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Abstract

Cell–cell communications (CCCs) involve signaling from multiple sender cells that collectively impact downstream functional processes
in receiver cells. Currently, computational methods are lacking for quantifying the contribution of pairwise combinations of cell types
to specific functional processes in receiver cells (e.g. target gene expression or cell states). This limitation has impeded understanding
the underlying mechanisms of cancer progression and identifying potential therapeutic targets. Here, we proposed a deep learning-
based method, scDCA, to decipher the dominant cell communication assembly (DCA) that have a higher impact on a particular
functional event in receiver cells from single-cell RNA-seq data. Specifically, scDCA employed a multi-view graph convolution network
to reconstruct the CCCs landscape at single-cell resolution, and then identified DCA by interpreting the model with the attention
mechanism. Taking the samples from advanced renal cell carcinoma as a case study, the scDCA was successfully applied and validated
in revealing the DCA affecting the crucial gene expression in immune cells. The scDCA was also applied and validated in revealing the
DCA responsible for the variation of 14 typical functional states of malignant cells. Furthermore, the scDCA was applied and validated
to explore the alteration of CCCs under clinical intervention by comparing the DCA for certain cytotoxic factors between patients with
and without immunotherapy. In summary, scDCA provides a valuable and practical tool for deciphering the cell type combinations with
the most dominant impact on a specific functional process of receiver cells, which is of great significance for precise cancer treatment.
Our data and code are free available at a public GitHub repository: https://github.com/pengsl-lab/scDCA.git.

Keywords: dominant cell communication assembly; graph convolution network; deep learning; model interpretability; cell–cell
communication; single-cell RNA-seq

Introduction
Cell–cell communications (CCCs) underpin the major functions
in multicellular organisms [1]. Sender cells induce cascading
regulation of biological processes through CCCs, resulting in the
reprogramming of the receiver cell with altered gene expression
and functional pathways [2]. Depicting the landscape of CCCs
not only provides insights into fundamental life processes but
also offers strategies for therapeutic interventions for various
complex diseases, especially cancer [3]. Numerous studies have
contributed to identifying the communicating cell component
pairs that act as the functional assembly inducing downstream
biological processes and clinical response. For instance, inter-
cellular communication between immune and cancer cells can
modulate the expression of immune-related genes and promote
tumor evasion [4]. The communication between cancer cells and
cancer-associated fibroblasts can induce the expression of matrix
metalloproteinases, which are essential for extracellular matrix
remodeling and tumor invasion [5].

Recent advances in single-cell RNA sequencing (scRNA-seq)
enabled the characterization and interpretation of the complete

landscape of CCC using computational methods. Generally, these
computational methods inferred CCC through integrating scRNA-
seq data and prior ligand-receptor (L-R) interaction information,
and employ various models to assess the enrichment or over-
presentation of L-R interactions based on the constructed back-
ground reference. Two of the most widely used methods, Cell-
PhoneDB [6] and CellChat [7], applied statistical tests to quantify
the probability of each interaction over null hypothesis references.
Besides, there are other methods that introduce the information
of gene networks for a more accurate and complete model. For
instance, NicheNet integrates the intracellular gene regulatory
network [8], CytoTalk incorporated intracellular signaling net-
works between two cell types [9], and NATMI constructed cell-
connectivity-summary networks [10]. In addition, spatial infor-
mation of cells was also incorporated in some methods to refine
the cell–cell interactions prediction, such as stLearn [11] and
CellPhoneDB v3.0 [12].

However, to the best of our knowledge, current CCC analysis
methods lack the ability to identify the communicating cell type
pairs that play a major role in a specific downstream functional
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event. A complete characterization of CCC in microenvironment
required not only the identification of communicating cell types
with the enriched L-R interactions, but also their importance
in affecting specific downstream functional events, e.g. the
expression pattern of target genes or the functional state of
recevier cells. Information exchange between different cells
in microenvironment, not all cells have a direct or equal
impact on downstream functional events. How to rank the
importance of these CCCs and find the dominant ones has great
significance for deciphering various physiological and pathogenic
processes [1]. Additionaly, most of existing methods perform
CCC analysis at the level of the cell type or cluster, discarding
single-cell-level information. Some communication networks
could be obscured with cell aggregation or downsampling
[13]. In summary, it is vital to decipher CCC importance in
affecting specific downstream functional events at single-cell
resolution to accurately gain the full landscape of intercellular
communication.

Inspired by previous researches, we noticed that the graph
neural networks (GNNs) and the attention mechanism in deep
learning are suitable for addressing these challenges. First, GNNs
can well model the CCC networks. For example, Fischer et al. [14]
utilized GNNs to build node-centric expression modeling (NCEM)
for improving CCC inference. Yuan et al. [15] introduced the GCNG
method, which utilized the graph convolutional neural network
to infer L-R interactions. In addition, the attention mechanism
in deep learning can help assess the contribution of different
variables in the model and further prioritize the more important
ones [16]. For example, Chen et al. [17] developed the GENELink
method, which utilized the graph attention network to infer
the high-confidence interactions between transcription factors
and target genes in gene regulatory networks. A recent model
called HoloNet innovatively applied the attention mechanism
to decode the functional CCC events that have a critical effect
on gene expression [18]. On this basis, we defined the concept
of ’dominant cell communication assembly (DCA)’ for the first
time to denote cellular communication assemblies that dominate
a specific downstream functional event. Then, we proposed
scDCA, a multi-view graph learning method to decipher the DCA
from scRNA-seq data. (i) Take advantage of four state-of-the-
art CCC analysis methods, scDCA systematically and reliably
infers L-R interactions from scRNA-seq data. (ii) According to
prior knowledge of L-R interactions, gene expression profiles
and cell type information, scDCA constructs the multi-view CCC
network between different cell types at single-cell resolution by
using an edge weighting strategy and filtering out edges with low
specificity. (iii) scDCA develops a multi-view graph convolution
network to reconstruct the expression pattern of target genes
or the functional status of receiver cells and then deciphers the
DCA by interpreting the trained model. In a scRNA-seq cohort of
advanced renal cell carcinoma, scDCA was applied to decipher
the DCA that affect the expression patterns of the critical marker
genes of CD8+ T cell and tumor-associated macrophages, which
accurately reflected the dominant cell regulation process on
these cell types. scDCA also accurately deciphered the DCA that
affect different functional states of malignant cells. Additionally,
scDCA was applied to explore the alteration in cell communi-
cation under clinical intervention by comparing the DCA for
certain cytotoxic factors between patients with and without
immunotherapy. In summary, scDCA provided a valuable and
practical tool for deciphering CCCs from scRNA-seq data, which
helped to reveal biologically meaningful cell communication
events.

Material and methods
Data preprocessing
The scRNA-seq data of patients with advanced renal cell carci-
noma were derived from the recently published study [19] and
accessed via the Single Cell Portal. The entire dataset contained
34 326 cells from tumor tissues of eight patients sequenced by 10X
genomics’ Visium platform. Cell samples from two patients (P76
and P915) were specifically selected. Compared to the untreated
patient P76, patient P915 received immune checkpoint blockade
(ICB, aPD-1 + aCTLA-4) and exhibited a clinical response. Both
of them were not treated with tyrosine kinase inhibitor (TKI)
and had the same biopsy Site, histology, and tumor stage for
the subsequent comparison analysis (Table 1). The data prepro-
cessing steps and cell type annotation analysis were referred
to the original study. Specifically, a standard normalized unique
molecular identifier count analysis workflow, including ambi-
ent RNA-decontamination with SoupX, library-size normaliza-
tion, and log-transformation with Seurat, was applied. Uniform
manifold approximation and projection (UMAP) of malignant and
non-malignant cells captured across all lesions, colored by broad
cell type. Granular cell types and states were discerned through
iterative reprojection and unsupervised clustering of lymphoid,
myeloid, and tumor compartments, and merged into broader cell
type categories for visualization.

Inference of L-R interactions
Previously, systematic assessment and comparison analyses
showed that there is a dynamics of results among different L-
R interactions inference methods [20, 21]. In addition, four of the
statistics-based methods showed relatively higher performance
[21], they are CellPhoneDB [6], CellChat [7], NicheNet [8], and
ICELLNET [22]. To obtain the more comprehensive and reliable
L-R interactions between every two different cell types for the
following analysis, we intend to integrate the inferred results of
the above four tools. In specific, the L-R interactions supported by
at least two of the four methods were retained. Take the scRNA-
seq data from patient P76 as a case study, we found the difference
in the number of inferred L-R interactions by four distinct tools
(NicheNet does not consider the interactions with multi-subunits,
Supplementary Fig. 1a). Also, the overlap among the four methods
showed the variation of the four methods (Supplementary Fig. 1b).

Construct multi-view CCC graphs at the single
cell resolution
Step 1: calculation of the communication probability of a
specific L-R interaction
To calculate intercellular communication probability, we modeled
L-R mediated signaling interactions using the law of mass action
[23]. Based on the projected scRNA-seq profiles of ligands and
receptors, the communication probability Pi,j from cell i to j for
a particular L-R pair k was modeled by

Pk
i,j = LiRj

Kh + LiRj
(1)

Li = m1
√

Li,1 · · · Li,m1, Rj = m2

√
Rj,1 · · · Rj,m2 (2)

where Li and Rj, respectively, represent the expression level of
ligand L in cell i and receptor R in cell j. The expression level of
ligand L with m1 subunits (i.e. Li,1,...,Li,m) is approximated by their
geometric mean, implying that the zero expression of any subunit
leads to an inactive ligand. Similarly, we compute the expression
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level of receptor R with m2 subunits. In addition, a Hill function is
used to model the interactions between L and R with a parameter
Kh whose default value is set to be 0.5 as the input data has a
normalized range from 0 to 1.

Step 2: filtering out L-R interactions with low specificities
Considering the characteristic of graph learning, edges of non-
specifically widely expressed ligands and receptors might intro-
duce inappropriate embeddings. To reserve the L-R interactions
that actively communicating, we used a permutation test strategy
to calculate the specificity of each L-R interaction. Specifically,
we first randomly selected n background gene pairs (n = 200
by default) for each L-R pair. Note that the two genes of each
background gene pair, respectively, have the most close average
expression levels to the ligand and receptor. Then we calculated
the communication probability of the background gene pairs to
generate the null distribution of each L-R interactions. Commu-
nication probability of each background gene pair t between cell i
and j for a particular L-R pair is

P′(t)
i,j =

L′(t)
i R′(t)

j

Kh + L′(t)
i R′(t)

j

, t = 1, . . . , n (3)

where L
′(t)
i and R

′(t)
j , respectively, represent the expression level

of tth background ligand and receptor in cell i and j. The com-
munication probability of n background gene pairs P

′(1)

i,j , . . . , P
′(n)

i,j

form a null distribution for the particular L-R pair. Finally, the L-
R interactions whose communication probability is not over 95
percent of the null distribution will be filtered out. Supplementary
Fig. 2 showed the proportion of the altered edges in the CCC
network after filtering out L-R pairs with low specificities for the
P76_scRNA dataset.

Step 3: edge weight setting in each view of network
According to the prior knowledge, the communication probability
(edge weight in the network) wi,j between sender cell i and receiver
cell j is calculated by summing up the communication probability
of the filtered m L-R pairs between them:

wi,j =
m∑

k=1

pk
i,j (4)

Step 4: construction of the entire multi-view graph
The multi-view CCC network ultimately consists of networks
under different combinations of cell types, e.g. cells between cell
type A and cell type B form GA,B, cells between cell type B and cell
type C form GB,C, etc., where the edge weights in the network are
wi,j.

Selection of target genes to be predicted
The selection of specific target genes was based on the follow-
ing criteria: (i) they should not be genes of the mitochondrion,
ligand, or receptor; (ii) they should be expressed in over 50%
cells; (iii) they should be highly variable genes (detected by the
highly_variable_genes function in Scanpy [24] package with default
parameters).

Predicting the specific target gene expression
To distinguish the regulatory effects of CCC on gene expression
and the baseline expression levels within the corresponding cell

types, we hypothesized that the target gene expression E in all
single cells could be separated into two parts:

E = E0 + �E (5)

where the E0 is the baseline expression levels determined by its
cell type, and �E represents the gene expression change caused
by the regulatory effects of CCC. Based on this, scDCA constructed
two appropriate models to reconstruct target gene expression
profile.

First, a graph convolution network is constructed for predicting
�E. This model can be broadly divided into three parts: (i) multi-
view graph convolution network was applied to generate the
embeddings of nodes (ii) the embeddings of nodes from each view
were fused based on an attention mechanism (iii) multi-layer
perceptron (MLP) model was applied to the final embeddings for
predicting �E.

Specifically, the inputs to the model include the adjacency
matrix A = {A1, A2, ..., Ak} of the multi-view communication
network and the initial feature matrix X of the nodes (cells). The
adjacency matrix Ak ∈ RNxN, where k represents the CCC network
for the kth combination of cell types, N represents the number
of cells, and the elements in the matrix Ak

i,j represent the edge
weights (communication probability) wi,j between cell i and j. The
initial feature matrix X ∈ RNxM is generated by the one-hot encod-
ing method based on cell type, where M represents the number
of cell types. To obtain the embedding of nodes in each view, the
GCN model [25] used each matrix in A as the adjacency matrix
and X as the initial feature matrix. Then, the final embeddings
of nodes were obtained by applying the attention mechanism to
integrate the embeddings from each view. Finally, the MLP was
used to predict �E ∈ RN:

�E = Linear

(
ReLU

(∑
k

ck(AkXWk + Bk)

))
(6)

where ck represents the learnable attention score, Wk represents
the weight matrix, Bk represents the bias matrix of kth view, and
ReLU is the activation function:

ReLU(x) =
{

x if x ≥ 0
0 if x < 0

(7)

Second, the MLP model is constructed for predicting E0 based
on the cell type matrix X:

E0 = Linear(X) (8)

Then the above two separate models jointly predict the target
gene expression Ê:

Ê = Sigmoid(�E + E0) (9)

where Sigmoid is the activation function:

Sigmoid(x) = 1
1 + e−x

(10)

The mean squared error (MSE) between Ê and true expression
profile E was used as the loss function in this work:

Loss = MSE(E, Ê) = 1
n

∑
i

(
ei − êi

)2 (11)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
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Calculation of the functional states activity of
malignant cells
To characterize the functional states of each malignant cell, we
obtained the signature gene sets of 14 crucial functional states
of cancer cells, including stemness, invasion, metastasis, prolif-
eration, epithelial-mesenchymal transition (EMT), angiogenesis,
apoptosis, cell cycle, differentiation, DNA damage, DNA repair,
hypoxia, inflammation, and quiescence from the CancerSEA
database (http://biocc.hrbmu.edu.cn/CancerSEA/) [26]. Based on
these signatures, the activities of 14 functional states across
malignant cells were calculated using Gene Set Variation Analysis
(GSVA) with the GSVA package in R.

Predicting the functional state of the receiver cell
With a similar hypothesis to predicting target gene expression, the
functional state activity F of the receiver cell was also separated
into two parts:

F = F0 + �F (12)

where the F0 is the baseline functional state activity for each
receiver cell, and �F represents the change of functional state
activity caused by the regulatory effects of CCC. Also, the scDCA
integrated the graph convolution network and MLP models to
predict the functional state activity of receiver cells, similar to
the construction process in predicting target gene expression.
The only difference is that we only consider the functional state
alteration of receiver cells (malignant cells here), and then the
input adjacency matrixes (views of CCC graph) were limited to
the communication between every non-malignant cell type and
malignant cells. Furthermore, the initial feature of GCN is ran-
domly initialized instead of the one-hot coding.

Training strategy
In the study, we divide the dataset into training (85% cells) and
validation sets (15% cells) of cell samples. For the predicted gene
expression values in the training cells, the trained model directly
predicts these values based on the multi-view CCC graphs and
the cell type information. The entire training process is performed
for 500 epochs, and at the end of each epoch, the trained model
predicts the validation set, recording the mean-square error (MSE)
between the true gene expression and the predicted gene expres-
sion of the validation set. Finally, the trained model under the
epoch with the smallest MSE in the validation set is saved for
interpretation. The Adam optimizer (initial learning rate of 0.1
and weight decay of 5 × 10−4) and the StepLR learning rate decay
method (step size of 10 and gamma of 0.9) was, respectively, used.
We are trying to adequately fit the gene expression of the vali-
dated cells, so as to obtain the attention values of different cellular
communication views. In addition, to ensure the robustness of the
model and the reliability of the interpretation, we performed 50
random divisions for each data set, and a total of 50 iterations of
the model were trained. The attention score used for prioritization
was the average value of 50 repeatedly trained models.

Model interpretation for identifying the DCA
As mentioned above, we prioritized the views based on the atten-
tion scores that represent the contribution of the corresponding
cell communication assembly on downstream gene expression or
cell functional state. The attention score used for prioritization
was the average value of 50 repeatedly trained models. The top-
ranked cell communication assembly was defined the DCA. The

ratios of �E/(�E + E0) and �F/(�F + F0) reflected the extent
that gene expression or cell functional state is affected by cell
communication. The ratio is closer to 1, the more regulatory effect
from cell communication on gene expression and cell function
process.

Collection of expression and clinical information
from other independent ccRCC cohorts
Bulk RNA-seq samples of the kidney renal clear cell carcinoma
(KIRC) from The Cancer Genome Atlas (TCGA) (N = 607) was
obtained. The normalized FPKM data was collected through
the UCSC Xena database of the GDC project (https://xena.ucsc.
edu/). Another two independent ccRCC cohorts (here denoted as
Motzer_NatMed_2020 and Braun_NatMed_2020_Che-ckmate025)
with the treatment condition information were obtained from
previous analysis to compare the prognostic effects of L-R pairs
between immunotherapy and targeted therapy subpopulations.
Normalized RNA-seq, treatment condition, and progression-free
survival (PFS) data were collected from cohort NCT02684006,
which incorporated with first-line avelumab + axitinib (anti-
PD-L1 with TKI) vs sunitinib (multitarget TKI) in advanced renal
cell carcinoma [27]. Also, we obained bulk RNA-seq and overall
survival data of pre-treatment samples from advanced ccRCC in
a randomized clinical trial (Checkmate 025) comparing the mTOR
inhibitor everolimus with nivolumab (anti-PD-1) [28].

Statistics analysis
For comparisons of the continuous value between different
groups, a two-sided Wilcoxon rank-sum test was performed. Co-
expression of genes in TCGA samples was assessed based on
Pearson’s correlation analysis. For the survival analysis, Kaplan–
Meier survival curves were generated and the log-rank test was
used to determine the significant differences among patient
groups. The hazard ratio and the 95% confidence interval were
calculated using univariate Cox regression analysis. All statistics
analyses were performed in R version 4.2.2.

Functional enrichment analysis
Collectively, the g:Profiler tool (https://biit.cs.ut.ee/gprofiler/gost)
was used to perform the functional enrichment analysis of Gene
Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. The results of the enrichment analysis were
visualized with the dot plot. To compare the genes more affected
or less by CCC, we selected 5867 highly variable genes as targets
and ranked them based on the performance improvements after
considering CCC, i.e. difference of the Pearson’s correlation coef-
ficient between the predicted expression considering CCC effects
or not and the real expression level). The top-ranked and bottom-
ranked 50 genes were, respectively, selected for GO-biological
process (GO-BP) enrichment analysis.

Results
The overview of scDCA workflow
The goal of scDCA is to decipher the DCA, i.e. CCCs with a
dominant influence in a specific downstream functional event in
the tumor microenvironment (TME). scDCA requires two inputs:
a gene-by-cell count matrix and a cell type label vector. The
main application scenarios include the following: (1) to decipher
the DCA that affect the expression pattern of target genes (2)
to decipher the impact of CCC for different cell types (3) to
decipher the DCA that affect the functional states of recevier
cells (4) to explore the alteration of DCA in cell communication
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under clinical intervention. The workflow of scDCA involve four
successive steps (Fig. 1), as briefly described below. More technical
details are given in Methods.

Step 1: construction of multi-view CCC network
scDCA is based on a multi-view CCC network between different
cell types at single-cell resolution (Fig. 1a). First, four excellent
CCC analysis tools were integrated to infer the L-R pairs from the
scRNA-seq expression profile (see section 3 for details). Second,
L-R interactions with low specificities would be filtered out and
then the communication probability between a pair of single cells
was calculated based on these remaining L-R interactions (see
section 3 for details). Finally, the multi-view CCC network between
each pair of different cell types was constructed based on the CCC
adjacency matrix, where the nodes in the graph represent individ-
ual cells and the edges represent the communication probability
between them.

Step 2: decomposition of gene expression and cell
functional state
Briefly, cell signaling from the sender cell is transmitted to the
receiver cell and elicits downstream responses, such as alteration
of gene expression or even the cell states of the receiver cell.
Therefore, the expression (E) of the specific target gene in the
receiver cell can be defined as the composite of altered gene
expression regulated by CCC (�E) and the baseline expression
levels inherent in receiver cell type (E0). Similarly, we defined the
functional state of the receiver cell (F) be the composite of the
changed functional state caused by the regulatory effects of CCC
(�F) and the baseline functional state activity for the receiver cell
(F0).

Step 3: reconstruction of gene expression and cell
functional state
scDCA constructed two models to reconstruct the (�E or �F) and
(E0 or F0) (Fig. 1c). For predicting the �E or �F, each view of the
CCC graph was trained by a graph convolution network, node
embeddings of each view were integrated through the attention
mechanism and then retrained using a multi-layer perceptron
(MLP). For predicting the E0 or F0, another MLP was directly applied
based on the cell type information or individual cell information.
Finally, two estimations were summed as the final prediction
results (Ê or F̂). The model was trained iteratively to minimize the
MSE between Ê or F̂ and true expression profile (E or F) (see section
3 and 3 for details).

Step 4: interpretation of trained model
After the model converges, these different views were prioritized
based on the attention weights of scDCA which represented the
contribution of the corresponding cell communication assembly
on downstream functional events (Fig. 1c). To ensure the reliabil-
ity of the results, we repeated the training procedure and used the
average attention value as results. The communicating cell type
pair corresponding to the higher ranked views were regarded as
the DCAs (Fig. 1d).

Resolving the CCC at single-cell resolution is
necessary
To verify the necessity of analyzing CCC at single-cell resolu-
tion, we inferred the intercellular communication status of an
advanced renal cell carcinoma microenvironment dataset from
a specific patient P76 (see section 3 for details). We inherited the

cell type annotation from the data resource analysis [19], and per-
formed the UMAP analysis to verify the different cell populations
(Supplementary Fig. 3a). We found that malignant, TAM, NK, and
CD8+ T cells had greater proportion (Supplementary Fig. 3b).

Then, we demonstrated the heterogeneity of CCC between
different cells at the single-cell resolution from different perspec-
tives. We randomly selected 100 immune cells (50 TAM cells and
50 CD8+ T cells) and 100 malignant cells, and then calculated and
compared the communication strength between the two types of
immune cells and malignant cells at the single-cell resolution
(see section 3 for details). It is obvious from the heatmap in
Supplementary Fig. 3c that for the same malignant cell, differ-
ent types of individual immune cells send out communication
signals with different strengths (the color shades in the heatmap
represents the strength of CCC between two individual cells). In
addition, even for individuals of the same immune cell type, their
communication strength with malignant cells varies dramatically
(The histogram in Supplementary Fig. 3c represents the total com-
munication strength of individual immune cells with malignant
cells). Supplementary Fig. 3d shows the distribution of the number
of communicational L-R pairs between immune and malignant
cells in Supplementary Fig. 3(c). In particular, most of the cell
pairs communicated through approximately one L-R pair, very
few cell pairs produce more than four L-R pairs-mediated CCC.
Besides, we further compared the top L-R pair with the highest
communication strength between immune and malignant cells
in Supplementary Fig. 3c. The color shades in Supplementary Fig.
3e represent the type of the top L-R pair, again showing a high
degree of heterogeneity. Finally, we counted the proportions of
different L-R pairs expressed in all cell pairs between TAMs or
CD8+ T cells and malignant cells. Unsurprisingly, either TAMs or
CD8+ T cells exhibited diverse landscapes of L-R pairs mediating
CCC with malignant cells (Supplementary Fig. 3f).

In summary, CCCs are highly heterogeneous at the single-cell
resolution. By considering CCCs at the single-cell resolution rather
than at the cell type level, signals from different cellular sources
can be integrated to provide a more comprehensive picture of
the real CCCs and downstream functional events in the tumour
microenvironment.

scDCA reveals the DCA affects the marker genes
of CD8+ T cells
We applied scDCA to scRNA-seq data from a specific patient with
advanced renal cell carcinoma as a case study (P76_scRNA, see
section 3 for details). Specifically, we constructed a multi-view
CCC network, which connects 7393 single cells of 13 cell types,
resulting in 169 views that systematically depict the CCC in the
TME. The cell types include CD8+ T cells, T helper cells (T-Helper),
regulatory T cells (T-Reg), NK cells, NKT cells, B cells, plasma cells,
dendritic cells (DC), TAM, monocyte, cycling cells, malignant cells,
and endothelial cells (Supplementary Fig. 3a and b) [19].

To demonstrate the validity of scDCA, we first assessed its per-
formance to reconstruct the target gene expression. We selected
CD8A (CD8 Subunit Alpha) as an example (Fig. 2a). It codes for a
subunit of cell surface glycoprotein CD8 commonly found on most
cytotoxic T lymphocytes (CD8+ T cells), and mediates efficient
CCCs involving anti-tumor immune response. As shown in Fig. 2b,
the reconstructed CD8A expression pattern by scDCA was highly
consistent with the actual expression profile and showed a
significant correlation (Pearson correlation r = 0.702, p-value <

0.05). The ratio of �E to total expression levels (�E + E0) reflected
the degree to which the target gene is affected by CCC (see
section 3 for details). That is, the higher ratio indicates the gene

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
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Figure 1. The overview of scDCA workflow. (a) The construction of multi-view CCC network at single-cell resolution. See section 3 for details. (b) The
schematic diagram of a full picture of CCC and its downstream functional events. LR: ligand-receptor; E: gene expression profile; E0: baseline expression
determined by cell type; �E: expression change caused by CCC. F: functional states activity of receiver cells; F0: baseline state activity determined by
the individual receiver cell; �F: change of state activity caused by CCC. (c) The multi-view graph convolution network for reconstructing target gene
expression patterns or functional states of receiver cells. MSE: mean squared error. See section 3 for details. (d) The main function of scDCA.

expression is more affected by CCC, and the lower ratio indicates
the gene expression is more affected by intracellular regulation.
In patient P76, the ratio of CD8A was calculated in each cell type.
As shown in Fig. 2c, the expression of CD8A in CD8+ T cells and
Cycling cells was less affected by CCC, which corresponds to the

specific high expression of CD8A in these cell types (Fig. 2a). In
addition, we extended the analysis to other genes. The ratio was
calculated for all of the 5867 highly variable genes (HVGs) in
the dataset. In particular, scDCA reconstructed gene expression
profiles with and without the addition of the CCC network
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respectively. The degree of improvement in the reconstruction
accuracy of the gene expression profile (as indicated by Pearson
correlation
coefficients) after the addition of the CCC network as the degree
to which the gene is affected by CCCs. Through GO enrichment
analysis, the top 50 affected HVGs by CCC showed functional
roles involving cell communication, cellular response to stimulus,
chemical, and stress (Supplementary Fig. 4). On the contrary,
the bottom 50 affected HVGs by CCC were enriched in immune
cell-specific biological processes, such as T cell-mediated
cytotoxicity, natural killer cell-mediated cytotoxicity, lymphocyte
differentiation, mononuclear cell differentiation, MHC protein
complex assembly, and cell development (Supplementary Fig. 4).
The enrichment results showed that scDCA accurately deciphered
the expression profiles of target genes.

Then we assessed the scDCA in prioritizing the DCA of target
genes in receiver cells. Based on the attention value of the graph
convolution network (see section 3 for details), scDCA ranked the
contribution for each cell type pair (views). Also, take the CD8A
as an example, results showed that its expression might mainly
influenced by CD8+ T cell-Malignant interactions and Malignant-
TAM interactions (Fig. 2d). As a marker gene of CD8+ T cells,
DCA affecting CD8A expression might also reflect the primary
communicating cell types of CD8+ T cells in the TME. Based
on the previous analysis, we calculated a signature score based
on the average expression of several regulatory genes of T cells,
including CD70, ICOSLG, CD155 (PVR), CD112 (NECTIN2), and PD-
L1 [29]. It is observed this regulatory score is higher in malignant
cells, which was consistent with the results of scDCA (Fig. 2e). In
addition, previous studies validated that malignant cells induced
macrophages to express high levels of IL-15Rα+, which reduced
the protein levels of chemokine CX3CL1 in malignant cells to
inhibit the recruitment of CD8+ T cells [30]. Also, malignant cells
with stem-like states were revealed to drive T cell dysfunction
via immunosuppressive macrophages [31]. These findings all sup-
ported the influence of malignant and its interactions with TAM
on CD8+ T cells, which is consistent with the results of scDCA.

To further compare the communication strength of CD8+ T
cells and malignant/TAM cells with that of CD8+ T cells and
other cell types in the TME, we calculated the average commu-
nication probability with all CD8+ T cells for each single cell.
The comparison supported that malignant and TAM cells had
significantly higher communication strength with CD8+ T cells
than the rest cell types (Fig. 2f). In terms of each cell type, TAM
still had the highest communication strength, while malignant
cells had a lower median value but a wider range (Fig. 2g). For
malignant cells, we further divided them into two groups based
on their average communication strength with CD8+ T cells.
The group with higher communication strength had accordingly
higher activity of antigen presentation via MHC I and IFN-γ
signaling (Supplementary Fig. 5). These observations suggested
strong cellular communication between a subset of malignant
cells and CD8+ T cells. All of the above investigations revealed the
dominant CCC between CD8+ T and malignant/TAM cells which
again supported the results of scDCA.

scDCA reveals the DCA affects the key regulatory
genes in tumor-associated macrophages
In section 3, we found that TAMs have strong intercellular com-
munications with CD8+ T cells, which made us interested in the
DCA associated with TAMs. We further deciphered several key
regulatory genes in TAMs, including FOLR2 (Folate receptor β),
APOE (Apolipoprotein E), and FABP5 (Fatty Acid Binding Protein

5) [32–34]. A multi-view CCC network centered on the TAMs was
constructed, resulting in 13 views that involved the communi-
cations between other 12 cell types and TAMs as well as TAM
themselves. Then, scDCA was retrained and priority sorted on
dominant cellular communication based on attention weight in
anticipation of revealing holographic networks for specific TAM
markers. After training, scDCA similarly accurately reconstructed
the gene expression profiles, which were highly consistent with
the real gene expression profiles (Supplementary Fig. 6).

According to the analysed results, the expression of FOLR2
in TAMs was mainly affected by the communication between
malignant cells and TAMs, while APOE and FABP5 were greatly
affected by the communication within TAM cells (Fig. 3a). FOLR2
was canonically described as a marker of macrophages M2 polar-
ization [32], and indeed specifically over-expressed in part of the
TAMs (Supplementary Fig. 6a). In the TME, M2 polarization is
usually associated with the tumor-promoting phenotype of TAMs
[35]. APOE was found to be specifically over-expressed in TAMs
in the previous analysis about gastric and breast cancers [33],
consistently, we also observed its high expression in TAMs of our
ccRCC dataset (Supplementary Fig. 6b). It also verified as a poten-
tial prognostic biomarker for ccRCC recurrence by [36]. Besides,
previous analysis supported that FABP5 controlled macrophage
alternative activation, also, FABP5-expressing TAMs were present
at invasive cancer regions, produced various immunoregulatory
molecules (including PD-L1 and PD-L2) [35, 37].

Further, taking FOLR2 as an example, we further analyzed it
from the ligand-receptor-target (L-R-T) perspective. We integrated
L-R-T regulatory data from CellPhoneDB and NicheNet to explore
important L-R pairs that regulated FOLR2 expression in TAMs
and the relationship between these L-R pairs and malignant cells.
In the results, CellPhoneDB revealed L-R pairs of APP:TREM2,
APP:SORL1, MDK:SORL1 and MDK:LRP1 significantly mediated the
communication between malignant cells and TAMs as well as
TAMs themselves (Fig. 3b). NicheNet evaluated the potential of
different ligands to regulate FOLR2. The ligands APP and MDK
were at the top of the list, especially APP was the most effective
ligand in regulating FOLR2 (Fig. 3c). Specifically, ligands APP and
MDK were highly expressed in the malignant cells while the
corresponding receptors TREM2, SORL1, and LRP1 were highly
expressed in the TAMs (Supplementary Fig. 7), therefore, they
might jointly mediate the regulation of FOLR2 expression in TAMs
(Fig. 3d). In addition, co-expression analysis in the bulk RNA-seq
samples from TCGA also supported the regulation of these L-R
pairs on FOLR2 (Supplementary Fig. 8). It is worth noting that
APP and MDK regulate different receptors in different directions,
which in turn results in a superposition of multiple effects on
FOLR2. All the results demonstrate the accuracy and reliability
of scDCA for deciphering the DCA that regulates specific target
genes and facilitates further effective excavation of mediating L-
R pairs.

scDCA reveals the DCA affects the functional
states of malignant cells
Compelling evidence highlighted that multiple CCCs between
different cell types were involved in affecting functional states
of cells, such as angiogenesis [38], EMT [39], and invasion [40]
of malignant cells. scDCA could be also used to decipher the
impact of each communicating cell type pairs on the cell states.
To do this, we first calculated the activity scores for 14 functional
states of 7393 malignant cells in our P76_scRNA data. There was
a high degree of functional heterogeneity among these malignant
cells, with a small fraction of them exhibiting elevated levels

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
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Figure 2. The DCA that regulates the CD8A expression pattern is accurately deciphered. (a) UMAP of cell samples, followed by the real expression pattern
of the CD8A gene in UMAP space. (b) UMAP of cell samples, followed by the predicted expression of CD8A gene by scDCA. (c) The ratio of �E to the total
expression levels (�E and E0) in each cell type. (d) The corresponding cell type pairs of the top 10 view (169 views in total) with the highest attention
weights in the model predicting CD8A expression profile. The heatmap displays the attention weights of each view obtained from repeated the training
procedure 50 times. The bar plot represents the mean values of the attention weights of each view. (e) UMAP of cell samples, followed by the CD8+
T signature score in UMAP space. (f) Comparison of communication strength of CD8+ T cells and malignant/TAM cells with that of CD8+ T cells and
other cell types. (g) Comparison of communication strength with CD8+ T cells among each cell types.

of EMT, invasion, metastasis, and hypoxia, suggesting a higher
malignancy potential in this subpopulation (Supplementary Fig.
9). Then, scDCA was retrained based on the reconstructed multi-
view CCC network centered on the malignant cells, resulting in
13 views that involved the communications between 12 other cell
types and malignant cells as well as malignant cells themselves.
Different from the gene expression analysis in the previous sec-
tion, our goal is to predict the functional state scores of malignant
cells and assign initial random feature vectors to each individ-
ual malignant cell due to the fact that the functional state is

associated with the individual cell (see section 3 for details). In
the results, scDCA had significant accuracy in predicting various
cell functional states, such as the DNA repair state with a Pear-
son correlation of 0.875 and p-value < 0.05, and the apoptosis
state with a Pearson correlation of 0.879 and p-value < 0.05 (see
Supplementary Table.2 for more details). Similarly based on the
average attention weight of 50 repetitions of training, scDCA deci-
phered the DCA that affected the functional state of malignant
cells as shown in Fig. 4a. Overall, natural killer (NK), T-helper,
malignant itself, CD8+ T, TAMs, endothelial and monocyte cells

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
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Figure 3. The DCA that affects the key regulatory in tumor-associated macrophages is accurately deciphered. (a) Rank of corresponding cell type pairs
(views, 13 in total) based on the attention weights in the model predicting expression profile of the key factors FOLR2, APOE, FABP5 in TAMs, respectively.
The heatmap displayed the attention weights of each view obtained from repeating the training procedure 50 times. The bar plot represents the average
attention weights of each view. (b) The significant L-R interactions between malignant cells and TAMs which assessed by the CellPhoneDB analysis.
(c) Rank of ligands based on the regulatory potential on target gene FOLR2 calculated by the priori database NicheNet. (d) The schematic diagram of
ligands APP, and MDK from malignant cells bind to the receptors TREM2, SORL1, and LRP1, respectively, to coordinately regulate the expression of FOLR2
in TAMs.

had a greater impact on the functional states of malignant cells.
In contrast, B and plasma cells had less overall effect. From the
results, the cell states that were significantly influenced by the
malignant cells themselves were angiogenesis and differentiation.
Indeed, we observed VEGFA (vascular endothelial growth factor),
a major signal that influences angiogenesis and promotes dif-
ferentiation of malignant cells [41], is highly specific expression
in malignant cells (Fig. 4b). In addition, NK cells affected various
functional states of malignant cells, especially their cell cycle
and differentiation. This phenomenon has been shown by recent
studies in which NK cells upregulated the expression of specific
genes to induce cell cycle or differentiation of malignant cells [42–
44], which further corroborates the results of scDCA.

Furthermore, tumor invasion and metastasis involve a
sophisticated cascade process, often referred to as the ’invasion-
metastasis cascade’, and EMT has been shown to be a critical

first step for the cascade process [45–47]. In our results, the
CCC between malignant and endothelial cells was the most
influential factor for the EMT state of malignant cells, this
finding was strongly supported by the prior knowledge about
the EMT process [48]. Considering the three cascade states
comprehensively, we observed that endothelials, NK, T-helper,
and TAM cells were the dominant cell types that were involved
in regulating them (Supplementary Fig. 10). Intersection of
the dominant cell types showed NK cells and TAMs might
exert common effects for the ’invasion-metastasis cascade’ of
malignant cells, which had been validated by substantial studies.
NK cells play a critical role in the control of metastasis of
malignant cells as they mediate metastatic cell immunoediting,
[49, 50], and IFN-γ -dependent NK cell activation is vital to
suppress malignant metastasis [51]. Also, perturbation of the
EMT state of malignant cell lines altered several representative

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
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NK cell-regulatory ligands [52]. Similarly, TAM cells was found
to promote malignant progression by enhancing invasion and
metastasis [53, 54]. Specifically, M2-polarized TAM was found
to promote EMT and activate invasion programs in malignant
cells [55]. The expression pattern of some specific metastatic
regulators also supported the critical influence of NK and TAMs
cells on the ’invasion-metastasis cascade’ states of malignant
cells (Fig. 4c). In particular, Apolipoprotein C-I (APOC1) has been
identified as a novel pro-metastatic factor [56], which enhances
the metastasis of malignant cells via EMT pathway in ccRCC
and gastric cancer [57, 58]. Indeed, we observed that APOC1 was
specifically highly expressed on TAMs in our data, which supports
the potential of TAMs in promoting malignant cell metastasis
as revealed by scDCA (Fig. 4c). Another example is the NK-
derived chemokine CCL5, which promotes malignant metastasis
and has been verified as an important mediator for immune
evasion in circulating malignant cells [59]. Finally, we analyzed
the correlation between ’invasion-metastasis cascade’ signature
genes and TAM/NK cell marker genes at the bulk level. We first
filtered the three sets of ’invasion-metastasis cascade’ associated
genes based on the malignant cell-specific expressed genes. Their
average expression was found significantly correlated in TCGA-
KIRC samples (N = 607) (Fig. 4d). These collective findings provide
compelling evidence that scDCA possesses the capability to
decipher intercellular communication that affects the functional
status of malignant cells in the TME.

scDCA reveals the altered DCA under the clinical
intervention of immune checkpoint blockade
Understanding the alteration of DCA under therapeutic inter-
ventions is crucial for dissecting the specific molecular mecha-
nism of disease progression or therapeutic response. To compare
with the previously analyzed untreated patient P76, we obtained
scRNA-seq data from another patient with advanced ccRCC, P915,
who received ICB therapy and exhibited a clinical response [19]
(Supplementary Table 1). Totally 6304 cells were obtained and 14
cell types were annotated according to the original publication
(Supplementary Fig 11a). We can see that there was a significant
increase of CD8+ T cells after ICB treatment (Supplementary Fig
11b).

The scDCA was then applied to decipher the DCA that affects
CD8A expression pattern in ICB-responder P915 scRNA-seq data.
Compared to the untreated patient (Fig. 2d), the top DCA changed
from CD8+ T cell-malignant to CD8+ T cell-TAM (Fig. 5c). To
further investigate the DCA alteration in the ICI-responders,
we analyzed two additional genes, GZMA and PRF1, which are
signature genes of cytolytic activity, indicating the ability of
CD8+ T cells to clear malignant cells [60, 61]. Notably, similar
to CD8A, DCA that affects these two cytolytic indicators also
turned into CD8+ T cell-TAM (Fig. 5c). These findings were
supported by the previous observation [19] that normalized effect
or molecule (e.g. IFNG) levels were robustly correlated with TAM
fractions and expression signatures derived from comparing
ICB (immune checkpoint blockade)-exposed to ICB-naive TAMs.
All these results suggested the increased potential of TAM in
regulating CD8+ T cells in ICI-responders compared to untreated
patient.

Additionally, the scDCA was also applied to decipher the
DCA that affected three cellular signatures associated with
the clinical response of ICB [19], including the tumor program
1 (TP1) and tumor program 2 (TP2) active in malignant cells
that may drive interactions with the immune system, as
well as the signature of immune checkpoint and evasion

(Supplementary Fig. 12). We found that the TAM-malignant cell
pair significantly rose to the top 3 ranks related to treatment
response in ICB-responders compared to untreated patient,
suggesting that TAMs affected the therapeutic responsiveness of
malignant cells.

Therefore, we speculated that the CCC changes generated by
TAM after ICB therapeutic intervention are crucial in mediating
immunotherapy response. On the basis, we then obtained the
differential expressed genes of TAMs derived from comparing
ICB-responder (P915) to the untreated patient (P76). Functional
enrichment analysis of GO-biological process revealed the up-
regulated genes after ICB treatment were related to several
processes involving immune response and cell death, such
as ’programmed cell death’, ’apoptotic process’, ’autophagy’,
’inflammatory response’, ’proliferation, differentiation and
activation of T cell’, and ’cytokine production’ (Fig. 5a). In
terms of pathways analysis, similar to GO-BP results, the
immune system, antigen processing and presentation, cytokine
signaling, and programmed cell death were significantly enriched.
Besides, metabolic pathways and VEGFA:VEGFR2 signaling were
also enriched (Fig. 5b). These results indicated the reinforced
immune regulating potential of TAM cells in ICB-responder
dataset.

Furthermore, the differences in L-R interactions between TAMs
and CD8+ T cells were further compared. To our surprise, there
was a significant increase in L-R pairs in the ICB-responder
dataset compared to the untreated one. In specific, according
to cellPhoneDB analysis, there were 62 L-R pairs between TAMs
and CD8+ T cells in the untreated patient while 1236 L-R
pairs in the ICB-responder patient, respectively. For the 1028
different LR pairs, we further investigated their correlation with
the clinical benefit of the ICI treatment. Using the average
expression of each LR pair, we found that 11 LR pairs exhibited
significant prognostic significance in two independent advanced
ccRCC cohorts following ICB immunotherapy (Supplementary
Fig. 11c). Importantly, their prognostic association was significant
only within subpopulations receiving ICB immunotherapy,
compared to Sunitinib [27] and mTOR inhibitor everolimus [28]
(Supplementary Fig. 13a and b). Furthermore, when combining the
average expression of these 11 L-R pairs, a similar prognostic asso-
ciation was observed in ICIB-treatment-only subpopulations but
not the targeted therapy subpopulations (Fig. 5d, Supplementary
Fig. 13c and d).

In summary, we attempted to apply scDCA in patients with dif-
ferent clinical phenotypes and explored the alteration in CCC that
have a unique contribution to clinical intervention and patient
prognosis. In the comparison of untreated and ICI-responder
patients of advanced RCC, scDCA helped discern the prominent
role of TAM in regulating the response of CD8+ T cells after
immunotherapy and the emerged L-R pairs showed potential that
mediating clinical benefit of immunotherapy.

Conclusions
In response to the computational challenge of deciphering the
downstream functional impact of CCC, we proposed a compu-
tational method, scDCA. It can innovatively prioritize cell type
pairs that play a dominant role in downstream functional impacts
(called DCA). In particular, scDCA builds the comprehensive struc-
ture of CCC at the single cell resolution to maximally leverage the
information from communicative heterogeneity and specificity.
We construct the multi-view graph convolution network based
on the scRNA-seq data to model the impact of different cell

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae663#supplementary-data
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Figure 4. The DCA that affects functional states of malignant cells is accurately deciphered. (a) Rank of attention weights of corresponding cell type
pairs (views) between malignant cells and other cell types in the model predicting the functional states of malignant cells. The heatmap displayed the
attention weights of each view obtained from repeated the training procedure 50 times. The bar plot represented the average attention weights of each
view. (b) UMAP of cell samples, followed by the expression pattern of VEGFA. (c) Expression distribution of the two metastatic regulators (TAM-specific
gene APOC1 and NK-specific gene CCL5) in different cell types. (d) Correlation analysis between signature of ’invasion-metastasis cascade’ states of
malignant cells and marker genes of TAMs and NK cells in the TCGA-KIRC samples (N = 607).

type pairs on the target gene expression or functional states of
cells. In advanced renal cell carcinoma dataset, scDCA reveals
the DCA that affects the key factors in CD8+ T cells and TAMs
as well as the multiple functional states of malignant cells. In
addition, it also provides insights into changes in DCA before and
after the immunotherapy so as to facilitate understanding of the
intercellular communication basis of the clinical response.

In the future, scDCA can be extended to incorporate single-cell
multiomics and spatial RNA-seq data to enhance its predictive
power for deciphering DCAs. By integrating molecular layers
such as proteomics and epigenomics, scDCA could refine
ligand–receptor interaction modeling and account for regulatory
mechanisms underlying gene expression. Spatial RNA-seq data,

with their spatial coordinates, would allow scDCA to identify
biologically plausible CCCs and construct spatially informed
CCC graphs. These advancements would improve graph-learning
approaches, enabling more precise modeling of CCC effects on
target genes and functional states.

While scDCA offers robust insights into CCCs, it has limitations.
First, scDCA is based on the construction of multi-view CCC
graph, so its accuracy is inevitably constrained by the current
completeness of the current ligand-receptor databases. Also, the
pre-constructed CCC graph might limited this method in gen-
eralization for novel cell types or conditions. Then, considering
the input data, single-cell RNA-seq data are usually sparse, so
the effect of this sparsity should be further considered in the
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Figure 5. The DCA associated with clinical response of immune checkpoint blockade is accurately deciphered. (a) Functional enrichment analysis of
GO-BP and KEGG pathways (b) for the differential expressed genes of TAMs derived from comparing the ICB-responder (P915) to the untreated patient
(P76). (c) Mapping of the rank changes of DCA for three signature genes from comparing ICB-responder (P915) to untreated patients (P76). (d) Kaplan–
Meier curves and log-rank test for the integration of the 11 L-R pairs in the two ICB-treatment-only subpopulations. The average expression of these LR
pairs was summed up for the prognostic association analysis. Left: data from ICB immunotherapy-only subpopulations of Motzer_NatMed_2020 cohort;
Right: data from ICB immunotherapy-only subpopulations of Braun_NatMed_2020_Checkmate025 cohort.

reconstruction model of gene expression. In addition, multi-view
graph learning of CCC network at single-cell resolution requires
sufficient computational resources, which may limit its the scal-
ability of scDCA. Addressing these limitations in future iterations
could further enhance our method’s applicability and accuracy
across diverse biological contexts.

Key Points

• As a new computational method, scDCA can be used
to decipher the dominant cell communication assembly
(DCA) of a particular functional event in receiver cells
from single-cell RNA-seq data.

• scDCA efficiently utilizes multi-view graph convolution
network and attention mechanism to reconstruct the
cell–cell communication landscape and identifies DCA.

• scDCA is successfully applied and validated in revealing
the DCA affecting the crucial gene expression in immune
cells and the functional states of malignant cells in
advanced renal cell carcinoma samples.

• scDCA is successfully applied and validated in exploring
the alteration of cell–cell communications under clinical
intervention.

• Our data, code, and a step-by-step tutorial are free avail-
able at a public GitHub repository: https://github.com/
pengsl-lab/scDCA.git.

https://github.com/pengsl-lab/scDCA.git
https://github.com/pengsl-lab/scDCA.git
https://github.com/pengsl-lab/scDCA.git
https://github.com/pengsl-lab/scDCA.git
https://github.com/pengsl-lab/scDCA.git
https://github.com/pengsl-lab/scDCA.git
https://github.com/pengsl-lab/scDCA.git
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Supplementary data is available at Briefings in Bioinformatics
online.
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