via introducing an additional metric learning component. 

Key Points 
• A novel heterogeneous GCL method with gradient bal-

ance, namely GCGB, is proposed for inferring potential 
DDAs. To the best of our knowledge, it is the first time 
that optimization imbalance phenomenon between GCL 
auxiliary tasks and main task is considered in DR. 

• We design effective inter-view CL auxiliary tasks through 
contrasting the fusion view with semantic and interac-
tion views respectively, thereby maximizing the mutual 
information between paired nodes across views. 

• To prevent auxiliary tasks from dominating the opti-
mization process, we adaptively alter the gradient of 
GCL auxiliary tasks from the perspective of gradient 
direction and magnitude for better guiding parameter 
update toward main task. 
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