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Abstract

In the context of the global damage caused by coronavirus disease 2019 (COVID-19) and the emergence of the monkeypox virus (MPXV)
outbreak as a public health emergency of international concern, research into methods that can rapidly test potential therapeutics
during an outbreak of a new infectious disease is urgently needed. Computational drug discovery is an effective way to solve such
problems. The existence of various large open databases has mitigated the time and resource consumption of traditional drug
development and improved the speed of drug discovery. However, the diversity of cell lines used in various databases remains limited,
and previous drug discovery methods are ineffective for cross-cell prediction. In this study, we propose a correlation-dependent
connectivity map (CDCM) to achieve cross-cell predictions of drug similarity. The CDCM mainly identifies drug–drug or disease–drug
relationships from the perspective of gene networks by exploring the correlation changes between genes and identifying similarities
in the effects of drugs or diseases on gene expression. We validated the CDCM on multiple datasets and found that it performed
well for drug identification across cell lines. A comparison with the Connectivity Map revealed that our method was more stable and
performed better across different cell lines. In the application of the CDCM to COVID-19 and MPXV data, the predictions of potential
therapeutic compounds for COVID-19 were consistent with several previous studies, and most of the predicted drugs were found to
be experimentally effective against MPXV. This result confirms the practical value of the CDCM. With the ability to predict across cell
lines, the CDCM outperforms the Connectivity Map, and it has wider application prospects and a reduced cost of use.

Keywords: connectivity map (CMap); correlation-dependent connectivity map (CDCM); SARS-CoV-2; monkeypox virus (MPXV); drug
function prediction; breakthrough cell line boundary

Introduction
Sudden outbreaks of infectious diseases often become serious
public health events. For example, the global coronavirus disease
2019 (COVID-19) pandemic has led to enormous social and eco-
nomic devastation [1–4]. Monkeypox virus (MPXV) cases continue
to occur in nonendemic countries and have been declared a
“Public Health Emergency of International Concern” by the World
Health Organization [5, 6]. However, few laboratories worldwide
are qualified to study highly pathogenic infectious diseases. Thus,
human society is currently unable to respond quickly to such
infectious diseases, and it is necessary to develop efficient meth-
ods to address such diseases. Improvements in drug discovery
methods are necessary to develop effective therapies to mitigate

the damage caused by emerging infectious diseases and prepare
for rapid solutions to future global public health crises caused by
these diseases.

Computational methods have mitigated the high cost and
failure rates that pharmaceutical research and development have
long faced and have been used effectively in many drug discovery
studies in recent years [7–11]. The Connectivity Map (CMap) is
a useful tool for identifying novel drugs at the transcriptome
level, which was made possible by the rapid development of
computational methods for analyzing drug perturbation datasets
[12]. The main concept of CMap is that functionally similar com-
pounds can induce similar changes in transcriptome expression
in a given cell line. To address the limitation of CMap caused by

https://orcid.org/0009-0003-2409-2026

 32957 22918 a 32957
22918 a
 
mailto:yihy2018@mail.sustech.edu.cn
mailto:yihy2018@mail.sustech.edu.cn
mailto:yihy2018@mail.sustech.edu.cn
mailto:yihy2018@mail.sustech.edu.cn
mailto:yihy2018@mail.sustech.edu.cn

 14631 25022 a 14631
25022 a
 
mailto:luhongzhou@fudan.edu.cn
mailto:luhongzhou@fudan.edu.cn
mailto:luhongzhou@fudan.edu.cn

 15493 26073 a 15493
26073 a
 
mailto:yuanlingniu@csu.edu.cn
mailto:yuanlingniu@csu.edu.cn
mailto:yuanlingniu@csu.edu.cn


2 | Liao et al.

database size and cell type [13], the Library of Integrated Network-
Based Cellular Signatures (LINCS) expanded the database by using
a low-cost gene expression analysis technique, which enabled
the large-scale analysis of small molecule–induced transcriptome
data [14–16].

As the database continues to be updated and expanded,
additional studies have been conducted to improve CMap. CMap
mainly uses the KS (Kolmogorov–Smirnov) method to evaluate
the similarity score between the query signatures of a disease or
drug and the drug signatures in the reference database. However,
the KS method has limitations in accuracy and sensitivity, which
has prompted researchers to develop other improved similarity
scoring methods [13]. The statistically significant connectivity
map calculates the weighted similarity score by assigning higher
weights to significantly differentially expressed genes, combining
the up- and downregulation status of genes and their ranks [17].
The eXtreme cosine uses the cosine of two signatures as the
similarity measure for CMap [18]. The eXtreme sum simply sums
up the compound gene expression values of the queried genes
[19]. ProbCMap uses probabilistic models combined with group
factor analysis for drug discovery in one or more cell lines [20].
ksRepo converts information from disease and open databases
into EntrezGene identifiers, thus modifying the KS method [21].
Various improvements in the similarity measure have improved
the performance of CMap [19, 22, 23]. Since CMap lacks an
accurate method for creating optimal gene signatures [13], a few
studies have been conducted to improve the construction of gene
signatures to adapt to different research requirements [24, 25].
CMapBatch uses a meta-analysis framework to identify the best
drug candidates by combining the drug list produced by multiple
signatures of a disease [26]. The mode of action by NeTwoRk
analysis builds a drug–drug interaction network by capturing
the “consensus” of the transcriptional responses of compounds
across multiple cell lines and concentrations [27]. CudaMAP uses
NVIDIA graphics processing units to reduce the processing time
of data analysis and ease the computing needs of improved
methods [28]. However, the current version of CMap still has
limitations in drug discovery across cell lineages, which hinders
its wider application. Considering the cost of second-generation
sequencing [29] and the limited size of existing databases, such
as LINCS, the application of the current CMap version in drug
discovery remains inefficient. Therefore, a method suitable for
drug identification across different cell lines needs to be explored
to improve the use of the existing data.

In this work, we present the correlation-dependent connectivity
map (CDCM), a novel computational drug discovery method
based on Pearson’s correlation coefficient, for exploring the
potential similarity of gene expression changes induced by drugs
in different cell lines. In this study, the robustness of the CDCM’s
predictions of potential therapeutics for SARS-CoV-2 and MPXV
was verified via query signatures and reference databases, and
its performance was compared with that of the CMap method.
In general, the CDCM performed well in cross-cell line drug
identification and identified potential drugs against SARS-CoV-2
and MPXV, indicating its good application prospects.

Methods
CMap and its derived methods are primarily focused on the
consistent effects of drugs or diseases on changes in intracellular
gene expression levels. However, such methods are often limited
by inherent differences in cellular environments when identify-
ing drugs between different cell lines, resulting in a tendency

for identified associations to be closely related to core cellular
processes (e.g. ribosome function) [30], which may overlook the
identification of drug-specific or disease-specific effects. In addi-
tion, disease-associated genes do not always show significant
differential expression [31]. In contrast, the CDCM presents a new
perspective that focuses on the consistency of drug or disease
effects in terms of expression correlations between genes. When
the focus shifted from the expression level of a single gene to the
expression relationship between two genes, it was found that even
if the expression level of the two genes alone did not change much,
the correlation between them could change significantly, such
as from a positive to a negative correlation [32, 33]. The CDCM
method uses the Pearson correlation coefficient to quantify the
correlation between genes, and mining the potential information
in the expression profile from the perspective of gene correlation
for drug discovery across cell lines.

Like CMap, CDCM includes a query signature, a reference
database, and a similarity score calculation method. When
calculating the similarity score, taking the drug–drug positive
similarity score as an example, if the query signature and the
instance signature in the reference database are highly consistent
and have the same trend in the correlation change of gene pairs,
it indicates that the two drugs may have similar drug effects. At
this time, the similarity calculation method will assign a higher
score to the instance signature. Each query will generate a ranked
list of drugs based on the similarity scores, which will provide a
decision-making basis for identifying potential drug candidates
with target drug effects during drug screening.

Correlation coefficient change vector calculation
Data sources and processing details are provided in the supple-
mentary. In CDCM, the Pearson correlation coefficient was
selected to measure the correlation between two genes. Suppose
that the number of replicates under one treatment is n. Each
replicate contained N genes. The expression values of each gene
in n replicates can construct an n-dimensional expression vector.
Gene i and gene j are any two genes whose expression vectors are
denoted as Gi, Gj. The correlation coefficient of gene i, j is defined
as Equation (1):

Cor
[
Gi, Gj

] = Ep
[
GiGj

] − Ep [Gi] Ep
[
Gj

]
√

Var [Gi] Var
[
Gj

] , (1)

where Ep is the expectation and Var is the variance. N genes can
yield

(
N2 − N

)
/2 different gene pair combinations, and the cor-

relation coefficients of these pair combinations can construct a(
N2 − N

)
/2-dimensional correlation coefficient vector V. Assume

that the correlation coefficient vectors of ‘drug samples’ and
‘control samples’ are VDrug and VCtrl, respectively (Fig. 1a). The
correlation change between them is defined as Vdiff = VDrug −VCtrl.
Gene pair combinations with larger absolute values in Vdiff are
considered to have more essential drug effects on the expression
relation between genes.

Query signature and reference database
Constructing a validated drug ‘query signature’ (denoted as sq)
requires arranging the elements of Vdiff in descending order and
taking the top M gene pairs denoted as sq

up and the bottom M gene
pairs denoted as sq

down (Fig. 1a).
A reference database is a collection of drug ‘instance

signatures’. An instance signature (denoted as si) is the processed
data on the expression profiles under a drug treatment, which
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Figure 1. Flowchart of the CDCM and CMap. (a) Preparation of the ‘query signature’ (sq) and reference database. The Pearson correlation coefficients of
all gene pair combinations of N genes in ‘drug samples’ (or ‘control samples’) can be used to construct an

(
N2 − N

)
/2-dimensional correlation coefficient

vector V. The correlation change between drug samples and control samples is defined as Vdiff = VDrug − VCtrl. Constructing a validated drug query

signature (denoted as sq) requires arranging the elements of Vdiff in descending order and taking the top M and bottom M gene pairs denoted as sq
up

and sq
down, respectively. To obtain an ‘instance signature’ (denoted as si), gene pairs in a sorted Vdiff are divided into positive (≥0) and negative (<0) sets

according to their corresponding values and are ranked in descending order in each set according to the absolute values. The top M gene pairs with
the lowest ranks in the positive and negative sets, denoted as si

up and si
down, respectively, are extracted to form a 2M-dimensional si in the reference

database. (b) Positive and negative similarity score calculation. The positive similarity between sq and si measures the similarity degree of the change
in gene pair correlation between sq

up and si
up and between sq

down and si
down by obtaining sq

up ∩ si
up and sq

down ∩ si
down to calculate a positive similarity score.

The negative similarity between sq and si measures the similarity degree of the change in gene pair correlation between sq
up and si

down and between sq
down

and si
up. (c) Formula of the similarity score. Suppose there are nup and ndown gene pairs in sq

up ∩ si
up (or sq

up ∩ si
down) and sq

down ∩ si
down (or sq

down ∩ si
up) for a

positive similarity score (or a negative similarity score).
[
u1, u2, . . . , unup

]
are ranks of the nup gene pairs in si, and

[
d1, d2, . . . , dndown

]
are ranks of the ndown

gene pairs in si. (d) Flowchart of the CMap. Query signature is composed of genes with significantly upregulated and downregulated expression. Each
instance signature in the reference database contains all the genes and their differential expression ranks. The list of drugs output shows the KS scores
of all drugs in the database with the query drug.

represents the drug effect on the gene relation. As described in
the previous section, every drug’s Vdiff can be calculated based on
‘drug samples’ and ‘control samples’. To obtain an si, gene pairs
in a sorted Vdiff are divided into positive (≥0) and negative (<0)
sets according to their corresponding values and are ranked in
descending order in each set according to the absolute values. The
top M gene pairs with the lowest rank in positive and negative sets,

denoted as si
up and si

down, are extracted to form a 2M-dimensional
si in the reference database.

Pattern-matching strategy
CDCM needs to calculate the positive similarity score and neg-
ative similarity score (Fig. 1b). For the positive similarity score,
suppose there are nup and ndown gene pairs in two intersections
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sq
up ∩ si

up and sq
down ∩ si

down. The corresponding ranks of these gene
pairs in si are [u1, u2, . . . , unup ] and [d1, d2, . . . , dndown ]. The score K is
defined as follows:

kup =
nup∑
i=1

[
ρ + nup − i

nup
− ui

max
{
u1, u2, . . . , unup

}
]

, (2)

kdown =
ndown∑
i=1

[
ρ + ndown − i

ndown
− di

max
{
d1, d2, · · · , dndown

}
]

, (3)

K = kup + kdown (4)

Score K measures the similarity degree of gene-pair correlation
change between sq

up and si
up, sq

down, and si
down. ρ is a constant that

adjusts the effect of the two intersection sizes on score K.
It can be seen from the formula: (i) the larger the intersections

are, the more gene pairs there are that change synchronously
between sq and si, and the greater the similarity is; (ii) the smaller
the ranks of gene pairs in two intersections are, the more signif-
icant the correlation change between gene pairs in sq and si is,
and the higher the score is; (iii) ρ can balance the contributions
of ranks and intersection sizes to the score by balancing their
weights; and (iv) the larger the M is, the higher the requirement is
for the degree of similarity between sq and si.

Due to the symmetry of the method, the negative similarity
score is calculated in essentially the same way as the positive
similarity score. Only the objects of the intersection need to be
exchanged, that is, sq

up ∩ si
down and sq

down ∩ si
up, where the corre-

sponding ranks of the gene pair are denoted as [u1, u2, . . . , unup ]
and [d1, d2, · · · , dndown ], respectively. The score K is still calculated
according to Equations (2–4). The essence of the negative sim-
ilarity score is that gene pairs with increased (or decreased)
correlation in si are decreased (or increased) in sq, indicating that
the two drugs have opposite effects on gene expression correlation
and may have certain reverse effects.

Both types of score calculations output a ranked list of drugs,
showing how similar the drugs in the reference database are to the
validated drug. Through small-scale validation, we find that the
optimal value of M is between 300 000 and 2 000 000, and in this
research, M is set to 300 000, 500 000, 1 000 000, and 2 000 000. By
comparing the proportion of top-ranked results between different
cell lines, ρ = 1 shows a stable performance in 4, 2, 1, 0.1, 0.05, 0.02,
and 0.01 and is a compromise choice that will be applied in the
following large-scale validations (Fig. S1).

In fact, the core of CDCM is to exploit the similarity of gene net-
works. A gene pair represents two nodes in the network. The edge
between two nodes is represented by the correlation or correlation
change of the gene pair. All possible gene pair combinations and
their edges form a complete gene network. Therefore, for each si

in the drug rank list output by CDCM in a query with a sq, the
gene pair intersection (

(
sq

up ∩si
up

)∪ (
sq

down ∩si
down

)
for positive score)

generated by the score calculation with sq can also be a gene
network. To show the huge difference in similarity between the
first si (denoted as si1 ) and the last si (denoted as si2 ) in a drug rank
list from a network perspective, we extract two subsets of the two
gene pair intersections from si1 and si2 to construct gene networks.
Assume that the vectors of correlation change for si1 , si2 and sq are
Vsi1

diff , Vsi2

diff , and Vsq

diff . Subset extraction refers to obtaining the top
1000 gene pairs from the gene pair intersection of an si based on
the sum of absolute values in Vsi

diff and Vsq

diff for each gene pair,
which could roughly reflect whether the correlation changes of
the drug are significant and similar between its si and sq. Finally,

two subsets of gene pair intersections of si1 and si2 are denoted as
S1 and S2.

The essence of CDCM is to identify and quantify the consis-
tency of drug effects on gene expression relation networks in cells
(Fig. 1). Signature is a collection of gene pairs and ranks that stores
the gene relations most significantly affected by a drug, which can
be divided into sup and sdown, including gene pairs with significant
increases and decreases in the Pearson correlation coefficient.
Ranks in sup (or sdown) show the positions of positive (or negative)
correlation change in a gene pair among all gene pairs of the
same correlation change type, with a larger change leading to a
higher rank. This means that the gene pairs with the most positive
and negative changes are ranked at the top one in sup and sdown,
respectively. By comparing the number of gene pairs common in si

and sq with the degree of correlation change, CDCM assigns each
si in the reference database a score and ranks these sis according
to the score.

Connectivity map method
The CMap method was used to compare it with CDCM (Fig. 1d).
There has long been a lack of clear guidance on sq length when
using the CMap method [34]. However, the change in individual
genes in sq may lead to completely different results [26]. Therefore,
three lengths of 200, 400, and 600 were set, which are evenly
divided into the upregulated part and downregulated part of sq,
and three scores were calculated for sq to weaken the randomness
of the result brought by the sq length variation.

Experimental validation of predicted monkeypox
virus drugs
The A549 cells were infected with MPVX (MOI = 0.1), and 48 h
later, the intracellular RNA was extracted and the mRNA-seq was
detected. After MPXV infected A549, the cells were treated with
1 μM concentration of drugs (ponatinib, dabrafenib, sunitinib,
lapatinib), the nucleic acid (Daan gene, #DA0620) was extracted
from the samples 48 h later, and the MPVX content in the sam-
ples was detected by qPCR (F3L-F: cttccgtcaatgtctacacaggc; F3L-R:
cgttggtctacgacaatggatgc).

Results
Validation across different cell lines
We denoted the four cell lines in dataset 1 as A, B, D, and E. The
reference database and sq used for validation were constructed
according to the steps shown in Fig. 1. Drugs with more than
three replicate profiles in each cell line were retained to construct
four reference databases. Each cell line needed three sq sets of
common drugs, with the other three cell lines used for validation.
The expression profiles of the cell lines treated with the same drug
were expected to be the most similar. The ideal result for a given
drug list would be that the drug to be validated is at the top of the
list. The minimum rank of the validated drug in the output lists
with different M was regarded as the result for this method.

As shown in Fig. 2a, ∼12.2% of the validated drugs ranked first
in the drug lists, indicating that the method could accurately
identify the most similar drugs. Nearly 21.2% of the validated
drugs ranked in the top two, and 28.8% ranked in the top three.
Figure 2b shows that ∼20% of the validated drugs were in the
top 20%, and approximately half were in the top 40%. When used
for validation, many drugs ranked in the top half of the list. The
resulting lists of two sq′s are provided in Tables S1 and S2, in which
the validated drugs were identified and placed in the top rank.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data


CDCM: Rapid drug screening in outbreaks | 5

Figure 2. Validation results for Dataset 1. (a) The proportions of validated drugs ranked in the top one, two, and three. (b) Cumulative distribution of the
validated drug rank positions in the list. (c) The gene expression networks of nilotinib and lapatinib are shown in Table S1. S1 and S2 were obtained
from nilotinib-sq, which was validated with nilotinib-si and lapatinib-si. Nodes represent genes. Lines between nodes represent correlations between
genes. The line color represents the positive or negative value of the change. The node size and text label size represent the degree of the node. The line
width represents the change in the gene-pair correlation coefficient.

It can be concluded that the CDCM identified validated drugs
accurately with Dataset 1.

In addition, the CDCM could identify other drugs that act
similarly to the validated drugs and assign them higher scores.
As shown in Table S1, nilotinib ranked first in Dataset 1. Nilotinib
is mainly used to treat imatinib-resistant chronic myelocytic
leukemia [35], and its main targets are platelet-derived growth
factor receptor (PDGFR) and c-Kit [36]. Sunitinib, which ranks
second, is mainly used to treat gastrointestinal stromal tumors
and metastatic renal cell carcinoma [37], and its targets include
PDGFR and c-Kit [38]. Dasatinib, which ranks third, is a multiki-
nase inhibitor with targets including c-Kit and PDGFR [39]. These
drugs share similar targets. Another case is the list generated by
sorafenib-sq (Table S2). Sorafenib is a novel multitarget kinase
inhibitor that inhibits B-Raf proto-oncogene (BRAF) and vascu-
lar endothelial growth factor receptor (VEGFR) [40]. Dabrafenib,
which ranks second, has high inhibitory activity against BRAF
[41]. Vandetanib, which ranks third, also acts on VEGFR targets in
tumor cells [42]. These results show that the CDCM can be used
to identify functionally similar drugs in different cell lines.

The expression correlation of gene pairs under drug action can
be observed in the gene network. The networks were constructed
from the gene expression data of the first-ranked drug (nilotinib)
and the last-ranked drug (lapatinib) from Table S1 (Fig. 2c). The
intersection sizes of nilotinib-si and lapatinib-si generated in the
calculation with sq were 23 000 and 19 000, respectively, suggesting
one reason for such a large gap between the scores of the two
si′s. S1 and S2 had the same number of gene pairs (1000) but

different numbers of gene nodes (1484 for S1 and 1686 for S2),
indicating that S1 had higher network complexity than S2. The
gene networks in S1 had a larger network aggregation module,
which were denser than those in S2, and they could better demon-
strate the direct or indirect effects of drugs on genes. Relatively,
the correlation changes among the gene nodes in S2 were not
as strong as those in S1, reflecting the lower coincidence degree
between nilotinib-sq and lapatinib-si.

Prediction results applied to the COVID-19
dataset
COVID-19 has caused millions of infections and deaths worldwide.
We used Datasets 1, 2, 3, and 4 to identify potential effective
therapies for COVID-19 and explore the utility of the CDCM in
discovering drug–drug and disease–drug relationships. Nguyen
et al. studied the inhibitory effects of cannabinol (CBD) against
SARS-CoV-2 (the causative pathogen of COVID-19) in A549 cells
in Dataset 4 and highlighted CBD as a potential preventive agent
for early SARS-CoV-2 infection. We used the expression profiles
of the treatment samples and control samples of CBD and SARS-
CoV-2 in this dataset to construct CBD-sq and SARS-CoV-2-sq. The
CDCM was used to obtain positive and negative similarity scores
by querying CBD-sq and SARS-CoV-2-sq in the reference databases
of Datasets 1, 2, and 3 (Fig. 3a).

For the predictions of CBD-sq and SARS-CoV-2-sq in the four
reference databases of Dataset 1, we found that dabrafenib in G1-
B ranked first in the output lists of both drug–drug similarity and
disease–drug similarity calculations (Fig. 3b and c). These findings

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data


6 | Liao et al.

Figure 3. Drug prediction by the CDCM in the SARS-CoV-2 dataset. (a) Flowchart for SARS-CoV-2 drug prediction via the CDCM. (b) Output lists of CBD-sq

validated in reference databases of Dataset 1-B. (c) Output lists of SARS-CoV-2-sq validated in reference databases of Dataset 1-B.

indicate that the effect of dabrafenib on gene correlation in neural
cells is consistent with the effect of CBD on gene correlation in
A549 cells. However, this effect was opposite to that of SARS-CoV-2
on the gene expression correlation changes in A549 cells. In other
words, the CDCM predicted that dabrafenib has an inhibitory
effect on SARS-CoV-2 similar to that of CBD. In addition, as with
dabrafenib, lapatinib (dataset 1-E) (Tables S3 and S4), sorafenib
(dataset 2) (Tables S5 and S6), and trichostatin A (dataset 3-
MCF7) (Tables S7 and S8) ranked first in the lists for both queries.
Previous studies have confirmed that these predicted drugs have
certain inhibitory effects on SARS-CoV-2 [43–48]. Therefore, these
compounds deserve further exploration and validation as poten-
tial therapeutic agents for COVID-19. The prediction results also
indicated that the CDCM has a strong potential for identifying
therapeutic drugs for viral diseases.

Prediction results applied to the monkeypox
virus dataset
We applied CDCM to predict potential drugs for MPXV and con-
ducted experiments to verify the inhibitory effects of the pre-
dicted drugs on MPXV. First, MPXV was used to infect A549 cells
(experimental group), and RNA sequencing was performed to
obtain the expression profiles of the experimental and control
groups to construct MPXV-sq (Fig. 4a). Then, MPXV-sq was used to
calculate the negative similarity score in the reference databases
of Dataset 1. Four drugs (ponatinib, dabrafenib, sunitinib, and
lapatinib), which were in the top 5% of the output lists, were
chosen for subsequent experimental validation (Tables S9–S11
and Fig. 4b).

A549 cells infected with MPXV were treated with the selected
predicted drugs, and three of them (ponatinib, sunitinib, and
lapatinib) exhibited varying degrees of inhibitory effects on

MPXV (Fig. 4c). Ponatinib, sunitinib, and lapatinib decreased
the proliferation rate of MPXV by 173.1, 264.3, and 19.9 times,
respectively. Dabrafenib had no effect on the proliferation of
MPXV. This finding highlights the usefulness of the CDCM for
drug repurposing. Currently, patients infected with MPXV lack
effective treatment options and have to rely on natural recovery;
therefore, the potential use of these drugs warrants further
exploration.

Comparison of the correlation-dependent
connectivity map with Connectivity Map
We compared the performance of the CDCM and CMap on
Datasets 1, 2, and 3. There were multiple drug concentrations
in these three datasets, and the number of replicates for each
concentration differed. To compare the validation results of the
two methods reasonably, we averaged all the expression profiles
for each drug in each dataset to obtain a new expression profile,
which was used to construct the sqs and sis used in the CMap
method. The gene expression values of 0 were replaced by 0.001.
Since only a positive similarity comparison was performed, all
nonpositive scores in CMap were regarded as invalid scores, and
their corresponding ranks were modified to the maximum ranks
in the lists. M of the CDCM was set to one of three values: 300 000,
500 000, and 1 000 000. ρ was set to 1. Only the minimum rank
generated under the three lengths was retained for the statistical
analysis.

As shown in Fig. 5, the consistent cell types in dataset 1 allowed
CMap to identify certain drugs within the top 10% of the lists
well, but most validated drugs si received invalid scores, making
the CDCM far more efficient than CMap for the top 20% and
beyond (Fig. 5a–d). When Dataset 2 was validated in the reference
database of dataset 1, many of the CMap outputs were invalid,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae659#supplementary-data
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Figure 4. Drug prediction by the CDCM in the MPXV dataset. (a) Flowchart for MPXV drug prediction via the CDCM. (b) Output lists of MPXV-sq validated
in reference databases of Datasets 1-A and 1-D. (c) Inhibitory effects of four predicted drugs on MPXV in the experiment.

whereas the CDCM had the obvious advantage of being able to
break through such large cell differences (Fig. 5e–h). In Dataset
3, the performance of CMap improved, and the advantage of the
CDCM was that it focused mainly on identifying drugs in the top
30% of the list (Fig. 5i and j). Notably, this dataset is produced for
CMap and may be more suitable for the CMap method. Overall,
the CDCM performed better than the previous CMap version in
cross-cell lineage applications.

Discussion
In this work, we present a novel drug discovery approach, the
CDCM, designed to expedite the identification of potential treat-
ments for viral diseases. This method holds promise for advancing
the prevention and treatment of infectious diseases, including
COVID-19 and MPXV, in future public health efforts. Recently,
the list of pandemic pathogens released by the World Health
Organization (WHO) covers >30 pathogens, such as MPXV [49] and
highlights the urgency of rapidly developing methods for iden-
tifying potential therapeutic drugs that are less sensitive to the
cellular context of the data. At the time of an infectious disease

outbreak, time constraints often prevent us from customizing
data for methods such as CMap. However, the use of available
data for prediction may affect the stability and efficiency of drug
discovery due to the influence of cell type or other experimental
conditions. The CDCM method enables drug prediction across cell
lines and has unique advantages in emergency situations with
limited data.

The CDCM showed good identification performance in the pre-
diction across different cell lines. It scores drugs by calculating the
similarity of changes in expression correlations between genes,
making full use of the information in expression profiles. For
CMap, the different degrees of transcriptome expression caused
by different cellular physiological environments may exceed the
perturbations generated by drugs, resulting in poor performance
in cross-cell line prediction. However, the gene–gene network
interactions are substantially similar because they involve the
same genome. Therefore, by calculating the correlation changes
among genes, the CDCM can eliminate the dependence on the
original values of the cellular gene expression, thus enabling
more accurate predictions of drug functions across different
cell lines.
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Figure 5. Comparison of CMap and the CDCM in terms of the proportion of top drug rank positions in the validation results between different cell
lines. (a) Dataset 2 validated in Dataset 1-A. (b) Dataset 2 validated in Dataset 1-B. (c) Dataset 2 validated in Dataset 1-D. (d) Dataset 2 validated in
Dataset 1-E. (e) Dataset 1-A validated in Dataset 1-D. (f) Dataset 1-D validated in Dataset 1-A. (g) Dataset 1-A validated in Dataset 1-E. (h) Dataset 1-E
validated in Dataset 1-A. (i) Dataset 3-PC3 validated in Dataset 3-HL60. (j) Dataset 3-HL60 validated in Dataset 3-PC3.

In this study, the CDCM was validated in three datasets, and
it could place validated drugs at the top of the list with a high
probability. The identification efficiency was affected by experi-
mental factors such as data quality and cell line differences, but
the fluctuation range was small. The CDCM has also been used
to identify SARS-CoV-2 and MPXV therapeutics. With respect to
the CDCM drug predictions for SARS-CoV-2, some of the top drugs
have been shown to be effective against the virus in recent studies,
and most of the predicted MPXV drugs have also been shown
to be effective in subsequent experiments. The efficiency of the
CDCM and CMap for drug identification was also compared, and
the results revealed that CMap was less stable and accurate than
the CDCM.

The CDCM considers the similarity of sq and si and has greater
application value in drug discovery between different cell lines.
However, many problems necessitate further study. The first is
the number of replicates. The requirement of sufficient repli-
cates is difficult to meet because of cost constraints. Therefore,
the necessary and appropriate number of replicates should be
explored to achieve the best effect while minimizing the cost of
data acquisition as much as possible. The diversity of sample con-
centrations used also affects the quality of sq and si. Appropriate
concentration ranges and quantities may need to be considered in
relation to the specific drug to allow the range of gene expression
changes at different concentrations to be reasonably extended to
highlight the correlation between genes without influence from
extreme concentrations and causing misinterpretation of drug
effects. The sizes of sq and si can also be determined by setting
a threshold for Pearson’s correlation coefficient on the basis of
experience rather than retaining it as the same setting of M. In
addition, the reference databases constructed with multicell lines

lead to global differences in the validation results, possibly due
to systemic differences in the biological environments of the cell
lines. The advantage of the CDCM lies in effectively calculating
the similarity between sq and the reference database across cell
lines. For reference database construction, we recommend that
the data should be obtained from the same cell line.

In the future, the CDCM may be used to integrate public data
from multiple platforms to construct a large-scale comprehensive
reference database for researchers to explore drugs for various
diseases. In addition to helping address public health events, the
CDCM could be applied in drug development projects for diseases
caused by highly pathogenic microorganisms, such as HIV and
Mycobacterium tuberculosis, which are strictly restricted to BSL-3/4
laboratories and thus are not applicable in large-scale screening
projects. Thus, the CDCM can be used to perform large-scale
virtual screening before studies in BSL-3/4 laboratories, which
may accelerate drug development.

In terms of applications, CDCM can be extended by combining
data such as phenotype, drug structure, and protein structure [50–
52] to narrow the scope of drug screening, making it a valuable
tool for revealing drug–drug and disease–drug relationships in
pharmaceutical discovery.

Conclusion
We developed a signature-based drug identification method,
CDCM, which enables drug discovery across cell lines by analyzing
the similarity of correlated changes between gene expression.
Especially at the critical time of the outbreak of infectious
diseases, the CDCM has greater advantages in drug discovery
under the condition of limited data. The validation of the CDCM
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across different cell types showed good drug discovery ability,
and the CDCM was also able to identify potential therapeutic
drugs in the drug identification application cases of SARS-CoV-2
and MPXV. Compared with CMap, the CDCM has better accuracy
and stability in cross-cell lineage drug identification, showing
potential for drug discovery and personalized medicine.

Key Points

• The correlation-dependent connectivity map (CDCM)
overcomes the physiological barriers inherent in differ-
ent cell types for drug identification.

• The identification accuracy and stability of the CDCM
are greater than those of CMap.

• The CDCM is less sensitive to drug concentration differ-
ences than CMap.

• The CDCM accurately revealed that sorafenib could be a
potential therapeutic agent for COVID-19; sorafenib has
previously been demonstrated by several laboratories
worldwide to inhibit SARS-CoV-2.

• In the Biosafety Level III laboratory experiment, pona-
tinib, sunitinib, and lapatinib, which were predicted by
the CDCM, were shown to inhibit monkeypox virus pro-
liferation with an efficacy rate of 75%.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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