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Abstract

Complex direct and indirect relationships between multiple variables, termed higher order interactions (HOIs), are characteristics of
all natural systems. Traditional differential and network analyses fail to account for the omic datasets richness and miss HOIs. We
investigated peripheral blood DNA methylation data from Kabuki syndrome type 1 (KS1) and control individuals, identified 2,002
differentially methylated points (DMPs), and inferred 17 differentially methylated regions, which represent only 189 DMPs. We applied
hypergraph models to measure HOIs on all the CpGs and revealed differences in the coordination of DMPs with lower entropy and higher
coordination of the peripheral epigenome in KS1 implying reduced network complexity. Hypergraphs also capture epigenomic trans-
relationships, and identify biologically relevant pathways that escape the standard analyses. These findings construct the basis of a suit-
able model for the analysis of organization in the epigenome in rare diseases, which can be applied to investigate mechanism in big data.
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Introduction
Omic datasets, such as epigenomics and transcriptomics, are
usually interpreted using a differential analysis approach, which
treats each variable independently. A complementary approach
is a network-based analysis, which models biological systems
as pairs of interacting variables [1]. Network-based models can
identify core clusters of genes that are likely to be mechanistically
relevant but can miss complex direct and indirect relationships [2]
especially those between multiple variables [3].

Complex systems can rarely be captured by their pairwise
dynamics alone [4,5]. Rather, natural systems demonstrate rela-
tionships between multiple variables [6] known as higher order
interactions (HOIs). HOIs have been shown to mark biological phe-
nomena such as stem cell development [7] and embryo implan-
tation [8]. HOIs can be measured by hypergraphs, which are a
generalization of a graph (network) in which an edge can join
any number of vertices. Hypergraphs can reveal mechanistic
insights that can escape traditional analyses [9–11], including the
impact of both HOIs [4,12] and direct and indirect interactions.
Importantly, hypergraph models are viewed as mechanistic and

do not rely on qualitative assessment of gene ontology to establish
function [9–11,13].

Elements of complex systems are coordinated by HOIs [10].
This coordination can be assessed using entropy [14], which mea-
sures network structure, combined with measuring network path
directness. They have been used to examine early human embry-
ology [7,15] and hypergraph topology has been used to assess
mechanism in neural, ecological and social systems [12]. Recently,
efficient imputation of multi-tissue and cell-type gene expression
has been achieved using a hypergraph approach [16]. However,
hypergraphs have not yet been used to assess mechanistic rela-
tionships in human diseases. In this study, we have tested the
hypergraph approach in context of epigenomic data from a rare
disease, Kabuki syndrome (KS) type 1.

KS is one of the commonest Mendelian histone lysine methy-
lation disorders [17]. Most KS cases are caused by heterozygous
loss-of-function variants in H3K4 methyltransferase 2 D (KMT2D)
(Kabuki syndrome type 1 [KS1], OMIM#147920), while less than
5% of cases are caused by X-linked KDM6A variants (KS2,
OMIM#300867) [18–20]. By regulating enhancer and promoter
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Figure 1. Experimental design to assess the coordination of peripheral blood DNA methylation associated with Kabuki syndrome. The core features of the
experimental design used to assess differences in the coordination of the epigenome between KS1 and controls. A) Peripheral blood DNA methylation
is used to identify differences in the epigenome between KS1 and controls. Differentially methylated points (DMPs) and regions (DMRs) are defined
using a statistical approach. B) Pairwise associations are defined between DMPs (A-D) and all remaining CpGs (W-Z). These bipartite network models
distinguish HOIs from pairwise associations in the epigenome. Associations with CpGs which are common between DMPs can be considered HOIs
between DMPs, or hyperedges, described here by sets w-z. C) To measure coordination of these higher order networks, an indicator of function, Shannon
entropy is calculated on the distribution of edge dimensions. D) Hypergraph models are generated from these bipartite structures and refine clusters
of coordinated DMPs (green box) as well as implicating a wider set of CpGs as potentially indirectly co-regulated (red box).

elements, KMT2D controls the access of transcription factors and
other proteins to DNA and therefore controls gene transcription
and regulation [21–25]. Clinically, KS is characterized by distinct
facial dysmorphism, intellectual disability, developmental delay,
and a range of internal organ malformations such as congenital
heart defects, skeletal defects, cleft palate and genitourinary mal-
formations [26]. In addition, affected individuals are susceptible to
several functional anomalies (e.g., endocrine disorders, deafness)
and immune defects [26–28].

DNA methylation can act in both a cis- and trans-regulatory
manner in the control of gene expression [29], however even
those studies which investigate trans-interactions do not con-
sider higher order effects. Here, we have integrated KS1 and
control genome-wide DNA methylation data from three studies
to identify novel differentially methylated CpGs (differentially
methylated points [DMPs]) and differentially methylated regions
(DMRs). To identify HOIs in the KS1 epigenome we have generated
hypergraph models of observed methylation patterns, assessed
epigenomic coordination by quantifying the entropy of those net-
work models, and investigated the directness of the relationships
between epigenomic points defined by them (Fig. 1). We reveal
multiple novel, biologically relevant relationships in KS1 utilizing
a methodology which captures the HOIs of complex systems more
completely [30] and is therefore better able to capture causally
relevant associations [31–33]. Overall, we show that hypergraphs
allow investigation of the entire epigenome, including coordi-
nation over genomic distance, in the context of a rare disease,

and provides a new quantifiable framework to investigate causal
relationships.

Material and methods
Data acquisition
Peripheral blood DNA methylation data from individuals with
KS1 and controls was obtained from previously published studies
namely Butcher et al., Sobreira et al. and Cuvertino et al. [34–36].
Of note, we only included data from individuals with variants
that could be definitely predicted to cause KS1. Specifically, from
the dataset of Butcher et al. [35], we excluded 32 individuals
with CHARGE syndrome (OMIM#214800) [11]. From the dataset
of Sobreira et al. [36], we excluded two individuals with KMT2D
variants of uncertain significance and six individuals with other
variants. From the dataset of Cuvertino et al. [34], we excluded
four individuals with exon 38 and 39 missense KMT2D variants
that cause a syndrome that is genetically, epigenetically, and
phenotypically distinct from four KS1 individuals.

Data processing
All statistical analyses were performed in R 3.4.1 (www.r-project.
org) [37]. The studies reported by Butcher et al. (GSE97362) and
Sobreira et al. (GSE116300) were performed using Illumina Human
Methylation 450 K (hereafter called 450 K arrays) [35,36] and
Cuvertino et al. used Infinium Methylation EPIC bead chip (Illu-
mina) [34]. In order to make the datasets comparable we removed
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all non-matching probes between the EPIC and 450 K arrays using
the Bioconductor package minfi [38]. Distribution of cell types
within the whole blood samples were estimated and adjusted
using the established Houseman method for each individual [39].
Initial data quality was measured by removing the methylated
and unmethylated background signal levels exceeding the detec-
tion threshold of P > 0.01. In addition, to minimize the differences
between the samples, we excluded cross-reactive probes [40],
probes on sex chromosomes and those that are age-associated
[41–43]. Raw beta values were logit transformed to M values
following functional and quantile, within array, normalizations
(SWAN) [44]. We used a z score to normalize data for the study.

Identification of significant DMPs and DMRs in
KS1
Methylation data were analysed using the ChAMP [45] pipeline in
R 3.4.1. DMPs were identified using a linear modelling approach to
identify differentially methylation levels between groups of sam-
ples. DMRs were identified using the Bumphunter [46] method
which defined DMRs as genomic regions with more than seven
DMPs, with a maximum gap of 300 bp between DMPs. This tech-
nique performs a randomized permutation approach to identify
regions with greater than expected number of DMPs. A false
discovery rate modified P < 1 × 10−4 was used to identify sig-
nificantly DMPs between KS1 individuals and controls. Z-scores
of all methylated positions (3,166 probes) were analysed using
Qlucore Omics Explorer 3.4 (Qlucore, Lund, Sweden). Principal
components analysis (PCA) was used to visualize clustering of the
samples based on DMPs between groups. A heatmap was gener-
ated using R package heatmap.2 to examine clustering of DMPs
using the Euclidean metric. Relation to the island distribution
graph was generated in R 3.4.1.

Statistical analysis
Significant differential methylation was defined as those CpGs
with a false-discovery rate modified (FDR) P < 1 × 10−4. FDR
correction was done using the Benjamini-Hochberg method on
probes which passed the significance threshold individually.
When assessing contribution of those DMPs to DMRs, P-values
represent the percent of permuted regions with more extreme
methylation than the null distribution; the family-wise error rate
(FWER) values represent the proportion of permutations with at
least one region with more extreme methylation than the null
distribution [38,46].

When interpreting analyses of direct paths present in the
network structures, Wilcoxon and Fisher’s exact tests were used.
Wilcoxon tests were performed to assess the significance of dif-
ferences between distributions; Fisher’s exact tests were used to
assess differences in contingency tables.

We used a Bayesian approach to model the differences in
entropy between hypergraph structures in pathways identified
as being significantly enriched between KS1 and controls. We
iterated 100 hypergraphs each, from genes attributed to the signif-
icant pathways and calculated entropy on each of these networks.
The distribution of entropy values was resampled 10,000 times
and the difference between posterior distributions was compared.
When the 89% credible interval of the difference between the
two distributions did not include 0, the difference was defined as
significant. Results were plotted for pathways demonstrated to be
significant.

Gene ontology and epigenetic landscape
CpGs in 450 K and EPIC arrays were annotated using the
method incorporated into the ChAMP pipeline, utilizing Infinium

HumanMethylation450 v1.2 and Infinium MethylationEPIC
v1.0 datasets from Illumina, respectively, each curated with
UCSC Genome Browser annotations. Gene ontologies associated
with DMPs, DMRs and elements refined from the hypergraph
approaches were assessed using WEB-based Gene SeT AnaLysis
Toolkit (WebGestalt 2019) [47]. UCSC Genome browser database
was used to study the epigenetic landscape (H3K4me1, H3K4me3
and H3K27ac) of selected DMRs [48] in human blood cells (B cell,
CD133HSC, Neutrophils) (Bernstein Lab, Broad Institute, ENCODE
consortium).

Hypergraph analysis
A hypergraph is a generalization of a network structure wherein
an edge can connect an arbitrarily large number of vertices. This
enables hypergraphs to capture associations between multiple
factors, believed to be important in defining causality in complex,
dynamic and possibly non-deterministic systems [31–33]. Hyper-
graph models were generated here to model the relationships
between a target set of epigenetic variables (as vertices), con-
sidering the backdrop of broader epigenetic variation (as edges)
[9–11,30]. These analyses were performed separately for controls
and KS1 to produce separate hypergraph models of healthy and
disease methylome network structure. Due to the highly multi-
variate nature of the hypergraph models, we have not limited our
approach to assessing cis-regulatory associations only.

Correlations were calculated between DMPs that distinguish
KS1 from controls, and all other CpGs, which are not differentially
methylated, using R (v3.4.1 [37]). To generate the hypergraphs,
these correlation matrices were binarized using an R cut-off equal
to the standard deviation of the absolute correlation values, such
that only larger (positive or negative) correlations are retained.

The resulting matrix (M) is a bipartite network (Fig. 1B) which
describes pairwise associations between DMPs and all remaining
CpGs. This also represents the incidence matrix of the hypergraph,
where correlations shared between DMPs represent hyperedges
connecting DMPs as vertices in the hypergraph, identifying groups
of DMPs whose methylation patterns are coordinated with thou-
sands of other CpGs. This matrix was then multiplied by the
transpose of itself

(
Mt

)
to give the final matrix

(
M· Mt

)
whose

values describe the number of correlations any pair of DMPs share
across the methylome; this represents the adjacency matrix of the
hypergraph [49,50].

By hierarchical clustering of the hypergraph adjacency matrix,
represented using a heatmap, a primary cluster of DMPs can be
refined, connected by a large number of hyperedges. The specific
hyperedges connecting groups of DMPs are CpGs which can be
identified from the incidence matrix, to associate a wider element
of the methylome with KS1. To do this, we refined the incidence
matrix of the hypergraph to a set CpGs which are associated with
>95% of the target DMPs.

Non-negative matrix factorization
Non-negative matrix factorization (NMF) clusters the correlation
matrix of DMP coordination based on the contribution of each
DMP to an underlying linear model [51]. This approach can be
used to measure coordination between DMPs and represents a
computationally intensive validation of the hypergraph approach
presented in this study.

A correlation matrix was generated between the target DMPs
and the remaining CpGs, limited to the 100,000 CpGs with the
smallest P-values due to computational constraints. NMF was
performed and the resulting matrix was clustered to refine sets of
DMPs with similar relationships to one another when compared
to the remaining CpGs. We investigated the overlap between
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clusters generated by NMF and those generated by hypergraph
approaches.

Entropy
Entropy is a mathematical property quantifying organization. In
information theory, Shannon entropy can be used to describe the
range of expected outcomes, expressed as a probability distribu-
tion of the outcomes; in network analysis, this can be equated
to the distribution of connections between vertices. In gene reg-
ulatory networks, connections between vertices represent the
existence of possible associations between genes; hypergraphs
allow us to more completely capture those associations com-
pared to pairwise network approaches and entropy provides a
metric by which we can describe the structure of the resulting
network. Network entropy has been demonstrated as informative
in defining cellular differentiation potential [52] and in inferring
causal relationships between network elements [53]. Specifically,
high entropy describes more uniform networks and has been
associated with less differentiated cellular states [52].

Shannon entropy was calculated within the central cluster of
the adjacency matrix of each hypergraph. The values were com-
pared to those calculated from hypergraphs of randomly selected
CpGs, to assess whether coordination of DMPs was different to the
rest of the methylome. This was iterated 1,000 times for both KS1
and controls.

Network silencing
To assess the underlying map of DMP coordination, analyses
were performed to refine the direct elements from the hyper-
graph structure. This approach uses matrix transformation to
discriminate direct from indirect associations and potentially
refines functional or causal relationships [2] between network ele-
ments. We utilized the method introduced by Barzel and Barabási
(Supplementary Formula 1), to silence indirect connections in the
hypergraph structure. We then converted the remaining values
into Z-scores to assess the distribution of direct network connec-
tions in KS1 and controls.

Having assessed differences between the directly connected
elements in KS1 and controls, we identified elements which
were present uniquely in each group. These unique elements
were assessed for associations with known biology via gene
ontology analyses. Finally, we assessed the proximity of DMPs
defined as directly associated to determine the distribution of cis-
versus trans-regulatory associations. We defined cis-associations
between DMPs as those where the elements were less than
1 Mb apart; elements more distant than this were labelled trans-
associations.

Results
DMR analysis using integrated dataset identifies
new biological processes disrupted in KS1
We set out to identify the DMRs in KS1 compared to controls.
We identified 417,217 common probes across the three peripheral
blood DNA methylation array datasets to enable comparison
between data from 22 individuals with KS1 and 138 controls
(Fig. 2A). PCA analysis performed using only DMPs demonstrated
segregation of KS1 individuals from controls suggesting robust-
ness of our data integration (Fig. 2B).

From this dataset, we identified 2,002 DMPs in the KS1 samples
compared to the controls (FDR < 1 × 10−4). Of these, in KS1 753
DMPs were hypermethylated and 1,249 were hypomethylated
(Fig. 2C). Our analysis identified more DMPs compared to previous

studies [35,36]. DMPs were found to be located predominantly in
CpG islands and open sea (4 Kb from CpG islands) regions (Fig. 2D).

Using these DMPs, we identified 208 DMRs (> 7 annotated
DMPs) between KS1 and controls (87 hypermethylated and 121
hypomethylated, FDR < 1 × 10−3) (Fig. 3A). Of these, 17 DMRs
(11 hypermethylated and six hypomethylated) passed the cut-
off of FWER<0.05 (Table 1) (Fig. 3B). Our analysis validated three
previously identified DMRs (HOXA4, HOXA5, HOXA6) [35,36] for
KS1, and identified 14 additional DMRs, even though the cut-offs
used here were more stringent than the previous studies [35,36].

We then performed gene ontology analysis using the 17 sig-
nificant DMRs. This showed genes within these regions to be
associated with embryonic skeletal system morphogenesis and
development (HOXA2, HOXA4, HOXA5, HOXA6, MSX1, MATN4,
COL9A3), anterior/posterior pattern specification and embryonic
organ morphogenesis (HOXA5, HOXA4, HOXA6, HOXA2, MSX1)
(Fig. 3C).

Next, using Encode data we analysed the epigenetic landscape
of the DMRs in human blood cells (B cells, CD133 hematopoietic
stem cells, and neutrophils) using the UCSC genome browser
(Supplementary Fig. S1 and Supplementary table 1). These
cells were chosen because our DNA methylation dataset is
from peripheral blood DNA samples. Seven out of 17 DMRs
showed H3K4me3 and H3K27Ac marks indicating transcriptional
activity in these cells. As DNA methylation regulates gene
expression, we also evaluated the level of expression of the
genes corresponding to the identified DMRs in RNAseq datasets
(GSE126167, GSE126166) [54] from human or mouse KS1 cell
models. In murine HT22 cells with homozygous deletion of the
catalytic SET domain of Kmt2d, Hoxa2, and Aire were differentially
expressed while Npy and Col9a3 were down-regulated in EdU+ DG
nuclei of Kmt2d+/−βgeo mice compared to controls [54].

Collectively, these results reveal evidence of disruption of
several disease relevant biological processes in peripheral blood
derived epigenome of KS1, and thus demonstrate the power of
data integration in revealing novel mechanistic insights.

Hypergraph analysis identifies differences
between biological pathways enriched in KS1
and control DMPs
Although informative, the 17 significant DMRs collectively repre-
sent only 189/2,002 significant DMPs. Hence, the DMR analysis
ignored the functional relevance of >90% (1,817 out of 2,002) of
the significant DMPs. This is especially true for DMPs present in
open sea regions, where CpGs and probe density are lower, thus
reducing the chances of identifying DMRs (Fig. 2D). We, therefore,
wanted to interrogate the mechanistic relevance of all signifi-
cant DMPs. However, methylation status of DMPs or CpGs could
directly or indirectly affect the methylation status of other DMPs
or CpGs. In other words, DMPs are likely to have a complex coordi-
nation with other DMPs and other CpGs. Hence, treating DMPs as
independent variables and simply looking for enrichment of genes
in the DMP datasets could be misleading. We, therefore, employed
a hypergraph approach to identify groups of DMPs exhibiting HOI
utilizing the entire epigenomic dataset [10,11,13]. In this context,
the hypergraph summarizes correlations between each DMP and
all remaining CpGs to infer relationships between DMPs; larger
numbers of shared correlations between DMPs indicate higher
order relationships.

Applying this hypergraph approach showed that 986/2,002
DMPs in KS1 and 1036/2,002 DMPs in controls were highly
coordinated (appearing as heatmap clusters in Fig. 4A and 4B).
This means that methylation of these DMPs in KS1, or in controls,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae667#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae667#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae667#supplementary-data
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Figure 2. Peripheral blood DNA methylation reveals differences between KS1 and controls. A) Differentially methylated points are identified between KS1
and control patients. Control samples are indicated in yellow, KS1 in blue. B) Principal component analysis (PCA) of the peripheral blood DNA methylome
demonstrates variation between KS1 and control samples. Shapes are used to differentiate the studies from which data were drawn: circles represent
samples from Butcher et al., squares represent Sobreira et al. and triangles Cuvertino et al. C) a heatmap of relative methylation of DMPs (FDR).

Table 1. List of DMRs including chromosome (Chr), gene annotation, relative methylation value, P-value and family wise error rate
(FWER) corrected P-value. DMRs with FWER<0.05 are included.

DMR Chr Genes Value P-value FWER

DMR 1 chr7 HOXA5 7.87 <2.2 × 10-16 <2.2x10-16
DMR 2 chr14 LTB4R2 8.76 <2.2 × 10-16 <2.2 × 10-16
DMR 3 chr8 MIR596 9.88 <2.2 × 10-16 <2.2 × 10-16
DMR 4 chr7 HOXA4 -6.65 <2.2 × 10-16 <2.2 × 10-16
DMR 5 chr7 HOXA6 8.16 <2.2 × 10-16 <2.2 × 10-16
DMR 6 chr7 HOXA2 -6.26 <2.2 × 10-16 <2.2 × 10-16
DMR 7 chr6 – 6.36 6.86E-06 0.001
DMR 8 chr7 NPY 7.55 4.80E-05 0.001
DMR 9 chr4 MSX1 -6.64 5.72E-05 0.001
DMR 10 chr20 MATN4 6.33 8.23E-05 0.002
DMR 11 chr17 BRCA1 -6.01 8.23E-05 0.005
DMR 12 chr22 CPT1B 5.98 1.23E-04 0.008
DMR 13 chr6 C6orf27 -5.86 8.46E-05 0.012
DMR 14 chr21 AIRE 6.18 1.67E-04 0.02
DMR 15 chr3 RAD18 84.13 9.60E-05 0.041
DMR 16 chr20 COL9A3 -4.47 1.03E-04 0.045
DMR 17 chr3 MCCC1 9.30 1.23E-04 0.05
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Figure 3. KS1 results in differences in methylated regions between KS1 and controls. A) Differentially methylated regions are identified between KS1
and control patients. Control samples are indicated in yellow, KS1 in blue. B) Ideograms show the 17 DMRs (FWER<0.05).

is highly interrelated. These results were validated using an
independent approach of non-negative matrix factorization
(Supplementary Fig. S2). Interestingly, 822/2,002 highly coordi-
nated DMPs were found to be shared across both KS1 and control
samples. This implies that 164/986 KS1-exclusive DMPs represent
likely new disorder-specific interactions and 214/1,036 controls
DMPs represent the interactions that are likely lost in KS1 (Fig. 4C).

Next, we performed gene ontology analysis on the 986 KS1
coordinated DMPs and identified an enrichment for genes
(P < .05, FDR > 0.05) associated with connective tissue devel-
opment (TGFB1), cartilage development (TGFB1) and neuronal
migration (TGFB1, NAV1). In contrast, gene ontology analysis
performed on the 1036 control coordinated DMPs demonstrated
an association with response to interleukin-17 and vitamin D
(Supplementary Fig. S3).

To further explore the functional relevance of DMPs and CpGs
identified in hypergraph models, we investigated expressional
changes of genes representative of these locations in previously
published RNAseq datasets (GSE126167, GSE126166) of KS1
(Supplementary Fig. S4). Complex patterns of expression were
observed between samples, with wild-type samples showing
gene expression levels distinct to those in KS1, both in genes
which were DMPs in our study as well as those which were not
differentially methylated (wider associated CpGs). This finding
supports the hypothesis that relevant associations may exist
outside of differentially methylated regions of the chromosome

and suggests that complex patterns of methylation may be
reflected in gene expressional patterns.

Collectively, these results demonstrate the utility of hyper-
graph analysis to identify biologically relevant pathways from
DNA methylation data that can escape the standard DMR-based
analysis.

Shannon entropy analysis shows differences in
the network topologies of KS1 and control DMPs
The hypergraph analysis showed that a large proportion of
the clusters highly coordinated DMPs (822 DMPs) were shared
between KS1 and controls, implying that although these CpGs
are significantly differentially methylated in KS1, they remained
highly coordinated in both KS1 and controls. Although the DMPs
may remain highly coordinated in both sets, the nature (i.e., the
direction or the strength of interactions) of these coordinations
may be different in KS1 and controls. These differences are
represented in the hypergraph model as the ‘network topology’.
Differences in network topology can be measured using Shannon
entropy [52], which examines the distribution of the number
of shared correlations between any pair of DMPs (hyperedge
dimensionality) in the hypergraph model (Fig. 5A). We, therefore,
performed an iterative analysis of comparing Shannon entropy
within the central cluster of the adjacency matrix and randomly
selected CpGs of hypergraphs with 1,000 randomly generated
simulations of 100 DMPs. We observed a lower entropy in the KS1

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae667#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae667#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae667#supplementary-data
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Figure 4. Clustering hypergraph adjacency matrices reveals HOIs between DMPs which distinguish KS1 and controls. A) Pairwise relationships between
DMPs and CpGs can be summarized as HOIs between pairs of DMPs using a hypergraph approach. B) Heatmaps of hypergraph adjacency matrices for
control (L) and KS1 (R). Red to yellow coloring in the heatmap represents increasing dimensionality of the hyperedges between pairs of DMPs. Hierarchical
clustering of the hyperedges reveals a central cluster of highly coordinated DMPs in controls (yellow box) and KS1 (purple box) associated to one another
by HOIs. C) Venn diagram demonstrating the overlap of DMPs in the central cluster of the hypergraphs.

epigenome compared to controls, implying more ordered DMP
coordination in the disorder (Fig. 5B).

Next, we assessed the contribution of the pathways enriched
in the hypergraph central clusters (Supplementary Fig. S3)
to the overall epigenome entropy using a Bayesian approach
(Supplementary Fig. S5). This analysis shows that three pathways

which were differentially enriched in the hypergraph central
clusters have significantly different network entropy in KS1 and
controls – ‘sensory perception of light stimulus’ (higher entropy
in KS1) and ‘microtubule bundle formation’ and ‘Interleukin-
17-mediated signaling’ (lower entropy in KS1) (Fig. 5C). Impor-
tantly, none of these pathways were identified using the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae667#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae667#supplementary-data
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Figure 5. Topology of control and KS1 hypergraphs highlight differences in coordination. A) Co-ordination of the central cluster of the hypergraph
in control (yellow) and KS1 (purple) can be quantified using Shannon entropy. Edge dimension is the number of shared correlations between a pair
of vertices in the hypergraph model; entropy quantifies network structure from the distribution of edge dimensionality, such that a highly uniform
network would have low entropy. B) Shannon entropy of the hypergraph central cluster of control and KS1 methylome. Presented data are compared
to data from 1,000 matched iterations. C) Difference in entropy for pathways identified as enriched in the central clusters of either the control or KS1
hypergraphs. Bayesian Markov chain Monte Carlo sampling was performed to enable comparison between control and KS1. Only significantly different
pathways (those where the 89% credible interval of the difference does not contain 0) are presented.

traditional approach of one-to-one comparison of DMPs or
DMRs.

This analysis shows that the KS1 coordinated epigenome has
a different network topology compared to controls suggesting a
more ordered and less diverse coordination by the DMPs in KS1.

Indirect association of coordinated DMPs is
distinct in KS1 compared to controls in the
hypergraph models
The results presented in this manuscript so far are based on
analysis of DMPs. However, there may be disorder relevant to
differences in the coordination of regions of the epigenome even

if individual points may not be significantly differentially methy-
lated. The hyperedges [10] in these models represent all coordi-
nated CpGs within the entire epigenome, including those that
are peripheral and not just the DMPs (i.e., the set of CpGs being
coordinated by higher order action), thus capturing indirect asso-
ciations in the epigenome (Fig. 6A). We, therefore, quantified the
peripheral associations for KS1 and for controls. We detected
more peripheral associations in KS1 compared to controls (2,170
and 1,381 CpGs respectively) with minimal overlap between the
identified genes (Fig. 6B).

To quantify the peripheral associations present within KS1, we
observed the strength of correlation values (|r|) between DMPs
and CpGs which had been used to define hyperedges in the



Analysis quantifies coordination | 9

Figure 6. Co-ordinated DMPs demonstrate potential indirect co-regulation of a wider set of CpGs. A) In addition to refining clusters of coordinated DMPs
(yellow/purple box) the hypergraph approach also implicates a wider set of CpGs (orange/dark purple box) as potentially indirectly co-regulated with
the coordinated DMPs (yellow/purple box). B) Venn diagram of the indirectly co-regulated CpGs to demonstrate overlap between control and KS1. C)
Distribution of correlation values (|r|) between DMPs and indirectly regulated CpGs in control (orange) and KS1 (dark purple). D-E) Ontology of nearest
gene to indirectly regulated CpGs which were unique to control (D) or KS1 (E) (WebGestalt, FDR).
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Figure 7. Analysis of blood DNA methylation reveals single CpG and regional differences, as well as differences in the coordination of the epigenome
between KS1 and control. A) Statistical analysis highlights differences between KS1 and control in methylation of genes associated with morphology. B)
HOIs between DMPs reveal a cluster of coordinated DMPs, present in both KS1 and control, in genes associated with organ development. C) Quantification
of the coordination of DMPs demonstrated a lower entropy and therefore more defined coordination between DMPs in KS1 than control. D) The
coordinated DMPs were indirectly associated with a wider range of CpGs in KS1 than controls. Differences in coordinated DMPs and indirectly implicated
CpGs were associated with development and cellular organization.

hypergraph models. More direct relationships between methyla-
tion of a DMP and a CpG would be reflected in a stronger correla-
tion |r| .Comparing these data, we observed that the correlation
values in KS1 were 1.3-fold higher compared to controls (P < 1
× 10−9) (Fig. 6C). Peripherally related CpGs in KS1 were enriched
for gene ontologies related to small GTPase signal transduction
(FDR < 0.01) (Fig. 6E) indicating that these indirect associations
are likely gained in KS1. Peripherally related CpGs in controls
were enriched for vesicle mediated transport and neurogenesis
(FDR < 0.01) (Fig. 6D) indicating that these indirect associations
are likely lost in KS1. Gene ontologies related to actin cytoskeleton
organization were enriched in both KS1 and controls.

These results highlighted a greater variety of indirect associa-
tions of CpGs in KS1 compared to controls, implying major func-
tional shifts in the wider epigenome between KS1 and controls.

Discussion
We have analysed the impact of HOIs within the epigenome
in a rare disease context to aid the understanding of disease
mechanism (summarized in Fig. 7). Using the DMR based analysis,
DMPs-based hypergraph, entropy studies, and entire epigenomic
based indirect coordination analysis we identified several disease
relevant genes, regions and pathways with mechanistic links.

Four DMRs correspond to HOXA genes, which play a funda-
mental role in embryonic development and in the anterior to
posterior pattern specification [55] (Fig. 3). Two HOXA DMRs,
corresponding to HOXA4 and HOXA2, were found to be hypomethy-
lated and two corresponding to HOXA5 and HOXA6 were

hypermethylated. HOXA2 is involved in the dorsal-ventral
patterns of neuronal development in the rostral hindbrain [56]
and HOXA2 variants cause microtia, hearing impairment and
cleft palate (OMIM 612290) [57,58]. HOXA4 is involved in the
anterior transformations of the dorsal aspects of components of
the vertebral column [59]. HOXA5 is important in the patterning
of the cervico-thoracic region and regulates organ development
such as that of fore limb specification, cartilage, lung and gut
[60]. HOXA6 is also important for hematopoietic cell proliferation
and self-renewal [61]. We detected hypermethylation in the
DMR corresponding to MSX1 (Fig. 3), which has roles in limb-
pattern formation and craniofacial development, particularly
odontogenesis [62]. MSX1 variants cause Witkop type ectodermal
dysplasia 3 (OMIM 189500), orofacial cleft type 5 (OMIM 608874)
and selective tooth agenesis (OMIM 106600) [63,64]. Dysregulation
of these genes might explain the broad range of organ malforma-
tions and anomalies such as congenital cardiac defects, renal
malformations and dental anomalies observed in KS1 [26].

We observed hypomethylation of DMR representing NPY
(Fig. 3), which encodes a neuropeptide that is widely expressed
in the central nervous system and influences many physio-
logical processes, including cortical excitability, food intake,
and cardiovascular function [65,66]. Gene ontology analysis of
coordinated DMPs in KS1 identified DMPs representing TGFB1,
NAV1 (Fig. 3) that are involved in neuronal migration. We detected
loss of coordination in peripherally related CpGs to be enriched
for vesicle mediated transport and neurogenesis in Kabuki.
Thus, dysregulation of these genes and pathways and processes
may contribute to the neurodevelopmental and neurological
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phenotype of KS1 such as intellectual disability, with visuospatial
construction, perception, memory, and language impairment [67].

Hypermethylation of LTB4R2 (Fig. 3), a low-affinity receptor for
leukotrienes [68], and hypermethylation of AIRE, a transcriptional
regulator that interacts with the transcriptional coactivator CREB
protein [69] were observed. These genes will be good targets to
interrogate the mechanism of immune phenotypes in patients
with KS1. We also detected loss of coordination and lower entropy
of DMPs representing interleukin-17 in KS1. Dysregulation in
these genes and pathways may contribute to the immune pheno-
types of KS1 such as increase infection susceptibility and hypo-
gammaglobulinemia [70].

We identified DMRs corresponding to COL9A3 and MATN4
(Fig. 3), which were hypo and hypermethylated, respectively.
COL9A3 is a structural component of hyaline cartilage and the
vitreous of the eye [71]. MATN4 is part of the extracellular matrix
of various tissues in particular cartilage [72]. COL9A3 variants
cause Stickler syndrome type VI (OMIM 620022) characterized by
hearing loss and skeletal abnormalities [73,74]. Dysregulation in
these genes and pathways may contribute to the skeletal defects
and joint hypermobility that are frequent in KS1.

The mechanism of generation of the abnormal DNA methyla-
tion pattern in individuals with KS1 remains to be examined. It
could be a direct consequence of altered histone modifications
and increased or decreased access to DNA methyltransferases
and demethylase enzymes. Of note, KMT2D marks H3K4 in active
enhancer regions, whereas CpG islands usually correspond to
gene promoter regions. Hence, this raises alternative possibilities,
such as that DNA methylation changes may be a secondary
consequence of alterations in wider chromatin architecture or the
3D genomic architecture. It is also possible that these changes
may be a consequence of subtle changes in cellular signaling,
leading to alterations in developmental trajectories. It is notable
that analysis based on DMRs derived from blood cells revealed
dysregulation of genes and pathways that may contribute to non-
blood phenotypes. Interestingly, we detected the greatest changes
in DMRs associate with the GO term cartilage morphogenesis
(Fig. 3C). This may be explained by the shared embryonic meso-
dermal origin of blood and the skeleton.

The DMP based hypergraph modelling approach employed
here measures system-wide coordination of epigenomic features.
In contrast to standard differential methylation analyses,
this approach enables modelling KS1 and controls separately,
revealing how the same elements of a system can be employed
to different outcomes. We identified a subset of DMPs with
higher order coordination of their methylation levels, indicating
coordination in their function (Fig. 4). Interestingly, the hyper-
graph models of both KS1 and controls contain this same group
of coordinated DMPs (Fig. 4C) suggesting similar functional
relationships between differentially methylated CpGs in both
groups. Despite this similarity, the hypergraph models show
a difference in epigenomic network structure between groups,
highlighted by a reduction in entropy within KS1 (Fig. 5). Lower
entropy of omic networks is associated with ageing [75,76]
and advancing cellular differentiation [52–54]. In addition, we
observed that ontologies of genes with an identified DMR were
markedly different to ontologies of either DMPs clustered in
the hypergraph model, despite drawing from the same pool of
CpGs, highlighting the unique insight gained from the hypergraph
model.

Along with these DMPs, however, this approach highlighted
a wider set of CpGs - hyperedges (shared correlations between
any pair of DMPs) which were important in establishing the

relationship between the coordinated DMPs. This analysis has
highlighted possible disruption in microtubule formation which
are essential for cell division, intracellular transport, and cell
morphology and organization. This may affect the mechanical
properties in the cell and in the nucleus as supported by Negri
et al. [77]. These CpGs were not differentially methylated and as
such, may contribute less directly to these phenotypes, however
this observation would not have been possible through differen-
tial methylation analyses alone. Rather, the importance of these
CpGs in the higher order organization of the epigenome may
help to explain differences observed in individuals with genetic
variants which are not accounted for by DMPs.

Gene ontology analysis may have limitations in DMP and DMR
analysis as this emphasizes cis-based gene regulation. Hypergraph
analysis factors in trans-regulatory gene regulation because as it
uses the entire epigenome not just that present within genes or
near genes. The overlap between hyperedges highlights chains of
HOIs within the epigenome that may be considered as quantifi-
cation of coordination and therefore a measurement of dysreg-
ulation rather than just the identification of directly associated
disease related genes and pathways.

In conclusion, our study shows that the comparative analysis
of peripheral blood DNA methylation reveals fundamental dif-
ferences in the apparent functional activity of the epigenome.
This study has identified novel candidate genes and pathways
for KS1 disease pathology. Importantly, hypergraph approaches
have not yet been used to assess mechanistic relationships and
pathogenicity in single gene rare diseases. Our findings suggest
that these approaches have the potential to reveal additional
disease relevant mechanistic insights, which can be quantified,
using epigenomes of rare disorders when compared with the
traditional one-to-one differential analysis.

Key Points

• Generation of hypergraph models of epigenomic data,
which capture complex relationships between many
genes in rare conditions like KS1.

• Identification of biologically relevant pathways from
DNA methylation data that escape the standard differ-
entially methylated region-based analysis.

• Identification of coordination between DMPs, which
revealed a wider variety of indirect associations of DMPs
to be highly coordinated in KS1.

• This novel approach can be widely applied to different
conditions to investigate mechanism in big data.
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