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Abstract 
Proteomics stands as the crucial link between genomics and human diseases. Quantitative proteomics provides detailed insights into 
protein levels, enabling differentiation between distinct phenotypes. OLINK, a biotechnology company from Uppsala, Sweden, offers a 
targeted, affinity-based protein measurement method called Target 96, which has become prominent in the field of proteomics. The 
SCALLOP consortium, for instance, contains data from over 70.000 individuals across 45 independent cohort studies, all sampled by 
OLINK. However, when independent cohorts want to collaborate and quantitatively compare their target 96 protein values, it is currently 
advised to include ’identical biological bridging’ samples in each sampling run to perform a reference sample normalization, correcting 
technical variations across measurements. Such a ‘biological bridging sample’ approach requires each of the involved cohorts to resend 
their biological bridging samples to OLINK to run them all together, which is logistically challenging, costly and time-consuming. Hence 
alternatives are searched and an evaluation of the current state of the art exposes the need for a more robust method that allows all 
OLINK Target 96 studies to compare proteomics data accurately and cost-efficiently. To meet these goals we developed the Synthetic 
Plasma Pool Cohort Correction, the ‘SPOC correction’ approach, based on the use of an OLINK-composed synthetic plasma sample. The 
method can easily be implemented in a federated data-sharing context which is illustrated on a sepsis use case. 
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Introduction 
Proteins are the product of gene expression and are considered 
the building blocks of life by mediating the biochemical activities 
of cells and tissues [1]. The field of proteomics has seen remark-
able advancements, with a stream of >70 000 publications since 
2010, reflecting its significant impact on biomedical research 
[2]. Advances in high-throughput proteomics have lowered costs 
and expanded its application, allowing researchers to uncover 
associations among genes, proteins, and phenotypes. In clinical 
practice, proteomics promises improvements in early diagnosis, 
treatment planning, and health monitoring, ultimately improving 
patient outcomes. 

Proteomics is expected to play an important role in preci-
sion medicine, though achieving its potential in clinical prac-
tice requires both clinical validation [3] and large, interoperable 

datasets from multiple cohorts [1]. It is therefore crucial to have 
effective integration of existing and future proteomics data. 

One widely adopted technology for targeted proteomics is 
developed by OLINK, a biotechnology company from Uppsala, 
Sweden, which employs a targeted, affinity-based approach. The 
proximity extension assay (PEA) quantifies the abundance of 
specific, preselected proteins within a biological sample, typically 
blood. Unlike mass spectrometry, which detects proteins by 
mass-to-charge ratio without prior knowledge on the protein 
target, OLINK’s PEA employs antibodies linked with comple-
mentary oligonucleotides that hybridize and extend by using 
a DNA polymerase upon binding to a target protein [4, 5]. The 
initial concentration of the protein target is measured by the 
concentration of the generated DNA amplicon using quantitative 
PCR (qPCR) [6]. This method can currently measure up to
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1100 different proteins, grouped into 15 protein panels related 
to cardiometabolic disorders, cell regulation, cardiovascular 
diseases, immune system, oncology, inflammation, metabolism, 
and neurology. 

OLINK expresses protein abundance using Normalized Protein 
eXpression (NPX) values, which are logarithmically related to 
protein concentration in the sample. After internal corrections 
via technical controls (see subsection ‘Experimental layout and 
data normalization: IPC controls’), the NPX value is essentially 
equivalent to the negative qPCR ct-value (threshold cycle) thus 
following a log2 scale. 

Collaborative studies with large sample sizes advance the 
application of proteomics in precision medicine from concept 
to clinical application. A challenge, however, is addressing 
systematic technical variation across samples to enable accu-
rate quantitative comparisons of protein expression values, 
both within and across cohorts. Since cohorts may vary in 
demographics or disease status, such normalization helps 
ensure that observed differences reflect true biological variation. 
Current methods for removing unwanted technical variation 
in proteomics, like ComBat and CONSTANd used in MS-based 
proteomics [7, 8], are not suitable for PEA, as they rely on mass 
spectrometry-specific assumptions. In affinity-based proteomics, 
quantile and median signal normalization are commonly used 
[9], but these assume similar data distributions or medians 
across samples. This approach is unsuitable for pathology data, 
where disease and control samples often exhibit different protein 
expression profiles. 

OLINK’s recommended PEA normalization for intra-cohort 
analysis involves ‘biological bridging samples’ (see section 
Materials and Methods), where a minimum of eight distinct 
samples are included in each study plate. This approach is 
essential for robust study design but presents logistical challenges 
for combining cohort studies, as cohorts typically use different 
biological bridging samples. OLINK also recommends using 
identical biological bridging samples for data normalization in 
inter-cohort comparisons. This approach requires collaborating 
cohorts to rerun their biological bridging samples together in a 
single quantification run to establish a new reference set. This 
process is expensive, time-consuming, logistically challenging, 
and depends on the availability and quality of the original 
biological bridging samples for each cohort. To circumvent these 
additional costs and efforts, consortia seek alternative methods 
that do not require rerunning biological bridging samples across 
cohorts. 

To address these challenges, we introduce a new normalization 
method for PEA, the Synthetic Plasma Pool Cohort Correction 
(SPOC Correction). The Materials and Methods section provides 
details on the cohorts and data used, as well as the current 
state-of-the-art OLINK normalization practices. In the Results and 
discussion, we first show why the current alternative normaliza-
tion methods fall short before introducing our SPOC Correction, 
demonstrating its effectiveness and universality across diverse 
cohorts. To illustrate its applied value in a federated data sharing 
context, we present a case study on sepsis. Finally, we conclude by 
providing the algorithm freely on GitHub to facilitate its adoption. 

Materials and methods 
Description of cohorts 
This subsection describes the set-up of several cohort studies that 
were used as the basis for the analysis in this manuscript. 

Figure 1. Schematic overview of OLINK’s sampling procedure. The well 
plate configuration is illustrative, and in practice the sample positions 
can be random. 

The I AM Frontier (IAF) cohort was set up to support the 
development of a precision health-driven proof-of-concept aimed 
at advancing towards personalized prevention and health pro-
motion. The cohort ran for 12 months as a longitudinal small-
scale cohort study (n = 30) in the Antwerp region of Flanders, 
Belgium. Participants were recruited as undiagnosed employees 
of the research institute hosting the study; they did not have a 
clinical diagnosis and were between 45 and 60 years old. The IAF 
sample collection started in March 2019 and ran for 12 months. 
The cohort contains OLINK proteomics data on a bimonthly basis, 
all OLINK protein panels were included (see Table 1). Full access 
to this data was obtained for use in this work. 

A prospective cohort study hereafter referred to as the Fast 
Assay for Pathogen Identification and Characterization (FAPIC) 
cohort was set up to identify biomarkers of inflammation for 
the prognosis and diagnosis of bloodstream infection and sepsis. 
In the FAPIC cohort, samples were collected from 406 suspected 
sepsis episodes in the emergency room of the Jessa hospital at 
the time of admission (Hasselt, Belgium) [10]. The OLINK protein 
inflammation panel was included (see Table 1). Full access to this 
data was obtained for use in this work. 

The Systematic and Combined Analysis of Olink Proteins 
(SCALLOP) consortium is a collaborative framework for discovery 
and follow-up of genetic associations with proteins on the OLINK 
proteomics platform [11]. Data was collected for >70 000 patients 
and controls across 45 independent cohort studies. A varying 
selection of OLINK protein panels was included. Federated data 
access was obtained for three studies involved in the SCALLOP 
consortium (Supplementary Table 1). For these studies, only 
data from the synthetic plasma pool composed by OLINK (see 
experimental layout and data normalization) was used and no 
individual specific biological data was accessed. 

Experimental layout and data normalization 
The experimental layout of OLINK measurements follows the 96-
well plate format (Fig. 1). Each plate consists of a combination of 
biological samples and control samples. All the different sample 
types are described below. The work in this paper mainly focuses 
on the use of external sample controls from a synthetic plasma 
pool as alternative for the identical biological bridging samples. 

Inter-plate Control (IPC) are included in triplicate on each plate 
and these are run as normal samples. The IPC are a pool of 92 
antibodies, each with one pair of unique DNA tags positioned in 
fixed proximity and can be seen as a synthetic sample, expected to 
give a high signal for all proteins. The median of the IPC triplicates 
is used to normalize each protein to compensate for potential 
variation between plates [12]. 

Negative controls are also included in triplicate on each plate 
and consist of buffer run as a normal sample. These are used to 
monitor any background noise generated when DNA tags come in 
close proximity without prior binding to the appropriate protein.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae657#supplementary-data
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Table 1. Sample overview (I-AM frontier & FAPIC). 

Sample overview IAF FAPIC 

Total number of samples 210 400 
Longitudinal sample distribution 7 x 30 samples 250 samples batch 1150 samples batch 2 
Number of batches sent for sampling to OLINK 4 2 
Number of 96 well plates required in total 4 6 
OLINK controls per plate (fixed number for all cohorts) 2 2 
Total number of synthetic plasma controls from OLINK 8 12 
Total number of measured proteins 1070 (All Panels) 92 (Inflammation panel) 

The negative controls set the background levels for each protein 
assay and are used to calculate the limit of detection [ 12]. 

External sample controls are used to assess potential variation 
between and within plates, through the calculation of inter-
protein and intra-protein coefficients of variability (CV) [ 10]. 
Samples originate from a synthetic plasma pool composed by 
OLINK. Because only a small volume per sample is required 
(1 μl per sample), one pool provides enough material for the 
service provider to execute many studies over the course of 
several years. A pool renewal took place at OLINK in October 
2019. 

Identical biological bridging samples are a minimum of eight bio-
logical samples included by the customer in all plates of a study. 
These samples are used as cornerstone for the default OLINK 
reference sample normalization described above. Each involved 
plate includes these eight distinct samples (Fig. 3A), ensuring 
matching across different plates. These identical biological bridg-
ing samples are referred to as bridging reference samples in the 
reference sample normalization protocol [12]. 

Default reference sample normalization with 
identical biological bridging samples 
To perform data normalization between studies sampled by 
OLINK at different time points, or between different batches from 
a single (longitudinal) study sampled by OLINK at different time 
points, OLINK does not recommend relying solely on Inter-plate 
Control. For study designs which are not a priori randomized, 
which is the case we focus on, technical variability is minimized 
by running Identical biological bridging samples on each plate. A 
default reference sample normalization as imposed by OLINK 
allows comparison within one cohort as long as each plate of 
a cohort includes 8 to 16 of their samples as such identical 
biological bridging samples. Reference sample normalization is 
then performed in the following way [12]: 

1. Choose a reference plate to normalize towards. 
2. For each protein and plate, calculate the pairwise difference 

in protein expression, i.e., the NPX value, for each of the overlap-
ping samples with the reference plate. 

3. Estimate the plate- and protein-specific normalization term 
by calculating the median for the pairwise differences calculated 
in step 2. 

4. For each protein and plate, add the plate- and protein-
specific normalization term from step 3 to each value, to normal-
ize it to the reference plate chosen in step 1. 

Results and discussion 
Evaluation of alternative PEA normalization 
To express the abundance of a protein Olink uses the Normalized 
Protein eXpression (NPX), as explained in the introduction. We 

will use the letter X throughout the paper for the NPX value and 
introduce the following notation: 

TXp,w(i) = he NPX value of protein nr i in well nr w of plate nr p. 

Note that in the contexts of cohorts each well corresponds to 
the sample of a subject.  

OLINK’s reference sample normalization (see Materials and 
Methods) allows the quantitative comparison of protein NPX val-
ues for samples within one cohort that were sampled on differ-
ent 96-well plates, at different moments in time (i.e., different 
batches). As long as all plates of a cohort used 8 to 16 of their 
samples as biological bridging samples, reference sample nor-
malization can be performed to address the technical variation 
induced by the measurement process. On the other hand, cohorts 
sampled independently by OLINK have to resample their biolog-
ical bridging samples along with those of potential collaborators 
before comparing their data across cohorts, which is a costly and 
time-consuming process. 

Therefore some SCALLOP consortium members (see Materials 
and Methods) previously used a fractional rank normalization 
method as the alternative in the field to work around this default 
reference sample normalization procedure [11]. With the rank 
normalization method, the NPX protein values were rank-based, 
inverse normal transformed, and standardized to the unit vari-
ance. This rank based Inverse Normal Transformation (INT) is 
presented in equation (1) where the plate nr p is a fixed value: 

INT
(
Xp,w(i)

) = Φ−1

{
rankw

(
Xp,w(i)

) − c 
n + 1 − 2c

}
, c ∈ [0, 1/2] (1) 

Xp,w(i) is the continuous NPX abundance measurement of pro-
tein i in well w. Each well corresponds to one of the n subjects, and 
rankw is the subject rank of protein i when the NPX abundance 
measurements are placed in ascending order over the subjects. 
Here Φ−1 is the probit function, and c ∈ [0, 1/2] is an adjustable 
offset. By default, the Blom offset of c = 3/8 is adopted. 

This method aims to avoid OLINK technical variation between 
cohorts based on the principle that even though the measured 
proteins’ absolute value might vary, the ratio between two pro-
teins would not differ when measuring the same aliquot in dif-
ferent batches. To check the validity of these assumptions and 
to evaluate this principle, we used the I AM Frontier (IAF) cohort 
(see Materials and methods), which consists of healthy partici-
pants with bimonthly proteomics measurements over one year 
timespan. The participants were healthy and not expected to 
experience major health events during the study period. There-
fore, if the fractional rank normalization procedure is appropri-
ate for this type of data, we would expect minimal variation 
in fractional ranks of protein measurements across timepoints. 
Figure 2 shows that a rank fraction switch occurred often in the 
IAF cohort, indicating high within-person variability over time.
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Figure 2. Evaluation of the rank-based, inverse normalized transformation (INT) applied to IAF cohort data. Rank switches throughout timepoints of 
measurement are shown for OLINK inflammation panel data for all 30 IAF individuals. Six consecutive protein collection periods are used (5 transitions). 
Ranks for each protein are assigned by ordering each individual’s protein NPX value from high to low. Each individual’s rank for each protein is evaluated 
against its rank from the previous time point. A rank switch for a protein is considered present if a person is at least 10% higher or lower up the ranking 
when comparing the position of an individual over two consecutive months. Hierarchical clustering is applied to the rank switch data to determine the 
order of the columns (proteins). 

We are aware that this highly frequent longitudinal set-up is 
not the same as measuring identical aliquots repeatedly over 
time. However, these findings show the highly sensitive nature of 
these protein NPX measurements. Since protein values for many 
different people are situated in the same narrow range, applying 
the rank-based INT normalization technique might risk wrongly 
ranking individuals into specific fractions. These findings encour-
age the need for another cost-efficient, robust, computational 
normalization. 

Therefore, the computational SPOC correction procedure (visu-
alized in Fig. 3B) is proposed in this paper to make universal 
collaboration easier across OLINK cohorts. 

SPOC correction for cohorts with shared external 
control samples 
To aim for universality, the SPOC correction makes use of external 
sample controls consisting of a synthetic plasma pool (Fig. 1). The 
synthetic plasma pool is inserted by OLINK on every plate. It is a 
plasma pool that is used by OLINK to assess potential variation 
between and within plates through the calculation of inter- and 
intra-protein CV’s. 

The formulas below describe how the protein NPX values X are 
corrected by a term δ where plate a is used as the reference plate 
to which each other plate b is normalized. Equation (2) shows  
the reference sample normalization (corresponding to the four-
step algorithm of Materials and Methods) and is denoted with 
the superscript ref . As normalization samples it uses the wells 
k = 1 . . .  8 which contain the 8 biological bridging samples (Fig. 1). 
Each protein i in well (subject) w is consequently normalized as: 

Xref 
p=b,w(i) = Xp=b,w(i) + δref 

p=b(i) (2) 

δ
ref 
p=b(i) = mediank=1:8

[
Xp=a,k(i) − Xp=b,k(i)

]
. 

Note that the correction term δ is dependent on plate and 
protein, but independent of the well. 

Equation (3) shows the SPOC correction, denoted with super-
script spoc. Here the index k runs over the external sample controls 
in well 95 and 96 containing the synthetic plasma pool (Fig. 1). 

Xspoc 
p=b,w(i) = Xp=b,w(i) + δ

spoc 
p=b (i) (3) 

δ
spoc 
p=b (i) = mediank=95,96

[
Xp=a,k(i)

] − mediank=95,96
[
Xp=b,k(i)

]

Note that in the ref case we have eight different biological 
bridging samples which are repeated on both plates. This allows 
to consider them as eight coupled measurements, hence, use the 
median of the pairwise differences. In the SPOC case the external 
sample controls are not coupled across plates, hence we subtract 
the median of the two plates. 

Fig. 4 compares the SPOC correction terms δspoc with the ref-
erence sample correction terms δref for both the IAF cohort and 
the FAPIC cohort. Each dot represents a correction term δ for a 
specific protein. Reference sample correction terms were plotted 
on the y-axis and SPOC corrections were plotted on the X-axis. 
For the cohorts at hand, identical biological bridging samples are 
available and hence the reference sample correction is considered 
the golden standard. The R-squared value between the SPOC 
correction value and the reference sample correction value were 
significant (IAF cohort: 0.849 and FAPIC cohort: 0.882), showing 
the potential of the SPOC correction to be used as alternative for 
the reference sample normalization (Fig. 4A and B). There is no 
apparent bias between the two correction methods as the mean 
difference lines (in black) in the two Bland–Altman plots are close 
to zero with values of 0.06 and 0.03 (Fig. 4C and D). 

SPOC correction for cohorts without shared 
external control samples 
It is important to note that the external sample controls are from 
the same synthetic plasma pool in numerous cohorts, as one pool 
can be quantitatively sampled many times (only 1 μl per sample 
is used). However, a renewal of the synthetic plasma pool took
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Figure 3. Default reference sample normalization versus SPOC correction procedure. (A) Default reference sample normalization of OLINK allows 
quantitative comparison of protein NPX values but requires cohorts to include at least 8 of their samples as biological bridging samples on each plate 
of the cohort. (B) The SPOC correction allows universal collaboration across OLINK cohorts using external sample controls consisting of a synthetic 
plasma pool. 

place at OLINK in October 2019. This implies that cohorts whose 
external sample controls do not originate from the same synthetic 
plasma pool will require a plasma pool correction ( Fig. 5). For 
the IAF cohort, OLINK proteomics data was sampled both before 
and after the OLINK pool renewal. Hence, both the old and the 
new plasma pool are available in the IAF study. This allowed the 
calculation of a ‘plasma pool correction term’. The OLINK refer-
ence sample normalization was applied on the external sample 
controls from the old OLINK plasma pool, while taking the new 
plasma pool as a reference. This results in a pool correction value 
δpool that can be used to correct the plasma pool effect (Fig. 5). 

Equation (4) shows how the SPOC correction can be applied for 
cohorts that do not share external sample controls from the same 
synthetic plasma pool. Note that the pool correction term neither 
depends on the plate or well, but is protein dependent. 

Xspoc 
p=b,w(i) = Xp=b,w(i) + δ

spoc 
p=b,w(i) + δpool (i) (4) 

Within the IAF cohort, all proteins that OLINK offers using 
the Target 96 technique, were measured. This effort allows all 
Target 96 cohorts to apply the SPOC correction on all the protein 
panels available at OLINK, regardless of which of the two plasma 
pools is included. These values δpool are also included in the SPOC 
correction method that is made publicly available at https:// 
github.com/VITO-UHassselt-SPOC-correction/OLINK-Target-96-

https://github.com/VITO-UHassselt-SPOC-correction/OLINK-_target-96-cohort-bridging
https://github.com/VITO-UHassselt-SPOC-correction/OLINK-_target-96-cohort-bridging
https://github.com/VITO-UHassselt-SPOC-correction/OLINK-_target-96-cohort-bridging
https://github.com/VITO-UHassselt-SPOC-correction/OLINK-_target-96-cohort-bridging
https://github.com/VITO-UHassselt-SPOC-correction/OLINK-_target-96-cohort-bridging
https://github.com/VITO-UHassselt-SPOC-correction/OLINK-_target-96-cohort-bridging
https://github.com/VITO-UHassselt-SPOC-correction/OLINK-_target-96-cohort-bridging
https://github.com/VITO-UHassselt-SPOC-correction/OLINK-_target-96-cohort-bridging
https://github.com/VITO-UHassselt-SPOC-correction/OLINK-_target-96-cohort-bridging
https://github.com/VITO-UHassselt-SPOC-correction/OLINK-_target-96-cohort-bridging
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Figure 4. Comparison of the SPOC correction terms δspoc with the reference sample correction terms δref . Each dot represents a correction value for a 
specific protein. (A-B) Correction values calculated with the reference sample correction method plotted on the x-axis against the correction values 
calculated with the SPOC correction method on the y-axis. (C-D) Bland–Altman plots to analyze the agreement between the two correction methods. 
The horizontal midle line indicates the average difference between the SPOC correction term and the reference sample correction term. Upper and 
lower 95% confidence intervals are indicated by the dotted lines. Left, for the inflammation protein panel from OLINK in the FAPIC cohort (92 proteins). 
Right, for all available protein panels from OLINK in the IAF cohort (1068 proteins). The samples that were run for IAF on the plates in batch 2 and batch 
4 are used for the IAF plots. ∗with null-hypothesis H0 = independent variables (i.e. SPOC correction terms) in the regression model explain the variability 
of the dependent variable (i.e. reference sample correction terms) in a random way. Based on this evaluation we consider the SPOC correction as a valid 
normalization that can be used when identical biological bridging samples are not present across different cohorts. 

Figure 5. Landscape of OLINK proteomic studies sampled with a qPCR target 96 approach. A technical measurement variation can be bridged with a 
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Figure 6. Unsupervised hierarchical clustering with a Euclidean distance measure and Mcquitty clustering method. Clustering is performed on protein 
NPX values for the target 96 metabolism panel of external sample controls. Two separate horizontal color coded bars indicate the cohort and plasma 
pool origin for each external sample control. (A) Clustering is shown for all external sample controls from four different cohorts involved in the SCALLOP 
consortium. Complete separation of the old versus new plasma pool is visible. (B) Reference sample correction applied on the IAF samples by computing 
the correction values with identical biological bridging samples. (C) SPOC correction applied on the IAF samples by computing the SPOC correction values 
with external sample controls. Complete clustering plots, including protein expression values, are attached as supplementary figures (Fig. S1-S3). 

a use case which is fully implemented according to federated 
data-sharing principles. Figure 7 compares the healthy individ-
uals from the IAF cohort with individuals with suspected sepsis 
from the FAPIC cohort. 

To optimize the comparability across proteins and focus on the 
difference between both cohorts, the green reference intervals in 
Fig. 7 are centered with the median NPX values of the IAF cohort 
(i.e., the median IAF value for a protein is subtracted) 

The IAF reference intervals are obtained through a non-
parametric bootstrapping method (see section Code availability 
for a description of the detailed computation). 

This analysis allows the identification of proteins that differ 
between cohorts in a case–control manner. In Fig. 7, proteins 
where the intervals do not overlap can be considered as potential 
markers for phenotype differences between healthy and sus-
pected sepsis individuals. Several proteins shown on the right side 
of Fig. 7 (with the most significant margin between the green and 
orange intervals) have been previously reported in other studies 
to play a role in the pathology of sepsis, either by being increased 
(IL-6, IFN-γ , IL-17A, IL-8, MCP-1, MCP-4, IL20RA) or decreased (IL-5 
and IL2) in patients with sepsis [13, 14]. For a protein as IL-24, our 
analyses suggest a potentially intriguing hypothesis with a signif-
icant difference between cases and controls, despite this protein 
not being commonly reported as a sepsis biomarker. This case– 
control workflow across cohorts is only possible when cohorts can 
be bridged by an adequate normalization. The FAPIC cohort and 
the IAF cohort did not share biological bridging samples. Only the 
SPOC correction allowed a quantitative comparison across these 
two cohorts with a distinct phenotype. 

All scripts are made publicly available and are free to use 
(see Code availability below). The repository contains scripts 

that run the SPOC correction as well as a script to establish the 
appropriate federated data-sharing setup. The bootstrapping 
steps are included, providing users with the intervals of their 
collaborating cohort, as displayed in Fig. 7. This enables users 
to perform a swift, quantitative comparison of their data to 
an external cohort of interest, in a federated way. The external 
sample control values for the IAF cohort are also available in the 
online repository so that users can opt to use these as ‘baseline’ 
reference pool. 

This paper aims to enhance the utility of OLINK Target 96 
cohort studies by enabling data comparisons across different 
cohorts. We would like to emphasize that this work complements 
recent initiatives within the SCALLOP consortium, which is explor-
ing the pooling of samples from various Target 96 studies to be 
sampled together using the Next Generation Sequencing (NGS) 
OLINK explore technique [15]. This pooled OLINK explore dataset 
of SCALLOP consortium samples could serve as a ‘reference pool’ 
for harmonizing data across different measurement techniques. 
When combined with the SPOC correction technique presented 
here, the aforementioned SCALLOP consortium efforts could cre-
ate a more consistent and interoperable data environment, align-
ing Target 96 proteomics studies with both current and future 
OLINK proteomics data. 

In addition, the holistic approach of integrating proteomics 
with other omics platforms sheds light on the molecular transi-
tions from genotype to phenotype. This integration holds the cru-
cial potential to describe disease-related pathways, identify novel 
biomarkers for diagnostics and detect drug targets [16]. Such 
collective efforts and technological innovations in proteomics are 
not only advancing our understanding of the biology underlying 
health and disease but are also paving the way for the next

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae657#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae657#supplementary-data
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