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Abstract 
The rapid advancement of spatial transcriptomics (ST) sequencing technology has made it possible to capture gene expression with 
spatial coordinate information at the cellular level. Although many methods in ST data analysis can detect spatially variable genes 
(SVGs), these methods often fail to identify genes with explicit spatial expression patterns due to the lack of consideration for spatial 
domains. Considering spatial domains is crucial for identifying SVGs as it focuses the analysis of gene expression changes on biologically 
relevant regions, aiding in the more accurate identification of SVGs associated with specific cell types. Existing methods for identifying 
SVGs based on spatial domains predefine spot similarity before training, which prevents adaptive learning and limits generalizability 
across different tissues or samples. This limitation may also lead to inaccurate identification of specific genes at boundary regions. To 
address these issues, we present GAADE, an unsupervised neural network architecture based on graph-structured data representation 
learning. GAADE stacks encoder/decoder layers and integrates a self-attention mechanism to reconstruct node attributes and graph 
structure, effectively capturing spatial domain structures of different sections. Consequently, we confine the identification of SVGs 
within spatial domains. By performing differential expression analysis on spots within the target spatial domain and their multi-
order neighbors, GAADE detects genes with enriched expression patterns within defined domains. Comparative evaluations with five 
other popular methods on ST datasets across four different species, regions and tissues demonstrate that GAADE exhibits superior 
performance in detecting SVGs and capturing the extent of spatial gene expression variation. 
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Introduction 
Although single-cell RNA sequencing (scRNA-Seq) technology 
enables the study of cellular heterogeneity and cell type 
classification, its inability to provide spatial information limits 
systematic research on the relationship between the physiological 
structure and function of various tissues and organs [1]. To 
address this limitation, spatial transcriptomics (ST), and other 
spatial omics methods have been developed. In the context of 
tissues, understanding the spatial patterns of gene expression is 
crucial for comprehensively understanding disease states, tissue 
development and function, which is made possible through the 
application of ST. Advances in ST technology allow us to analyze 
gene expression profiles within their spatial context, providing 
unprecedented insights into how gene expression in cells is 
influenced by their surrounding environment [2–4]. By employing 
ST techniques, gene expression profiles can be effectively 
integrated with tissue structures, adding a novel and essential 
dimension to data interpretation, thereby providing a more 
comprehensive understanding of biological and pathological 
mechanisms. 

A common task in all ST analyses is to identify genes with 
spatial expression patterns, referred to as spatially variable genes 
(SVGs). These genes often exhibit non-random expression in spe-
cific tissue regions, contributing to processes such as develop-
mental gradients, cell signaling pathways and the tumor microen-
vironment [5–8]. The inference of SVGs also facilitates the sys-
tematic analysis of cell states, intercellular communication and 
the identification of key phenotypes and functions within an 
organism [9]. With advances in bioinformatics in the field of ST, 
several emerging computational methods, primarily developed in 
R or Python, have been proposed for identifying SVGs. Among 
these, statistical model-based methods are predominant, such as 
trendsceek [10], SpatialDE [11], and SPARK [12]. These methods 
utilize known gene expression profiles and spatial information 
of cells to construct a statistical framework that determines 
the dependency between gene expression values and the spatial 
positions of cells, yielding a p-value to indicate the spatial vari-
ability of gene expression. Similar to trendsceek, the ScGCO [13] 
(single-cell graph cuts optimization) method also conceptualizes 
gene expression data as a marked point process. This approach
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evaluates the dependency of points exhibiting a specific mark 
on their spatial locations through hypothesis testing. Under the 
absence of spatial dependency, it posits that points with a specific 
mark in a 2D space are distributed randomly, conforming to a 
homogeneous spatial Poisson process. Genes are classified as 
SVGs if their corresponding spatial regions exhibit a statistically 
significant low probability of specific marks under the null model. 
However, the parameter inference strategies employed by these 
methods may encounter several issues, such as susceptibility to 
local optima and sensitivity to errors in prior assumptions. Beyond 
these technical challenges, statistical modeling approaches rely 
solely on statistical significance to assess spatial gene expression 
patterns, making it difficult to interpret the spatial heterogeneity 
and homogeneity of SVGs from a spatial perspective. In addition, 
In the realm of Gaussian process methodologies, the selection 
of the kernel function presents a significant challenge. While 
[14] introduces improvements by enabling gene-specific kernel 
parameter selection, it remains constrained to a single type of 
kernel function. This limitation underscores the necessity for 
further methodological innovations aimed at optimizing kernel 
selection in the context of SVG detection. 

Considering the rich features and well-structured input data, 
neural networks—an important branch of machine learning—are 
widely used for analyzing scRNA-seq and ST data [15, 16], as seen 
in methods like SOMDE [17] and SPADE [18]. SOMDE leverages Self-
Organizing Map (SOM) neural networks and Gaussian processes 
to model spatial data, enabling efficient identification of SVGs. 
The runtime of SOMDE is related to the number of features, 
and in high-dimensional, complex feature data, it often leads 
to dimensional redundancy and processing challenges. SPADE, 
on the other hand, utilizes imaging data and ST data as inputs, 
extracting morphological features around each spot through a 
convolutional neural network and combining them with gene 
expression data to identify key genes associated with spatial 
and morphological heterogeneity. However, due to the reliance 
on image data, SPADE’s performance may vary depending 
on the scale of image segmentation and the density of the 
captured spots. Additionally, grid-based spatial methods analyze 
spatial gene expression by dividing spatial grids or constructing 
adjacency matrices, as exemplified by SingleCellHaystack [19] and  
MERINGUE [20]. SingleCellHaystack divides the spatial area into 
grids and determines grid points based on cell density. Cells are 
classified into two categories depending on whether a gene can 
be detected. SingleCellHaystack then calculates the distribution 
of these two categories and compares it with the random 
distribution of cells in space. It uses Kullback–Leibler divergence 
to  calculate a DKL score for each gene, identifying genes with 
uneven expression in multidimensional space, and evaluates the 
spatial variability of the gene based on this score. MERINGUE, on 
the other hand, employs Delaunay triangulation to consider each 
cell as a neighborhood and determines the adjacency relationship 
between pairs of cells based on these neighborhoods, representing 
this relationship with a binary adjacency weight matrix. Based on 
the adjacency matrix and gene expression matrix, MERINGUE 
calculates Moran’s I statistic to identify significant spatial genes. 
A common limitation of grid-based spatial methods is that they 
binarize gene expression values rather than providing them in 
continuous observation form. Additionally, selecting an appro-
priate threshold requires considerable time. Although existing 
methods consider the spatial structure of ST data, they typically 
predefine fixed similarity relationships between neighboring 
spots prior to training, which are not obtained through adaptive 
learning. Recent SVG detection methods employ model-free 

techniques to identify SVGs. The BSP (Big-Small Patch) [21] 
method, recently introduced in a publication, employs a non-
parametric model to identify SVGs in 2D or 3D ST data. This 
approach utilizes normalized ST data as input and defines big 
and small patches for each spatial spot based on neighboring 
spots with larger or smaller radis, respectively. It subsequently 
computes the local means of gene expression for both big 
and small patches. The method then assesses the ratio of the 
variances of these local means for each gene, approximating a log-
normal distribution for these ratios. Finally, a p-value is calculated 
for each gene based on this approximated distribution. 

To this end, we have developed a deep learning model based 
on a graph attention auto-encoder for identifying SVGs, named 
GAADE. This model utilizes a graph attention auto-encoder to 
learn low-dimensional latent embeddings that incorporate spa-
tial information and gene expression data, constructing a spa-
tial neighbor network to capture spatial domain information. 
Through adaptive learning, GAADE effectively identifies spatially 
specific gene expression in small functional regions within tissues 
and provides a comprehensive view of gene expression gradi-
ents across the tissue. We approach the tasks of spatial domain 
partitioning and SVGs identification as an integrated problem. 
GAADE employs an adaptive graph attention auto-encoder to 
learn low-dimensional latent embeddings and builds a spatial 
neighbor network that incorporates gene expression and spa-
tial location data to better characterize spatial similarity [22]. 
The attention mechanism adaptively learns edge weights in the 
spatial neighbor network and uses them to aggregate neighbor 
information to update point representations. Subsequently, UMAP 
is used for data visualization, and clustering algorithms iden-
tify spatial domains with coherent expression and histological 
features, ensuring that detected SVGs exhibit spatial expression 
patterns within defined spatial domains [23]. Extensive testing 
across multiple ST platforms demonstrates that GAADE excels in 
tasks such as spatial domain delineation, SVGs identification, and 
spatial trajectory inference. 

Materials and methods 
Datasets 
All datasets used in this study are publicly available and can be 
downloaded. We used spatial gene expression datasets from four 
different tissues (Table 1). 

The first dataset consists of 12 tissue sections of the human 
dorsolateral prefrontal cortex (DLPFC) collected using 10X Visium 
(http://research.libd.org/spatialLIBD/). Specifically, the DLPFC 
dataset was sampled from three experimental subjects, with the 
number of spots per section ranging from 3498 to 4789, capturing 
33,538 genes. Each section is manually annotated and includes 
five to seven regions, namely the DLPFC layers and white matter. 

The second dataset is a mouse brain tissue dataset downloaded 
from the public 10x Genomics data repository (https://cf.10xgeno 
mics.com/samples/spatial-exp/1.1.0/V1_Mouse_Brain_Sagittal_A 
nterior/). This dataset comprises two sections, from which 
we selected the anterior sagittal section. The selected section 
contains 2695 spots, capturing 21,334 genes. 

The third dataset is a human breast cancer sample, including 
ductal carcinoma in situ (DCIS) and invasive carcinoma. The 
selected section contains 2518 spots, capturing 17 651 genes. This 
dataset is available on the 10x Genomics website (https://www.10 
xgenomics.com/resources/datasets). 

The fourth dataset is a selected section of an adult mouse 
coronal brain containing 2903 spots, capturing 21 747 genes. This
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Table 1. Description of the datasets used in the study. 

Dataset Spots Genes Domains Protocol Species 

DLPFC_151507 4221 33,538 7 10X Visium Homo sapiens 
DLPFC_151508 4381 33,538 7 10X Visium H. sapiens 
DLPFC_151509 4788 33,538 7 10X Visium H. sapiens 
DLPFC_151510 4595 33,538 7 10X Visium H. sapiens 
DLPFC_151,669 3636 33,538 5 10X Visium H. sapiens 
DLPFC_151,670 3484 33,538 5 10X Visium H. sapiens 
DLPFC_151,671 4093 33,538 5 10X Visium H. sapiens 
DLPFC_151,672 3888 33,538 5 10X Visium H. sapiens 
DLPFC_151,673 3611 33,538 7 10X Visium H. sapiens 
DLPFC_151,674 3635 33,538 7 10X Visium H. sapiens 
DLPFC_151675 3566 33,538 7 10X Visium H. sapiens 
DLPFC_151676 3431 33,538 7 10X Visium H. sapiens 
Breast Cancer 3798 36,601 – 10X Visium H. sapiens 
Brain coronal 2903 32,285 – 10X Visium Mus musculus 
Brain (Sagittal-Anterior) 2695 32,285 – 10X Visium M. musculus 

dataset can be obtained from https://www.10xgenomics.com/ 
datasets/adult-mouse-brain-section-1-coronal-stains-dapi-anti-
neu-n-1-standard-1-1-0. 

Overview of the GAADE 
The key advantage of GAADE is its ability to integrate gene expres-
sion with spatial information to gain deep insights into the struc-
ture, functional organization and expression patterns. GAADE 
constructs a spatial neighbor graph (SNG) based on the spa-
tial proximity of spots, connecting physically adjacent cells, and 
enabling neighborhood-based analysis (Fig. 1). It employs a graph 
attention auto-encoder to learn low-dimensional latent embed-
dings that capture both spatial and gene expression data, learning 
node representations in an unsupervised manner. The autoen-
coder, with stacked encoder/decoder layers, reconstructs node 
features using the graph structure and aggregates neighbor infor-
mation to identify spatial domains and quantify boundary differ-
ences. To identify SVGs, GAADE performs differential expression 
(DE) analysis on spots within each spatial domain and their 
neighbors, identifying genes with adjusted p-values below 0.05 
as SVGs. 

Data preprocessing 
For all datasets, spots outside the main tissue regions were 
removed, along with exogenous RNA, mitochondrial genes and 
genes expressed in fewer than three spots. Gene expression 
counts were log-transformed and normalized using SCANPY by 
dividing each gene’s UMI count by the total UMI count per spot 
[24]. The top 3000 highly variable genes were then selected to 
learn latent representations of cells and spots. 

Graph construction for ST data 
To integrate the similarity of neighboring points for a given spot, 
GAADE first constructs a spatial neighbor graph. The method 
takes into account that aggregating the adjacency information of 
each spot can enhance the representational capacity of spatial 
patterns, thereby strengthening the identification of SVGs with 
specificity. we construct the SNG based on the spatial coordinates 
of each spot in Euclidean space to determine the k-nearest neigh-
bors for each spot [25]. Specifically, in this graph, each vertex 
v∈V represents a specific spot and each pair of vertices in V is 
connected by an edge with a calculated weight. The weights W of 

the SNG are defined by Equation (1): 

wij = 

⎧⎨ 

⎩1 − 
Sij 

max (Si.) 
, if spots i and j are neighbors 

0, otherwise 
, (1)  

In the above equation, Wij represents the weight between spot 
i and spot j, Sij denotes the distance between spot i and spot j, 
and max(Si. ) indicates the maximum distance between spot i and 
its nearest neighbor. Spots are considered spatial neighbors if the 
weight between two spots is less than the rad_cutoff value. By 
adjusting this value, we ensure that each spot has an average of 
six spatial neighbors, thereby balancing the aggregation of local 
spatial information with computational complexity. 

Graph attention auto-encoders 
Encoder 
In our architecture, the encoder takes normalized gene expression 
data as input and generates node representations through the 
graph structure by utilizing node features and stacking layers. 
These representations are then propagated through the graph 
structure, resulting in richer node embeddings. Each encoder layer 
generates new node representations based on the relevance of 
neighboring nodes’ representations. We employ a self-attention 
mechanism with shared parameters among nodes. In the k-th 
layer of the encoder, the relevance between neighboring node i 
and node j is computed as follows: 

e(k) 
ij = Sigmoid

(
v(k)T 

s σ
(
W(k)h(k−1) 

i

)
+ v(k)T 

r σ
(
W(k)h(k−1) 

j

))
, (2)  

Here, W(k) ∈ Rd(k)×d(k−1) , v(k) 
s ∈ Rd(k) 

, v(k) 
r ∈ Rd(k) 

represents the 
trainable parameters of the k-th encoder layer, and σ denotes the 
activation function [26]. Sigmoid represents the Sigmoid function 
(Sigmoid(x) = 1/(1 + e-x)). 

To make the relevance scores of the neighbors of node i 
comparable, we normalize them using the softmax function, as 
follows: 

α (k) 
ij = 

exp
(
e(k) 

ij

)
∑

l∈Ni 
exp

(
e(k) 

il

) , (3)
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Figure 1. Workflow of GAADE. 

where Ni represents the neighborhood of node i (i.e. the set of 
nodes connected to node i according to the adjacency matrix A, 
including node i itself). 

By treating the node features as the initial node representations 
(i.e. hi 

(0) = xi , ∀ i∈{1,2, . . . ,N}, the k-th layer of the encoder generates 
the representation of node  i at the k-th layer as follows: 

h(k) 
i =

∑
j∈Ni 

α (k) 
ij σ

(
W(k)h(k−1) 

j

)
, (4)  

After applying L encoder layers, we consider the output of the final 
layer as the ultimate node representation. 

Decoder 
In contrast to the encoder, the decoder reverses the latent embed-
dings into reconstructed normalized expression profiles. Treating 
the output of the encoder as the input to the decoder, the encoding 
process is reversed to learn node representations without any 
supervision. Each decoder layer reconstructs the node represen-
tations based on the relevance of neighboring nodes’ represen-
tations. In the k-th decoder layer, the normalized relevance (i.e. 
attention coefficient) between node j and its neighboring node i is 
calculated as follows: 

α̂ (k) 
ij = 

exp
(
ê(k) 

ij

)
∑

l∈Ni 
exp

(
ê(k) 

il

) , (5)  

ê(k) 
ij = Sigmoid

(
v̂(k)T 

s σ

(
Ŵ 

(k)
ĥ 

(k) 
i

)
+ v̂(k)T 

r σ

(
Ŵ 

(k)
ĥ 

(k) 
j

))
, (6)  

Here, Ŵ(k) ∈ R
d(k−1)×d(k) 

, v̂(k) 
s ∈ Rd(k−1) and v̂(k) 

r ∈ Rd(k−1) represents the 
trainable parameters of the k-th decoder layer. 

Treating the output of the encoder as the input to the decoder, 
the k-th layer of the decoder reconstructs the representation of 
node i at the layer k-1 as follows: 

ĥ(k−1) 
i =

∑
j∈Ni 

α̂ (k) 
ij σ

(
Ŵ(k) ĥ(k) 

j

)
, (7)  

After applying L decoder layers, we consider the output of the final 
layer as the reconstructed node features. 

Loss function 
Both node features and the graph structure should be encoded by 
high-quality node representations. We minimize the reconstruc-
tion loss of node features using the following method: 

N∑
i=1

‖xi − x̂i‖2, (8)  

We minimize the reconstruction loss of the node features and the 
graph structure as follows: 

Loss = 
N∑

i=1

‖xi − x̂i‖2 − λ
∑
j∈Ni 

log

(
1 

1 + exp
(−hT 

i hj
)
)

, (9)  

Here, λ controls the contribution of the graph structure recon-
struction loss. 

Spatial domain assignment by clustering 
After model training, we use the non-spatial clustering algorithm 
Mclust to cluster the spatial gene expression data reconstructed
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by the decoder [27]. This groups spots into distinct spatial domains 
with similar gene expression profiles and spatial proximity. For 
manually annotated tissue slices, we set the number of clusters 
to be the same as the actual labels. For tissue slices without 
prior information, we determine the number of clusters by trying 
different values. 

Refinement of spatial domain module 
For ST data with low spatial resolution, we developed a refined 
spatial domain boundary module using an attention mechanism, 
suitable for processing data from 10x Visium technology. This 
module enhances the detection of spatial heterogeneity at 
domain boundaries but should be cautiously applied to data with 
cellular or subcellular resolution due to potential noise. Adjusting 
the hyperparameter α is critical; larger values may reduce the 
flexibility of the graph attention mechanism, impacting SVG 
detection. Thus, α can be tuned to optimize performance based 
on specific research needs. 

To select genes with enriched expression in the target domain, 
we apply strict filtering for genes with positive spatial autocor-
relation coefficients and adjusted p-values below 0.05. The ratio 
of the total expression spots within the target domain to the 
observed spots must exceed 80%, indicating higher expression 
density in the target domain compared to other regions. The aver-
age gene expression within the target domain is then calculated 
using the following formula: 

Expresionij = 
countij∑
j countij 

× 100%, (10) 

where i represents cell i and j represents gene j. 
GAADE employs the Wilcoxon rank-sum test for DE analysis 

between the target domain and its first-order and second-order 
neighborhoods. It calculates the percentage difference by compar-
ing the average gene expression in the target domain with those 
in the neighboring domains, ensuring that the target domain’s 
expression is higher. This approach allows for a comprehensive 
understanding of spatial characteristics and patterns around the 
target domain. 

Evaluation metrics 
Spatial autocorrelation statistics are widely used in spatial data 
analysis tools to assess the spatial autocorrelation of continu-
ous features. In ST data, gene expression values at local spatial 
neighborhood points tend to be closer to each other than those 
at distant points. Therefore, genes with strong spatial autocor-
relation can exhibit more organized spatial expression patterns. 
To evaluate whether the detected SVGs display organized spatial 
expression patterns, we employed Moran’s I [28] and Geary’s C 
[29], two commonly used statistical methods, to quantify the 
degree of spatial autocorrelation in gene expression. For a given 
gene, these metrics measure the similarity of a point to its sur-
rounding points. The range of Moran’s I values is from −1 to 1,  
where values close to 1 indicate a clear spatial pattern, values 
close to 0 suggest random spatial expression, and values near −1 
indicate a disorganized spatial pattern. For each gene, the Moran’s 
I score is calculated as follows: 

I = 
N 
W

∑
i

∑
j

[
wij

(
xi − x

) (
xj − x

)]
∑

i

(
xi − x

)2 , (11) 

Geary’s C is another commonly used statistic that is inversely 
related to Moran’s I, though it is not identical. Unlike Moran’s 

I, which measures global spatial autocorrelation, Geary’s C is 
more sensitive to local spatial autocorrelation. The formula for 
calculating Geary’s C score for each gene is as follows: 

C = 
(N − 1)

∑
i

∑
j

[
wij

(
xi − xj

)2
]

2W
∑

i

(
xi − x

)2 , (12) 

Comparison of methods 
To benchmark spatial domain segmentation performance, we 
compared GAADE with four state-of-the-art methods—DeepST 
[30], stLearn [31], SpaGCN [32], and SEDR [33]—using the DLPFC 
dataset. For slices 151669, 151670, 151671, and 151,672, the target 
number of clusters was set to 5, while for other sections, the 
target was set to 7. All methods were utilized with their default 
parameter settings. 

To evaluate SVG identification, we quantified spatial auto-
correlation using Moran’s I and Geary’s C for SVGs detected by 
GAADE and five other methods: SpatialDE, SpaGCN, Squidpy [34], 
scGCO [13] and SPARK. We filtered out cells with mitochondrial 
gene expression ratios above 15%, genes detected in fewer than 
three cells and low-expression cells with fewer than 100 detected 
genes. Gene expression levels were log-normalized following each 
method’s default settings prior to SVG detection. 

Results 
Evaluation of GAADE’s performance in spatial 
domain segmentation 
To quantitatively evaluate the spatial clustering performance of 
GAADE, we conducted tests on the DLPFC dataset, which consists 
of 12 slices depicting four- or six-layer structures of the human 
dorsolateral prefrontal cortex and white matter (WM). We com-
pared GAADE against the non-spatial clustering method SCANPY 
and four recently developed spatial clustering methods: DeepST, 
stLearn, SpaGCN, and SEDR, using the Adjusted Rand Index (ARI) 
as a metric. Results indicate that the spatial domains identified 
by GAADE largely correspond to the manually annotated DLPFC 
structures and the cortical layer definitions in neuroscience. 

In contrast, the non-spatial method SCANPY failed to clearly 
identify the layer structures in tissue slices. While existing spatial 
methods could detect most visible domains, they still struggled 
to achieve the precision of manual annotations in defining 
domain boundaries, with ARI scores generally lower than those 
of GAADE. GAADE demonstrated greater sensitivity and more 
consistent performance across all 12 slices (Fig. 2a). Through a 
detailed comparison of these methods, we found that the four 
spatial clustering algorithms that utilize spatial information 
outperform non-spatial clustering algorithms, confirming the 
performance improvements from integrating spatial information 
(Supplementary Figs. 1–11). Specifically, GAADE achieved an 
average ARI score of 0.475, significantly higher than the currently 
best method for spatial domain segmentation, DeepST (average 
ARI score = 0.45). In contrast, the SpaGCN method, which does not 
rely on spatial arrangement of points, obtained the lowest average 
ARI score of 0.375, with stLearn at an average ARI of 0.378, SEDR at 
0.404, and the non-spatial clustering algorithm SCANPY scoring 
the lowest at only 0.184. Additionally, GAADE’s median ARI score 
was 0.455, second only to DeepST (median ARI score = 0.475). 
Other peer-reviewed methods’ median ARI scores were as follows: 
SEDR at 0.411, SpaGCN at 0.39, stLearn at 0.375 and SCANPY at 
0.185. Both DeepST and SEDR showed significant performance

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae669#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae669#supplementary-data
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Figure 2. Identification of spatial domains in the LIBD dorsolateral prefrontal cortex data by GAADE. (a) Boxplot showing the clustering accuracy of 
GAADE and current state-of-the-art algorithms (SpaGCN, DeepST, stLearn, SEDR, and SCANPY) across all 12 sections of the DLPFC dataset, as measured 
by the ARI scores. (b) on slice 151,673, the actual locations of points are mapped to their spatial positions, which are divided into six cortical layers (L1-L6) 
and white matter (WM). (c) Clustering assignments generated by GAADE, SCANPY, SpaGCN, DeepST, stLearn, and SEDR in the DLPFC slice 151,673. 

variability across different slices. SpaGCN and stLearn had less 
variance in their ARI scores but poorer median scores ( Table 2). 
These findings collectively indicate that GAADE possesses the 
best capability in identifying the spatial domain structure within 
the DLPFC dataset. 

We further evaluated the spatial domain delineation perfor-
mance of GAADE compared to other methods on the DLPFC 
dataset, using manual annotations by Maynard et al. [35], based 

on morphological features and gene markers, as a reference 
(Fig. 2b). For example, in DLPFC slice 151,673, the spatial domains 
identified by DeepST and SEDR showed a better alignment with 
the manually annotated tissue layers compared to SpaGCN 
(Fig. 2c). Even when integrating histological image information 
to supplement spatial data, SpaGCN achieved an ARI score of 
only 0.39, significantly lower than DeepST and SEDR (GAADE 
ARI: 0.60, DeepST ARI: 0.45, SEDR ARI: 0.42, stLearn ARI: 0.37,
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Table 2. ARI scores for all 12 slices in the DLPFC dataset. 

Dataset GAADE SpaGCN DeepST stLearn SEDR SCANPY 

DLPFC_151507 0.50 0.43 0.49 0.49 0.39 0.22 
DLPFC_151508 0.44 0.34 0.43 0.47 0.36 0.15 
DLPFC_151509 0.46 0.42 0.37 0.44 0.41 0.19 
DLPFC_151510 0.43 0.42 0.47 0.44 0.39 0.14 
DLPFC_151,669 0.24 0.23 0.34 0.32 0.30 0.06 
DLPFC_151,670 0.45 0.35 0.23 0.19 0.20 0.18 
DLPFC_151,671 0.58 0.46 0.48 0.38 0.44 0.22 
DLPFC_151,672 0.56 0.39 0.42 0.34 0.46 0.18 
DLPFC_151,673 0.60 0.39 0.50 0.37 0.42 0.19 
DLPFC_151,674 0.40 0.35 0.52 0.35 0.42 0.26 
DLPFC_151675 0.61 0.43 0.61 0.38 0.53 0.18 
DLPFC_151676 0.43 0.29 0.54 0.37 0.47 0.24 
Mean 0.475 0.375 0.45 0.37 0.40 0.18 

SCANPY ARI: 0.19). In contrast, GAADE accurately identified the 
structures of the WM and the adjacent cortical layers, showing a 
high concordance with the manual annotations. 

Although nearly all spatial methods detected the seven visi-
ble structural domains within the tissue sections, existing spa-
tial methods still exhibit some shortcomings. For example, SEDR 
incorrectly merged the first (L1) and second (L2) layers, and mis-
takenly assigned the spatial information of the third layer to the 
fourth. This may be due to the sparse cell density in the first layer, 
where both DeepST and stLearn showed considerable deviations 
from the manual annotations in their segmentation of the first 
layer’s spatial domain. SpaGCN, meanwhile, generated incorrect 
layer thickness and also failed to accurately capture the boundary 
between the sixth layer and the WM layer. 

Analysis of GAADE’s performance in SVGs 
identification 
We conducted DE analysis by first selecting a target domain and 
considering the expression differences between the target domain 
and the first-order and second-order neighborhoods to identify 
region-specific genes. GAADE detected a total of 370 SVGs, with 
108 specific SVGs identified in Domain 1, corresponding to the 
white matter layer. Domain 4 identified the highest number of 258 
region-specific SVGs, with a substantial overlap of SVGs identified 
in other structural domains compared to those recognized in 
Domain 4. These results indicate that the gene expression dif-
ferences between the six neuronal layers are minor, whereas the 
gene expression patterns in the white matter spots are distinctly 
different from those in the neuronal layers. Notably, GAADE 
delineated the boundary between the cortical layers and adjacent 
white matter (WM) in the tissue sections using WM/Oligodendro-
cyte specific gene MOBP and identified the marker gene PCP4 for 
layer L5 (Fig. 3a). 

To assess GAADE’s performance in identifying SVGs, a com-
parison was made with five representative methods: SpatialDE, 
SpaGCN, Squidpy, scGCO, and SPARK. To evaluate the credibility of 
the SVGs detected by these methods, we quantitatively calculated 
the spatial autocorrelation coefficients Moran’s I and Geary’s C for 
the SVGs (Table 3). 

In slice 151,673, GAADE identified a total of 370 useful SVGs. 
As a comparison, we verified that SpatialDE, without filtering 
for low-expression genes, recognized 3378 statistically significant 
SVGs, while SPARK and Squidpy identified 2951 and 855 SVGs, 
respectively. Although these three comparison methods have the 
advantage in the number of SVGs identified, the genes detected 

by these methods do not distinguish the varying degrees 
of spatial expression variation, as the SVGs identified by 
them show highly skewed adjusted p-values (FDR) towards 0 
(Supplementary Fig. 23), with SpatialDE having 622 SVGs with 
an adjusted p-value of 0, SPARK having 1652 and Squidpy 557, 
and most of them only marked white matter regions. We also 
found that the SVGs detected by existing methods lack spatial 
domain specificity. Figure 3b shows that GAADE’s Moran’s I and 
Geary’s C are significantly higher than the genes detected by 
SpatialDE, SPARK, and Squidpy and are the highest among all 
methods except SpaGCN. Although SpaGCN’s median Moran’s 
I and Geary’s C values are slightly higher than our method 
GAADE (GAADE’s median Moran’s I is 0.3240, SpaGCN’s is 
0.3923; GAADE’s median Geary’s C is 0.3245, SpaGCN’s is 0.392), 
SpaGCN detected only 60 SVGs (49 in spatial domain 5), whereas 
GAADE identified six times that number. Additionally, using the 
Wilcoxon rank-sum test, we analyzed the DE genes between 
spatial domains identified by SpaGCN. The results show that 
in spatial domain 5, which identified the most SVGs, the top 
ten genes with the highest expression levels are displayed 
through a heatmap (Fig. 3c). Simultaneously, GAADE detected 
all genes among the top ten highly expressed genes identified 
in spatial domain 5. Due to the lack of consideration for spatial 
domains, methods such as SpatialDE, Squidpy, scGCO, and SPARK 
often detect genes without a clear spatial expression pattern. 
Existing spatial domain-based methods for identifying SVGs, 
such as SpaGCN, predefine the similarity between adjacent spots 
prior to training, which hinders adaptive learning and limits 
generalizability across different tissues or samples. This approach 
may also lead to inaccurate identification of specific genes in 
boundary regions. GAADE not only identifies these SVGs with 
significant spatial expression patterns but also further optimizes 
the SVG filtering mechanism through DE analysis between the 
target domain and the first and second-order neighborhoods, 
thus increasing the number of SVGs identified. From these 
conclusions, we find that the GAADE model is better at capturing 
subtle expression differences in spatial domains and can better 
understand tissue cellular heterogeneity, intercellular communi-
cation and how cells respond to their microenvironment. 

Enhancing spatial domain segmentation and 
SVG identification performance with attention 
mechanisms 
Building on previous discussions, we have designed an additional 
module for refining spatial domains specifically for ST data with

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae669#supplementary-data
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Figure 3. Performance of SVGs detected by GAADE in the LIBD dorsolateral prefrontal cortex data. (a) Spatial expression patterns of SVGs in spatial 
domains 1 (MOBP) and 5 (PCP4) in slice 151,673. (b) Boxplot of Moran’s I and Geary’s C values for SVGs detected by GAADE, SpaGCN, Squidpy, SpatialDE, 
ScGCO, and SPARK in slice 151,673. (c) High expression genes identified by the SpaGCN method in spatial domain 5 of the DLPFC 151673 slice data. 

low spatial resolution by incorporating attention mechanisms. 
By applying this module, we can better reveal the heterogeneous 
spatial similarities between adjacent points. We also employ the 
ARI to compare the performance of spatial domain identification 

within the DLPFC dataset. After introducing the attention 
mechanism, the GAADE model demonstrated improved spatial 
domain segmentation performance in more than half of the 
analyzed slices. Although the number of SVGs identified by 
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Table 3. The average number of detected SVGs, the median of Moran’s I and the median of Geary’s C for all 12 slices in the DLPFC 
dataset using the methods GAADE, SpaGCN, Squidpy, SpatialDE, ScGCO, and SPARK. 

Number of SVGs Median of Moran’s I Median of Geary’s C 

GAADE 138 0.3576 0.3579 
SpaGCN 14 0.4747 0.0620 
Squidpy 438 0.1644 0.4766 
SpatialDE 1512 0.0518 0.1684 
ScGCO 165 0.2115 0.2142 
SPARK 982 0.1329 0.1478 

Table 4. Comparison of ARI, median of Moran’s I and median of Geary’s C for GAADE before and after adding the attention mechanism. 

Dataset ARI Median of Moran’s I Median of Geary’s C 

GAADE GAADE_att GAADE GAADE_att GAADE GAADE_att 

DLPFC_151507 0.50 0.56 0.3246 0.3542 0.3255 0.3543 
DLPFC_151508 0.44 0.52 0.4131 0.3832 0.4130 0.3833 
DLPFC_151509 0.46 0.47 0.2790 0.3169 0.2774 0.3211 
DLPFC_151510 0.43 0.47 0.2289 0.2403 0.2288 0.2400 
DLPFC_151,669 0.24 0.24 0.4194 0.4282 0.4207 0.4284 
DLPFC_151,670 0.45 0.44 0.5401 0.5822 0.5404 0.5818 
DLPFC_151,671 0.58 0.58 0.4673 0.4673 0.4685 0.4685 
DLPFC_151,672 0.56 0.54 0.3654 0.3599 0.3660 0.3602 
DLPFC_151,673 0.60 0.60 0.3240 0.3274 0.3245 0.3275 
DLPFC_151,674 0.40 0.54 0.3169 0.3197 0.3169 0.3205 
DLPFC_151675 0.61 0.65 0.3127 0.3275 0.3131 0.3277 
DLPFC_151676 0.43 0.46 0.2998 0.3218 0.3003 0.3226 

Figure 4. Spatial domains generated by GAADE in the LIBD dorsolateral prefrontal cortex data before and after the introduction of the attention 
mechanism. 

the GAADE model decreased on some data, the introduction of 
the attention mechanism significantly increased both Moran’s 
I and Geary’s C in nine of the slices ( Table 4). Further analysis 
indicates that while the introduction of attention mechanisms 
may result in a decrease in the number of SVGs in certain slices, 
this mechanism evidently aids in more effectively capturing 
spatial structures and distribution patterns, thereby enhancing 
identification accuracy. 

Specifically, taking the 151,674 slice of the DLPFC dataset as 
an example, the introduction of an attention mechanism in the 
GAADE model significantly optimized the precise identification 
of spatial domains in this slice. The model with the added 
attention mechanism more clearly delineated layer boundaries 
and achieved optimal clustering accuracy (ARI = 0.54), compared 
to an ARI of only 0.40 without considering this module. Moreover, 

the GAADE model without the attention mechanism presented 
many outliers and could only correctly identify the white matter 
structure (Fig. 4). In contrast, the use of the refined spatial domain 
embedding module generally adhered to the expected layer 
patterns of this section, capturing the heterogeneity of the tissue 
structure more accurately. Additionally, after incorporating the 
refined spatial domain module, a significant increase in the ARI 
was observed in eight of the twelve slices (Supplementary Figs. 12– 
22). This indicates that the addition of the refined spatial 
domain enhances the capability of spatial domain identification. 
Although in some slices, the refinement module might lead to 
a reduction in the number of identified SVGs, overall, there 
was a significant improvement in the Moran’s I and Geary’s 
C metrics for the identified SVGs. The improvement in these 
metrics indicates that the refined spatial domain module can

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae669#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae669#supplementary-data
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more accurately identify the spatially specific expression of 
genes. This capability is particularly important in complex tissue 
structures, where gene expression patterns are often more varied 
and intricate. Therefore, despite a reduction in the number of 
SVGs in some cases, the refined spatial domain module generally 
enhances the accuracy and quality of SVG identification, while 
also improving spatial domain segmentation performance in 
most instances. 

Identification of spatial domain specific SVGs 
without spatial prior information 
To quantitatively assess the spatial clustering performance of 
GAADE, We applied GAADE to three datasets from the 10X Visium 
ST platform, including 10 μm coronal sections of the adult mouse 
brain. We found that the clustering results identified by GAADE 
clearly delineated tissue structures containing different cell types 
and accurately recognized small spatial domains. Specifically, in 
the hippocampal area, GAADE identified several key structures 
such as the CA1 region (Domain 20) and CA3 (Domain 16) of 
Ammon’s horn (Fig. 5a). 

Furthermore, we evaluated GAADE’s performance in identi-
fying SVGs and compared it with five representative methods: 
SpatialDE, SpaGCN, Squidpy, scGCO, and SPARK. To assess the 
credibility of the SVGs detected by these methods, we also cal-
culated the Moran’s I and Geary’s C metrics using the spatial 
information of SVGs. GAADE detected 1940 SVGs across twenty 
spatial domains, while SpatialDE, SPARK, Squidpy, and scGCO 
detected 8440, 6205, 2577 and 2380 SVGs, respectively (Table 5). 
As shown in Fig. 5b, although SPARK and SpatialDE detected a 
much higher number of SVGs than GAADE, the Moran’s I values 
of SVGs detected by GAADE were significantly higher than those 
detected by SPARK and SpatialDE. For Squidpy and scGCO, the 
number of SVGs detected was only slightly higher than those 
detected by GAADE, but their Moran’s I values were also lower 
than those detected by GAADE (median Moran’s I for GAADE is 
0.2950, SpatialDE is 0.0587, SPARK is 0.0760, Squidpy is 0.1787, 
scGCO is 0.1819). The same trend is observed with the Geary’s 
C values of the SVGs detected by these methods. More stringent 
filtering of spots and genes did not improve the performance 
of these four models. Additionally, these four methods share a 
common issue regarding the spatial variability of gene expression, 
as their p-value distributions are highly skewed towards zero 
(Supplementary Fig. 24). However, due to the lack of consideration 
for tissue classification, the genes detected by these methods 
do not have guaranteed spatial expression patterns, making it 
challenging to use these genes for further biological research (this 
is also why the results of SVG detection are difficult to apply 
directly). In other words, these methods do not provide sufficient 
differentiation for the genes detected, failing to accurately reflect 
the degree of variation in spatial expression. 

In contrast, GAADE’s use of multi-order neighborhood dif-
ferential analysis filtering criteria can eliminate false positives 
in spatial gene variation, while ensuring that all detected SVGs 
have distinct spatial expression patterns. To illustrate the advan-
tages of its method, take Domain 20 as an example. For each 
domain, GAADE identified SVGs that are enriched in that area. 
For instance, the marker gene Nptx1 was exclusively localized to 
the somata of CA3 pyramidal cells. Additionally, in Domain 20, 
we detected a total of 225 SVGs, with Camk2a being enriched in 
Domain 20 (Fig. 5c). In the hippocampus, the distribution pattern 
of Camk2a is distinct, highlighting the targeted dendritic area. 
Identifying region-specific distribution and dendritic localization 
may aid in the identification of conserved sequence elements 

associated with cell-specific and intracellular transport speci-
ficity. 

Although SVGs detected by SpaGCN exhibited higher Moran’s 
I and Geary’s C values, the number of SVGs identified by SpaGCN 
was relatively few. To further assess the expression differences 
of these genes across different spatial domains, we employed 
the Wilcoxon rank-sum test to analyze DE genes between spatial 
domains identified by SpaGCN. Using heatmaps for visualiza-
tion, we displayed the expression levels of these genes in spa-
tial domains 12 and 5 (the two spatial domains where SpaGCN 
detected the highest number of SVGs), revealing the top ten 
characteristic genes of different spatial domains or cell types [36]. 
Further analysis revealed that of the top 20 highly expressed genes 
identified in these two domains, only one gene was not detected in 
GAADE. This indicates that GAADE not only identifies genes with 
spatial expression patterns detected by SpaGCN but also detects 
a larger number of SVGs (Fig. 5d). 

We analyzed a 5 μm ductal carcinoma in situ slice of FFPE 
human breast tissue using ST technology. Dimension reduction 
of the Visium data revealed 11 spatial clusters and GAADE iden-
tified 1397 SVGs. GAADE showed a clear advantage, with more 
distinct spatial domain patterns than other methods. In contrast, 
SpatialDE detected 12,363 SVGs (4210 with an FDR p-value of 
0), SPARK identified 11 301 SVGs (7667 with an FDR-adjusted 
p-value of 0) and scGCO and Squidpy detected 3168 and 2597 
SVGs, respectively, but with lower Moran’s I and Geary’s C values 
compared to GAADE (median Moran’s I: 0.5428 for GAADE, 0.1343 
for scGCO and 0.1508 for Squidpy) (Fig. 6a). 

Eight clusters were annotated with disease states, while three 
showed mixed cellular compositions. Spatial domains 6 and 8, 
forming the fibrotic region of invasive cancer, had the highest 
number of SVGs (223 and 242, respectively), with significant 
expression of CRISP3, a protein potentially influencing the 
tumor microenvironment and promoting cancer invasion (Fig. 6b). 
Although SpaGCN had slightly higher Moran’s I and Geary’s 
C values, it identified only 642 SVGs, limiting its usefulness in 
downstream analysis due to insufficient separation of cell types 
within the tissue. DE analysis using the Wilcoxon rank-sum test 
confirmed that GAADE could also identify genes with spatial 
expression patterns detected by SpaGCN (Fig. 6c). 

We analyzed the anterior sagittal slice dataset of mouse brain 
tissue, which includes 21,334 genes across 2695 locations. This 
dataset has a more complex tissue structure compared to the 
previous ones. We compared GAADE’s ability to detect SVGs with 
that of SpatialDE, SpaGCN, Squidpy, scGCO, and SPARK. With 
the number of clusters set to 19, GAADE identified 2297 SVGs 
across 19 spatial domains. In contrast, SPARK and SpatialDE 
detected 9451 and 11 836 SVGs, respectively, but these included 
noise. The median Moran’s I and Geary’s C values for SVGs 
detected by GAADE (Moran’s I: 0.4041) were significantly higher 
than those detected by SPARK (0.0809) and SpatialDE (0.0666) 
(Fig. 7a). 

While Squidpy and scGCO identified 4064 and 3585 SVGs, 
respectively, many had an adjusted p-value of 0, making it difficult 
to assess spatial heterogeneity. SpaGCN had the highest median 
Moran’s I score (0.5526) but identified only 445 SVGs. GAADE, 
by considering inter-domain differential analysis and examining 
cell numbers and gene expression differences between target 
domains and second-order neighborhoods, detected 2297 SVGs 
with a median Moran’s I of 0.4041. While the number of SVGs 
does not always indicate accuracy, a higher number of SVGs with 
similar Moran’s I and Geary’s C values may better capture the 
complexity of spatial gene expression.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae669#supplementary-data
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Figure 5. Spatial domains and SVGs detected in mouse coronal brain slice data. (a) Clustering results of GAADE for mouse coronal brain slices. (b) Boxplot 
of Moran’s I and Geary’s C values for SVGs detected by GAADE, SpaGCN, Squidpy, SpatialDE, ScGCO, and SPARK in mouse coronal brain slice data. (c) 
Spatial expression pattern of SVGs in mouse coronal brain spatial domain 20 (Camk2a). (d) High expression genes identified by the SpaGCN method in 
spatial domains 12 and 5 of mouse coronal brain slice data. 
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Table 5. Number of spatially variable genes (SVGs) identified by the five methods—SpatialDE, SpaGCN, Squidpy, scGCO, and SPARK—in 
different samples, along with the median values of Moran’s I and Geary’s C. (bold font indicates the optimal solution, while underlined 
text highlights the second-best solution.) 

Dataset Breast Cancer Brain coronal Brain (Sagittal-Anterior) 

Number 
of SVGs 

Median of 
Moran’s I 

Median of 
Geary’s C 

Number 
of SVGs 

Median of 
Moran’s I 

Median of 
Geary’s C 

Number 
of SVGs 

Median of 
Moran’s I 

Median of 
Geary’s C 

GAADE 1397 0.5428 0.5437 1940 0.2950 0.2946 2297 0.4041 0.4046 
SpaGCN 642 0.6293 0.6300 789 0.3518 0.3521 445 0.5526 0.5523 
Squidpy 2597 0.1508 0.1509 2577 0.1787 0.1794 4054 0.1833 0.1843 
SpatialDE 12,363 0.0479 0.0484 8440 0.0587 0.0599 11,836 0.0666 0.0672 
ScGCO 3168 0.1343 0.1344 2380 0.1819 0.1827 3585 0.1928 0.1929 
SPARK 11,301 0.0519 0.0521 6205 0.0760 0.0767 9451 0.0809 0.0818 

Figure 6. Analysis of SVGs detected in ductal carcinoma in situ slice data of human breast tissue. (a) Boxplot of Moran’s I and Geary’s C values for SVGs 
detected by GAADE, SpaGCN, Squidpy, SpatialDE, ScGCO, and SPARK in ductal carcinoma in situ slice data of human breast tissue. (b) Spatial expression 
patterns of SVGs in spatial domains 6 and 8 of ductal carcinoma in situ slices of human breast tissue (In the lower right corner of Figure 6, the outer 
annulus region is distinctly annotated as spatial domain 8, whereas the inner annulus area is precisely labeled as spatial domain 6). (c) Heatmap 
summarizing the high-expression genes identified by the SpaGCN method in spatial domain 6. 
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Figure 7. Spatial domains and SVGs detected in the anterior sagittal slice data of mouse brain tissue. (a) Boxplot of Moran’s I and Geary’s C values 
for SVGs detected by GAADE, SpaGCN, Squidpy, SpatialDE, ScGCO, and SPARK in anterior sagittal slice data of mouse brain tissue. (b) High expression 
genes identified by the SpaGCN method in spatial domains 10 and 8 of mouse sagittal brain slice data. (c) Clustering results of GAADE for the anterior 
brain tissue slices. (d) Spatial expression patterns of SVGs in spatial domains 17 and 18 of the anterior sagittal slices of mouse brain tissue (In the 
central region of the figure, the upper half is precisely annotated to signify Spatial Domain 18, while the lower half is distinctly labeled to denote Spatial 
Domain 17). 

To evaluate expression differences across spatial domains, 
we applied the Wilcoxon rank-sum test to identify differentially 
expressed genes between domains detected by SpaGCN, high-
lighting the top ten characteristic genes for each domain or cell 
type. Notably, for the two domains where SpaGCN detected the 
highest number of SVGs, GAADE successfully identified all of the 
top 20 highly expressed genes, demonstrating its high sensitivity 

and coverage in detecting genes with spatial expression patterns 
( Fig. 7b). 

Moreover, GAADE effectively delineates the histological struc-
ture of this complex region, clearly defining tissue boundaries. 
As shown in Fig. 7c, the identified spatial domains 2, 3, 5, 7, 9, 
11, and 19 are marked according to their location in the ante-
rior cortical layers of the mouse brain. GAADE also recognized
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well-known marker genes, including Camk2n1, Nrgn, and Atp1a1, 
as indicators of these domains. Further validation of domain-
specific marker genes showed that Meis2 is enriched in Domain 
13, while Ppp1r1b is highly expressed in Domains 17 and 18, 
suggesting their association with dopamine secretion and neural 
development (Fig. 7d). GAADE’s robust detection method ensures 
the accurate identification of SVGs, underscoring its superior 
capability in recognizing true spatial gene expression patterns. 

Conclusions 
The rapid advancement of ST has revolutionized the study of 
spatial heterogeneity, providing new perspectives for analyzing 
cellular transcriptomes. The identification of SVGs is a critical 
step in characterizing spatial domains. In this study, we propose 
the GAADE framework, which integrates spatial location and 
gene expression data to model spatial embeddings, enabling the 
identification of spatial domains with similar expression patterns 
and the detection of SVGs with distinct spatial expression profiles. 

GAADE first constructs a SNG to generate node representa-
tions and aggregates neighboring nodes through a stacked graph 
structure, clustering them into the same spatial domain. We 
conducted systematic tests across datasets from various species 
and tissues. When applied to the human DLPFC dataset, GAADE 
achieved optimal ARI values in over half of the 12 slices ana-
lyzed. The framework is flexible, allowing users to adjust param-
eters through a self-attention mechanism to prioritize either 
spatial domain identification or SVG quality. Upon incorporating 
a refined spatial domain boundary module, GAADE outperformed 
other models in spatial clustering, despite a reduction in the num-
ber of detected SVGs. However, the module significantly improved 
the Moran’s I and Geary’s C metrics for most SVGs, indicating 
higher consistency and significance in spatial distribution [37]. 
Thus, researchers should weigh the benefits of using this module 
according to different experimental requirements. 

We focus our research on detecting SVGs within spatial 
domains. Most state-of-the-art SVG identification algorithms, 
such as nnSVG [14], do not consider spatial domain information, 
which limits the ability to identify genes with spatial-specific 
expression in specific micro-functional areas within tissues. Since 
there is a correlation between gene variability and expression 
levels, we do not consider the identification of spatial domains 
and SVGs as separate issues. By limiting the search space within 
precisely defined spatial domains, GAADE rigorously considers 
intra-domain gene expression and inter-domain differential 
analysis, and further analyzes the differences in cell numbers and 
gene expression levels between target domains and second-order 
neighborhoods, ensuring that the detected SVGs have definite 
spatial expression patterns. Comparisons using the Moran’s I 
spatial autocorrelation statistic show that GAADE is more capable 
of detecting SVGs with clearer spatial expression patterns than 
SpatialDE, Squidpy, scGCO, and SPARK. One limitation of GAADE is 
that it does not fully utilize histological image information. Future 
improvements could involve directly integrating histological 
images and spatial gene expression profiles to determine tissue 
structural domains, making the detected SVGs more biologically 
meaningful. 

Key Points 
• GAADE employs a graph attention autoencoder, selec-

tively integrating gene expression and spatial location 
information to construct an accurate spatial neighbor 

network, thereby better representing the spatial sim-
ilarities across different spatial domain boundaries. 
By restricting the search space to optimized spatial 
domains, this framework enhances the consistency and 
significance of the identified SVGs in their spatial distri-
bution. 

• By optimizing the identification of spatial domains, 
GAADE for the first time considers the expression differ-
ences between target spatial domains and their second-
order neighborhoods, demonstrating enhanced perfor-
mance in both the number of SVGs detected and the pre-
cision of capturing spatial variations in gene expression. 

• GAADE utilizes a self-attention mechanism that enables 
users to selectively focus on either the identification 
of spatial domains or the quality of SVG detection by 
adjusting parameter configurations. 

Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online. 
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