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Abstract

Identification of cancer subtypes is a critical step for developing precision medicine. Most cancer subtyping is based on the analysis
of RNA sequencing (RNA-seq) data from patient cohorts using unsupervised machine learning methods such as hierarchical cluster
analysis, but these computational approaches disregard the heterogeneous composition of individual cancer samples. Here, we used a
more sophisticated unsupervised Bayesian model termed latent process decomposition (LPD), which handles individual cancer sample
heterogeneity and deconvolutes the structure of transcriptome data to provide clinically relevant information. The work was performed
on the pediatric tumor osteosarcoma, which is a prototypical model for a rare and heterogeneous cancer. The LPD model detected
three osteosarcoma subtypes. The subtype with the poorest prognosis was validated using independent patient datasets. This new
stratification framework will be important for more accurate diagnostic labeling, expediting precision medicine, and improving clinical
trial success. Our results emphasize the importance of using more sophisticated machine learning approaches (and for teaching deep
learning and artificial intelligence) for RNA-seq data analysis, which may assist drug targeting and clinical management.
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Introduction
Cancer treatment approaches (and drug licencing) are largely
dictated by tissue site, but molecular profiling studies have shown
that heterogeneity exists in the cancer driver gene landscape
within and across tumor types [1]. A key objective of bioinfor-
matics is to translate these comprehensive inventories of cell
components and their mutations into mechanistic understanding
and more accurate diagnostic labeling, leading to the develop-
ment of stratified medicines and immunotherapies [2, 3]. Com-
putational biological approaches, including hierarchical, k-means,
and self-organizing clustering applied to cancer transcriptomes,
have categorized clinically relevant breast cancer subtypes [4]. For
rare cancers such as pediatric, adolescent, and young adult (AYA)
cancers, no associations between molecular profiles, clinical pre-
sentation, or survival outcomes are known; therefore, untargeted
chemotherapy remains the backbone of standard of care [5].
Pediatric and AYA cancers are clinically and biologically highly
distinct from adult cancers, so bioinformatics methods need to be
adapted and improved to make the best use of the few available
samples.

Bone and soft tissue sarcomas account for ∼1% of all cancer
diagnoses [6] but combined are the third commonest pediatric
and AYA cancer making up one in five cases [7]. Sarcomas
are characterized by abnormal terminal differentiation [8–
14] and genomes with complex structural rearrangements
[7]. Osteosarcoma is the commonest bone sarcoma in the

younger age group affecting ∼3–4 per million individuals globally
annually [6]. The disease typically originates in the metaphyseal
intramedullary cavity of a long bone such as the femur, tibia, or
humerus [15]. TP53 or RB1 loss-of-function or sometimes mutant
gain-of-function [16, 17] is required for tumorigenesis [18]. This
precursor cell does not enter apoptosis and instead undergoes
further mutation including whole-genome doubling [19] causing
disease progression and metastasis [20–22]. Osteosarcoma has
one of the highest structural rearrangement rates of any cancer
[23, 24]. This complex biology has routinely complicated discovery
studies aiming to identify osteosarcoma subtypes.

A lack of identification of biological subgroups, understanding
the role of the tumor immune microenvironment, factors that
promote treatment resistance and metastasis plus identification
of clinically relevant biomarkers of prognosis and drug response
[3] means that the osteosarcoma 5-year survival rate has stag-
nated at ∼50% for the last 45 years [6]. Phases I and II clinical
trials investigating new medicines have not advanced to phase III
[25–32]. The “failed” trials recruited patients with osteosarcoma
as one entity but data mining shows that there was a small
response rate (e.g., event-free, progression-free, etc.) in each trial
(∼5–15%). This small but importantly frequent response suggests
that there are clinically relevant disease subtypes responsive to
new therapies. The new medicines were not a total “failure” as
was concluded; rather, the drugs were not successful for pan-
osteosarcoma but could have become the standard of care for
selected patient groups.
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Table 1. Dataset characteristics. Overview of the RNA-seq datasets used in the study.

Dataset Primary Metastatic Cell line Circulating
tumor cells

Normal
Tissue

Platform Citation

GREEN 7 3 0 5 0 Illumina HiSeq 2000 Green et al. [40]
PERRY 35 0 0 0 0 Illumina HiSeq 2000 Perry et al. [41]
SCOTT 35 9 5 0 3 Illumina HiSeq 2000 Scott et al. [42]
TARGET 88 0 0 0 0 Affymetrix Human Exon ST Array phs000468
Total 165 12 5 5 3 Total samples: 190

For each dataset, the number of samples across different sample types (e.g., primary tissue, metastatic tissue, circulating tumor cells, etc.) is provided. The
sequencing platform used plus the citation of the original work is also included.

The prediction of osteosarcoma molecular subtypes has been
tested using classical unsupervised learning methods. These
studies support the existence of osteosarcoma subtypes [33,
34]. While original and important, a fundamental flaw to these
computational approaches is that they inherently understate
the heterogeneous composition of individual osteosarcoma
tumors and assume sample assignment to a particular cluster.
The analyses were performed in contrast to the well-reported
heterogeneous components of most individual cancer samples
[35–37]. Solid tumors are known to comprise different cell lineages
that manifest as intratumour variation in transcriptomic output
[9, 38].

Here, we used a more sophisticated unsupervised Bayesian
method termed latent process decomposition (LPD) [39], which
considers individual tumor sample heterogeneity. LPD is a Gaus-
sian mixed membership model where the gene expression profile
for a single sample is represented as a combination of the under-
lying latent (i.e., hidden) signatures with the combination weights
drawn from a Dirichlet distribution. Each latent signature has a
representative gene expression pattern. A given sample can be
represented over a number of these underlying functional states
or just one state. The appropriate number of signatures to use was
determined by the LPD algorithm [35]. Grouping patients using
this algorithm could provide clinical decision support.

Methods
Patients and datasets
We studied in silico data using four publicly available transcrip-
tome datasets with primary osteosarcomas where the library
preparation methods and sequencing parameters were not too
dissimilar. These datasets were referred to as GREEN [40], PERRY
[41], SCOTT [42], and Therapeutically Applicable Research to Gen-
erate Effective Treatments (TARGET) (https://www.cancer.gov/
ccg/research/genome-sequencing/target) initiative phs000468.
Patient and dataset characteristics including the sequencing
platforms used and clinical data location are provided in Table 1.
We retrieved the FASTQ files and performed quality control and
trimming using TrimGalore (v0.6.5). Alignment was executed
with HISAT2 (v2.1.0) against the reference human genome
from ENSEMBL (hg38). The resultant BAM files were sorted and
converted to SAM using SamTools (v1.11). Count matrices were
generated using the R (v4.2.1) package Rsubread (v2.12.2). All
processes were performed at the High Performance Computing
(HPC) unit (https://www.uea.ac.uk/groups-and-centres/research-
and-specialist-computing/high-performance-computing) at the
University of East Anglia.

LPD model development
LPD, a soft unsupervised Bayesian model, was used to classify
samples into subgroups termed “processes”. For the input, we

reduced the TARGET expression dataset to the top ∼500 tran-
scripts exhibiting the greatest variance (Supplementary File 1).
The LPD model objectively assesses the most likely number of
processes by tuning two hyperparameters: (i) the number of pro-
cesses and (ii) the process spread (sigma). To achieve this step,
we assessed the hold-out validation log-likelihood of the data
at various combinations of the hyperparameters. The optimal
combination number of signatures was identified as the point
with the highest log-likelihood just before the overfitting region
represented visually as a plateau. The hyperparameters deter-
mine the structure of the priors with the number of processes
influencing the Dirichlet distribution for mixture weights and
the sigma value affecting the Gaussian priors on gene expression
variance. The mathematical formulas underlying the processes
described above are reported [39]. To ensure robustness, LPD
was performed 100 times with varying random seeds using the
optimized parameters. Kaplan–Meier survival analysis and log-
rank tests were conducted to identify runs yielding subgroups
associated with a poor prognosis (e.g., low overall survival). The
LPD run exhibiting the survival log-rank value closest to the mode
was used for subsequent analyses.

LPD model and dataset validation
The ∼500 transcripts selected as the input for the TARGET dataset
were also used as the input for the LPD model in the GREEN,
PERRY, and SCOTT validation datasets. LPD was applied to each
dataset separately using the same hyperparameter optimization
described above. Due to the limited available clinical data in the
GREEN, PERRY, and SCOTT datasets, the optimal LPD run was
selected based on presenting a subtype closely resembling the
TARGET-LPD “poor prognosis” subtype based on Pearson correla-
tion of the median z-scores of the ∼500 input transcripts. For these
selected runs, clinical associations and sample type proportions
were evaluated. For the PERRY dataset, Kaplan–Meier and Cox
regressions were performed.

Comparative analysis of LPD to traditional
clustering methods
To assess the performance of LPD relative to traditional clustering
methods, hierarchical clustering (with Ward’s D2 linkage) and
k-means clustering (with Hartigan-Wong and 50 restarts) were
applied to the TARGET dataset. The optimal number of clusters for
each method was determined using the silhouette score. Kaplan–
Meier survival curves were generated for the resulting clusters
from each method to evaluate their ability to identify clinically
relevant subtypes.

Statistical analysis
All statistical tests were performed in R (v4.3.2). To characterize
the identified processes, each sample was assigned to the process
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that had the highest degree of membership. ANOVA and Chi-
square tests were used to compare sample type, age, ethnicity,
and sex across groups (where available) using Bonferroni cor-
rection for multiple comparisons. Cox regression was used to
determine the influence of process assignment on survival time.
Differentially expressed (DE) transcripts for each process were
identified using DESeq2 (v1.42.1) [43] with criteria set at absolute
log2 fold change >1.5 and adjusted p-value <0.01 using Benjamin–
Hochberg correction [44]. To ensure robustness, DE transcripts
were only accepted if they were present in at least 80% of the poor
prognoses runs. DE transcript functional analysis was performed
using the Gene Ontology (GO) [45] database through clusterPro-
filer (v4.10.1) [46].

Results
Bayesian unsupervised clustering
We analyzed 165 primary osteosarcomas using RNA-seq data
from the TARGET osteosarcoma initiative phs000468 plus the
GREEN [40], PERRY [41], and SCOTT [42] datasets (Table 1). To
expand our analysis, we also included 12 metastatic samples, 5
samples from cell lines, 5 circulating tumor cell samples, and
3 normal bone samples. LPD decomposes the expression pro-
file from each sample into underlying components termed “pro-
cesses.” By analyzing the relative abundance of these processes
within a sample, LPD can catalog complex data and objectively
assess the optimal number of processes. This assessment was
achieved through hold-out validation and by tuning the sigma
hyperparameter that represents the spread of the processes. The
optimal parameter combination was identified as the point with
the maximum log-likelihood prior to the onset of overfitting
(Figure 1a). For the model development dataset (TARGET), three
disease subtypes and a sigma value of −0.001 were determined.
To ensure robustness, LPD was iterated 100 times with varying
random seeds using this parameter combination. From these
iterations, 94 showed associations with a poor prognosis (e.g.,
low overall survival) subtype. The subtype with the survival log-
rank close to the mode (P = 5.92 × 10−05) was selected for further
analysis.

Characterization of the three osteosarcoma
molecular subtypes
Each process detected by LPD presented a degree of membership
reflecting the extent to which each subtype captured the tran-
scriptomic variability in the samples. We classified the samples
according to the process most abundant within them into three
groups termed TARGET LPD-1 (n = 26), TARGET LPD-2 (n = 39), and
TARGET LPD-3 (n = 23) (Figure 1b). We studied the associations
of each group membership with age, sex, ethnicity, vital status,
and survival probability. TARGET LPD-1 exhibited distinct clinical
characteristics: predominantly female and had a higher mortality
rate compared to patients in the other subtypes (P < 0.05 for both
comparisons; Supplementary File 2; Table 2). While the patients
in TARGET LPD-1 appeared to be younger than those in the other
subtypes, this difference did not reach statistical significance
after Bonferroni correction for multiple comparisons (P = 0.18).
Kaplan–Meier analysis confirmed a significantly lower overall
survival for patients with TARGET LPD-1 (P < 0.001; Figure 1c). Cox
regression models showed that patients with TARGET LPD-1 had
a 1.6-fold increased risk of death when compared to those with
TARGET LPD-2 (HR = 1.633, P < 0.001) (Supplementary File 2) and
a 1.1-fold increased risk when compared to those with TARGET
LPD-3 (HR = 1.144, P = 0.017) (Supplementary File 2).

Targetable genes in the three osteosarcoma
subtypes
To identify DE transcripts within the three LPD osteosarcoma sub-
types, we performed pairwise comparisons. We identified 679 DE
transcripts (336 upregulated, 343 downregulated) with an abso-
lute log2 fold change exceeding 1.5, an adjusted P-value below 0.01
and detection in at least 80% of the runs (Supplementary File 3).
GO enrichment analysis revealed 69 significantly altered biologi-
cal processes associated with these DE transcripts. Extracellular
matrix structure pathways were the most overrepresented with
35 genes involved (Supplementary File 4).

LPD model validation
To validate the model using the data available, we applied the
LPD model to the GREEN (n = 14), PERRY (n = 35), and SCOTT
(n = 52) datasets. Due to the limited clinical data in the validation
datasets, we selected the optimal LPD iteration for each dataset
based on its similarity to the poor prognosis TARGET LPD-
1 subtype (as determined by gene expression patterns). This
iteration identified two subtypes in GREEN (GREEN LPD-1, GREEN
LPD-2), three in PERRY (PERRY LPD-1, PERRY LPD-2, PERRY LPD-3),
and four in SCOTT (SCOTT LPD-1, SCOTT LPD-2, SCOTT LPD-3,
SCOTT LPD-4).

The GREEN subtypes exhibited differences in sample composi-
tion. GREEN LPD-1 (n = 10) was mostly comprised of primary and
metastatic samples (Chi-Square test, P = 0.006) (Supplementary
File. 2). GREEN LPD-2 (n = 4) exclusively consisted of circulating
tumor cells. No clinical data were available.

No significant associations were found between PERRY sub-
types and age, sex, or vital status. Kaplan–Meier survival curves
showed a nonsignificant (P = 0.15) trend toward poorer survival for
PERRY LPD-1 (n = 8) and PERRY LPD-2 (n = 14) when compared to
PERRY LPD-3 (n = 13) (Supplementary File 2).

Significant age differences were observed among SCOTT sub-
types (ANOVA, P = 0.005). Post hoc Tukey tests revealed that SCOTT
LPD-1 (n = 13) and SCOTT LPD-3 (n = 26) were significantly younger
than SCOTT LPD-4 (n = 7). SCOTT LPD-2 (n = 6) primarily consisted
of osteosarcoma cell lines (Chi-square, P < 0.001) (Supplementary
File 2). SCOTT LPD-1 was the only group without normal bone
samples. No survival data were available.

Shared molecular mechanisms between the
“poor prognosis” subtypes
To identify potential shared molecular mechanisms underlying
the poor prognosis phenotype, we performed DE analysis and
GO enrichment on the disease subtypes most closely resembling
TARGET LPD-1. These subtypes were GREEN LPD-1 (Pearson cor-
relation, P < 0.001), PERRY LPD-2 (Pearson correlation, P < 0.001),
and SCOTT LPD-1 (Pearson correlation, P < 0.001) (Figure 2). A
complete list of DE transcripts and enriched biological processes
is presented in Supplementary File 5. We defined a core gene
set comprising eight transcripts shared across all datasets (three
upregulated: ANGPT1, CGREF1, KAZALD1; five downregulated:
CILP, COL25A1, MASP1, SDK1, SEMA5B) (Figure 3).

LPD outperforms traditional clustering methods
We compared the prognostic capabilities of LPD to the traditional
clustering methods hierarchical and k-means using the TARGET
dataset. Based on silhouette scores (Figure 4a), the optimal num-
ber of clusters for both hierarchical and k-means clustering was
three, followed by six. Subsequent Kaplan–Meier survival analyses
(Figure 4b) revealed no significant differences in survival between
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Figure 1. Latent process decomposition model optimization, subtype assignment and clinical outcome. (a) Hyperparameter optimization for the TARGET
dataset. LPD assesses the explanatory power of different combinations of sigma values (process spread) and the number of processes. The optimal
combination is determined as the point of maximum log-likelihood before the onset of overfitting, visually identified as a plateau in the curves. For the
TARGET dataset, the optimal parameters were three processes and a sigma value of −0.0001. (b) Sample assignment to subtypes. Bar plot illustrates
sample assignment to the three identified subtypes based on their degree of membership (gamma value). Higher gamma values indicate stronger
membership in a specific subtype reflecting the extent to which each subtype captures sample-specific transcriptomic variability. (c) Kaplan–Meier
curves illustrate the survival probability over time for each subtype. Pairwise comparisons between subtypes are shown with log-rank p-values and
sample sizes provided for each comparison.
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Table 2. Clinical characteristics of the three disease subtypes.

LPD-1 LPD-2 LPD-3 P value

n 26 39 23
Age Median 12.5 15 15 0.184

IQR 10–15.8 13–17.5 12–18
Sex Female 17 9 11 0.01

Male 9 30 12
Ethnicity Asian 2 3 2 1.00

Black/African descent 2 3 2
Caucasian/European descent 12 27 13

Vital status Alive 10 31 16 0.004
Dead 16 7 6

For each subtype, median age and interquartile range (IQR) are provided. Sex, ethnicity, and vital status distributions are shown, along with corresponding P
values from ANOVA (age) and chi-square tests (sex, ethnicity, vital status). P values are Bonferroni-adjusted for multiple comparisons.

Figure 2. Correlation of gene expression profiles between poor prognosis TARGET LPD-1 and corresponding subtypes. Scatter plots comparing the
expression levels of the top 500 most variable transcripts across the entire TARGET dataset between TARGET LPD-1 and the corresponding most similar
subtypes from the GREEN (GREEN LPD-1), PERRY (PERRY LPD-2), and SCOTT (SCOTT LPD-1) datasets. Trend lines and Pearson correlation coefficients (r)
with corresponding P-values are displayed for each comparison.

Figure 3. Overlap of DE transcripts. Venn diagram illustrating the overlap of DE transcripts between TARGET LPD-1 and the most closely correlated
subtypes from the GREEN, PERRY, and SCOTT datasets. The diagram quantifies the number of DE transcripts in each dataset and identifies eight
transcripts shared across all four poor prognoses datasets.
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Figure 4. Comparative evaluation of traditional clustering methods. (a) Silhouette analysis to determine the optimal number of clusters for hierarchical
and k-means clustering in the TARGET dataset. Three clusters were identified as optimal, with six clusters showing similar performance. (b) Kaplan–
Meier survival curves comparing patient survival based on hierarchical and k-means clustering groups using both three and six clusters as suggested
by the silhouette analysis. Log-rank test was used to assess statistical significance.

the clusters (P > 0.05) indicating that these classical methods
failed to identify prognostic subgroups comparable to those
identified by LPD.

Discussion
Bioinformatics approaches applied to cancer transcriptome data
have categorized clinically relevant breast cancer subtypes [4]. For
“difficult” cancers such as osteosarcoma no associations between
molecular profiles, clinical presentation, or survival outcomes are
known; therefore, untargeted chemotherapy remains the back-
bone of treatment. Because of the challenges associated with
these difficult cancers (e.g., rarity, heterogeneity, lack of funding,
etc.) computational methods need to be adapted and improved to
make the best use of the few available samples. We have used a
more sophisticated unsupervised Bayesian method termed LPD,
which considers individual tumor sample heterogeneity (where
previous methods do not). Our results confirmed the emerging
prediction that osteosarcoma is not one disease. Using 165 pri-
mary osteosarcomas to develop the model, we detected three
clinically relevant disease subtypes. One subtype in particular
was significantly associated with a poor prognosis, at least, when
treated with chemotherapy. In the future, clinical trials should
group patients with osteosarcoma according to their subtype
(based on gene expression) so that treatment is tailored to their
disease. We expect that this new diagnostic labeling followed by
stratified treatment will significantly improve osteosarcoma sur-
vival; as well as other challenging cancers that might be assessed
by LPD.

Our analyses uncovered a core gene set of eight consistently
dysregulated transcripts across several osteosarcoma datasets.
These genes are promising candidates for biomarker development
and therapeutic targeting. Several of these genes have been
studied in osteosarcoma including ANGPT1 upregulation associ-
ated with nonmetastatic disease [47] and CGREF1 overexpression
linked to a poor prognosis [48]. KAZALD1 is overexpressed in

osteoblastic osteosarcoma and carcinoma-associated fibroblasts
[49, 50] and CILP under expression is a known feature of the
disease [51]. Although not directly linked to osteosarcoma,
COL25A1 expression has been studied as a potential pancancer
prognostic indicator alongside other collagen family genes [52].
MASP1, involved in the immune response, lacks an association
with osteosarcoma in the literature but might influence the
tumor microenvironment. SDK1 and SEMA5B implicated in
prostate and kidney cancer, respectively [53, 54], represent novel
gene candidates with potential implications for understanding
osteosarcoma heterogeneity.

Previous work using an unsupervised machine learning strat-
egy defined a repertoire of independent components describing
the transcriptional program of osteosarcoma tumors and tumor
microenvironments at diagnosis [34]. Using a 15 gene signature
in a cohort of 82 patients, the study discriminated “favourable”
and “unfavorable” prognoses, proposing two tumor phenotypes
already present at diagnosis and presumed to respond differen-
tially to treatment [34]. Favorable prognosis tumors termed G1
were associated with innate immune expression. Unfavorable
prognosis tumors termed G2 were associated with a tumor
microenvironment comprising angiogenic, osteoclastic, and adi-
pogenic activities prone to induce metastases [34]. At the clinical
level, this G1/G2 framework was consistent with the observed
efficacy of tyrosine kinase inhibitors with antiangiogenic activity
in relapsed osteosarcoma [55]. The inefficacy of zoledronate
in frontline osteosarcoma treatment [56] was thought to be
partially linked to its action on the immune system [57]. In the
context of the current work, we also observed dysregulation
of immune-related transcripts between the detected subtypes.
These independent analyses emphasize the future important role
of immunotherapies in osteosarcoma treatment.

An important issue for patients diagnosed with osteosarcoma
is that the clinical outcome is highly variable. Precise prediction
of disease progression at the time of diagnosis is not possible.
In some retrospective studies, more than 90% tumor necrosis
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after induction therapy is associated with increased survival [58].
Around 45% of patients do not achieve this threshold. It is still
not possible to predict who is likely to respond to chemotherapy.
The limited number of studies investigating drug resistance has
not been able to describe refractory disease or predict response
[59, 60]. Augmenting cytotoxic regimens has been unsuccessful.
The addition of ifosfamide and etoposide to the methotrexate,
doxorubicin, and cisplatin (MAP) chemotherapy backbone has
not improved survival [61, 62]. The limits of toxicities have been
reached, so it is unlikely that progress will be made through
trials of drug variations that are “more of the same” [13]. Novel
strategies beyond cytotoxic chemotherapy are required to achieve
an increase in cure rates [13]. There is an urgent need for the
identification of osteosarcoma categories linked to targeted ther-
apies. For breast cancer, machine learning-based clustering of
transcriptome data has resulted in a classification system that
is used to guide disease management and treatment.

Data platforms, e.g., The Cancer Genome Atlas, include gene
expression, mutation, and methylation data for several cancer
types. The relative ease of downloading data from multiple
platforms has prompted the development of new computational
methods for subclass discovery including the copula-mixed
model [63], Bayesian consensus clustering [64], and the iCluster
model [65], which can combine data from the different platforms.
Within machine learning approaches, such analyses are termed
“supervised” or “unsupervised” [66]. In a supervised setting, the
objective is to identify transcriptomic variations that predict
disease state or are strongly correlated with clinically significant
variables [67, 68]. Unsupervised learning typically involves
identifying latent substructures in the data that can be used
to learn more about disease etiology such as cancer subtypes
[69, 70]. Such approaches, however, suffer the problem of sample
assignment to a particular cluster or group and the failure to take
into consideration the heterogeneous composition of individual
samples. These fundamental flaws highlight the need to develop
more sophisticated methods similar to LPD that can be applied to
multiple platform data [35].

In summary, we have established a novel stratification frame-
work for the analysis of osteosarcoma that has its origins in
unsupervised machine learning analyses of transcriptome data
that also considers the heterogeneous composition of individual
cancer samples. This framework has identified three osteosar-
coma disease subtypes. One of the subtypes was found to respond
poorly when treated with a MAP chemotherapy backbone. These
data will be critical for future diagnostic labeling and sorting
patients into groups before clinical trial allocation and adminis-
tering more effective stratified medicines. In future, we plan to
analyze the utility of LPD in managing patients with osteosarcoma
including predicting the response to experimental drug treat-
ments. This work will be performed through the assessment of
LPD status in the contexts of clinical trials.

Limitations of the study
Two of the key limitations of the study were the small dataset
used for the LPD model development (n = 88) and the incom-
plete clinical data in the validation cohort (n = 77). Access to
tissue and linked clinical data is particularly challenging for
osteosarcoma due to the rarity of cases, limited biopsy mate-
rial, and the extensive chemotherapy-related damage present in
posttreatment samples. These problems paired with also needing
to analyze publicly available RNA-seq data where the library
preparation methods and sequencing platforms are not dissimilar

makes more sophisticated analyses such as LPD more challeng-
ing. These types of studies typically require thousands of samples
with associated (and consistent) clinical data. Despite the issues
faced, the LPD approach was robust, with the biologically defined
subgroups appearing across four different datasets. As with all
machine learning methods, their output significantly improves
and refines with the addition of more samples. The recent release
of new Europe-wide clinical guidelines for improving bone sar-
coma biological sample and associated clinical data collection [3]
means that it is reasonable to presume that a second version of
the LPD model, perhaps performed in ∼5 years’ time, might reveal
even more molecular subtypes.

Key Points

• There is a current lack of a machine learning solution
that can assess a patient’s rare and difficult cancer (e.g.,
osteosarcoma) subtype based on RNA-seq data.

• We have developed a Bayesian unsupervised clustering
model for three osteosarcoma disease subtypes. The
models are structured to output gene expression and
functional analysis data that can be used for stratifying
treatment beyond that of untargeted chemotherapy.

• This new machine learning algorithm should be used
to classify patients with rare cancers such as osteosar-
coma. The new tool could help clinicians and clinical
trialists to predict the response to new and experimental
drugs.
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