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Abstract

Advances in three-dimensional (3D) genomics have revealed the spatial characteristics of chromatin interactions in gene expression
regulation, which is crucial for understanding molecular mechanisms in biological processes. High-throughput technologies like ChIA-
PET, Hi-C, and their derivatives methods have greatly enhanced our knowledge of 3D chromatin architecture. However, the chromatin
interaction mechanisms remain largely unexplored. Deep learning, with its powerful feature extraction and pattern recognition
capabilities, offers a promising approach for integrating multi-omics data, to build accurate predictive models of chromatin interaction
matrices. This review systematically summarizes recent advances in chromatin interaction matrix prediction models. By integrating
DNA sequences and epigenetic signals, we investigate the latest developments in these methods. This article details various models,
focusing on how one-dimensional (1D) information transforms into the 3D structure chromatin interactions, and how the integration
of different deep learning modules specifically affects model accuracy. Additionally, we discuss the critical role of DNA sequence
information and epigenetic markers in shaping 3D genome interaction patterns. Finally, this review addresses the challenges in
predicting chromatin interaction matrices, in order to improve the precise mapping of chromatin interaction matrices and DNA
sequence, and supporting the transformation and theoretical development of 3D genomics across biological systems.
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Introduction
Three-dimensional genomics and chromatin
interactions
In eukaryotic organisms such as humans and mice, astonishingly,
DNA in a single cell exceeds 2 m in length, yet compacts to
fit a nucleus just 10 μm in diameter without losing biological
activity. This compaction reveals the genome’s intricate three-
dimensional (3D) structure within the nucleus [1] (Fig. 1). Highly
folded DNA, together with histones, transcription factors, and
specific RNA molecules, forms a dynamic and complex chromatin
structure [2]. This chromatin structure, with nucleosomes as basic
units, regulates life process and coordinates critical biological pro-
cesses like DNA replication, transcription, mutation, and damage
repair [3, 4].

With development in 3D genome sequencing, methods
to explore chromatin structure have evolved from the early
Fluorescent In Situ Hybridization (FISH) to capture genome
like Hi-C [5] and ChIA-PET [6]. These technologies capture
and document the complex chromatin interactions. Chromatin
interaction is a central to 3D genomics. Chromatin interaction
matrices, based on these interactions [7], record the spatial
patterns and provide a strong data foundation for analyzing the
genome structures [8–10]. These higher-order structures mainly
include chromosomal territories, chromatin A/B compartments,
TADs and their sub-domains, as well as chromatin loops
(Fig. 1A and C). Chromatin A/B compartments are closely related
to chromatin activity [11, 12], spanning hundreds of kilobases
to several megabases. TADs, as relatively stable structural
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Figure 1. The 3D structure of chromatin interactions. (A) Illustration of the hierarchical structure of chromosomal territories, chromatin a/B
compartments, TADs, and chromatin interaction (CI). (B) Characterization patterns of epigenetic modifications related to the 3D structure of the genome.
The distribution of epigenetic information, such as open chromatin regions, histone modification, DNA methylation, and transcription factor binding
site, is utilized for predicting and analyzing the chromatin interaction matrix. (C) Within the cell nucleus, chromosomes are captured by high-throughput
chromatin conformation techniques such as hi-C, to obtain a chromatin interaction matrix. The dashed circle denotes chromatin loops, and the dashed
square represents TADs.

units within the chromatin interaction matrix, typically span
from hundreds of thousands to millions of base pairs [11, 13].
Disruption of TAD structures can dysregulate gene expression,
potentially leading to diseases like cancer [14]. Chromatin loops
(CLs), local regions with high-frequency chromatin interactions
[15], span hundreds of thousands to millions of base pairs,
and are crucial for observing interactions between genes and
transcription regulatory elements, promoters and enhancers,
directly impacting gene expression [14, 16–18].

Notably, a close relationship exists between chromatin’s 3D
structure and its epigenetic information (Fig. 1B). This connec-
tion is key to cell specificity and essential for understanding
gene expression regulation and the normal organismal develop-
ment [19–22]. Key epigenetic mechanisms, such as histone mod-
ifications and DNA methylation, regulate 3D chromatin struc-
ture, enabling precise gene expression control [23]. Additionally,

higher-order chromatin organization is closely associated with
specific epigenetic markers [24–28]. For example, in Arabidopsis,
A Compartment is enriched with active H3K4me3 marks, while
B Compartment is rich in repressive H3K27me3 marks [12, 29].
This distribution pattern directly reflects the close link between
chromatin structure and biological function. Similarly, in mam-
malian cells, key proteins such as CTCFCCCTC-binding factor
(CTCF) and cohesin are crucial for forming and maintaining 3D
genome structure [30, 31], and the binding sites often align with
the epigenetic marker patterns.

According to the principle that “structure dictates function”
[15], advancements in 3D genomics have deepened our under-
standing of how genomic architecture relates to function. Projects
like ENCODE, which integrate genetic and epigenetic information,
have illuminated key pathways in gene expression regulation and
the molecular basis of diseases.
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Application of deep learning in the genomics and
3D genomics
Deep learning has shown great potential in genomics and
3D genomics research [32, 33]. For instance, The DeepNull
[34] model enhances phenotypic prediction and association
analysis of structural variations in cancer genomes, by simulating
nonlinear covariate effects. Additionally, the DeepCpG [35] and
DeepHistone [36] models accurately predict DNA methylation and
histone modifications, both crucial for understanding 3D genome
structure. Furthermore, the scDEAL model [37], using transfer
learning, integrates bulk and single-cell RNA-seq data to predict
drug sensitivity at the single-cell level, opening new avenues for
personalized medicine.

To resolve the 3D genome structure efficiently and accurately,
high-resolution chromatin interaction reinforcement learning
methods have been developed, including HiCPlus (convolutional
neural networks [CNNs]) [38], hicGAN (generative learning mod-
els) [39], and CAESAR (graph neural networks) [40]. However, these
methods still rely on Hi-C data input. Conversely, some research
focuses on using DNA sequences or epigenetic information,
to predict the genomes’s hierarchical structure and chromatin
interaction patterns [41–43]. Specifically, models based on DNA
sequence information or epigenetic signals, include CoRNN
for A/B compartments prediction [44], TAD-Lactuca [45], and
pTADS [46] for predicting TADs and their boundaries. ChINN [47],
CharID [48], and 3DepiLoop [49] for predicting chromatin loops or
interactions in open chromatin regions. Additionally, the EpiMCI
model enables multi-way chromatin interaction prediction [50].

Although existing research has summaries specific 3D struc-
tures, such as chromatin loops and TADs [8, 10, 41, 42], a sys-
tematic review of the core element in 3D genomics—the chro-
matin interaction matrix—is still lacking. The chromatin inter-
action matrix provides a global view, clarify the complexity of
chromatin point-to-point interactions. Thus, exploring innova-
tive deep learning applications in chromatin interaction matrices
could revolutionize genomics, epigenetics, and related biomedical
fields, with profound scientific and practical implications.

Overview of the review
This article systematically reviews recent methods for predicting
chromatin interaction matrices, which based on DNA sequence
and epigenetic information. It explores how the deep learning
components in these models work together, and how DNA
sequence features and epigenetic markers jointly shape the
3D genome’s dynamic structure, focusing on transforming one-
dimensional (1D) information into the 3D chromatin interactions.
This review also discusses current challenges in predicting
chromatin interaction matrices, such as model generalization and
biological interpretability, and suggests potential optimization
paths for future research. The goal is to improve the precision and
practicality of chromatin interaction matrix prediction models,
providing new perspectives and powerful tools for genomic
research and related fields.

Key modules of chromatin interaction
matrices prediction models
High-throughput 3D genome sequencing have generated a vast
chromatin interaction data across species, cell lines, and tissue
types [51–53]. Traditional analysis methods are becoming inade-
quate in handling the vast genomic data. Studies in 3D genomics
and epigenetics require more efficient and intelligent processing
techniques. Consequently, machine learning and deep learning

applications have become widespread [54–56]. These advanced
algorithms can uncover the potential regulatory mechanisms and
patterns in gene expression changes. Table 1 present an overview
of the main prediction models for analyzing 3D genome data and
predicting chromatin interaction Matrices. The code sources of
the models are available in Table 2.

Feature extraction and encoding
Feature encoding for DNA sequence
DNA sequence encoding underpins chromatin interaction predic-
tion, crucial for locating transcription factor binding sites and
spatial proximity chromatin positions [67–69]. One-hot encoding
represents each base as one of four feature vectors: [1,0,0,0],
[0,1,0,0], [0,0,1,0], or [0,0,0,1], preserving sequence integrity and
facilitating analysis of base variations and specific motif impacts
[70]. This method supports most DNA sequence-based chromatin
interaction prediction task [71]. Besides one-hot encoding, GC
content [66, 72] and transcription factor binding site information
(Motif score) [63] are also widely used in chromatin interaction
matrix predictions (Fig. 2A).

Epigenetic information encoding
Epigenetic modification data (such as transcription factor binding
profile, histone profile, chromatin openness, etc.) combined with
DNA sequences to jointly gene expression, chromatin spatial
organization, and cell fate [73–76]. Encoding methods often use
the average distribution of epigenetic modification signals (e.g.
Reads per million (RPM) and Reads Per Kilobase Million (RPKM)).
Additionally, based on the extension of the distribution of epige-
netic modifications, correlating enriched epigenetic signals across
genomic intervals is another encoding approach for epigenetic
data [63] (Fig. 2B).

Feature fusion strategy
DNA sequence features provide fundamental genetic information,
indicating potential transcription factor binding sites and gene
regulatory sequences, while epigenetic features reflect the
genome’s regulatory state and functional activity. Combining
these features enriches contextual information, enhances the
model generalization, and reveals complex regulatory rela-
tionships, improving prediction accuracy [77, 78]. The multi-
dimensional feature fusion of DNA sequences and epigenetic
information discussed in this review mainly includes two
methods.

The first method focuses on the initial integration of features,
combining DNA sequence features with epigenetic features to
create an integrated feature vector using concatenation or stack-
ing techniques. This integrated feature vector then serves as
input data for deep learning model to analyze and extract key
information related to chromatin interactions patterns [64, 66].

The second method emphasizes the initial extraction of fea-
tures, processing DNA sequences and epigenetic data with deep
learning techniques to extracte core features from each input.
Subsequently, concatenation or stacking integrates the signals
extracted from different deep learning models. For example,
multi-layer perceptions can be used as feature extractors to
process the two types of input features separately, and merge
the outputs of each model in subsequent stages, enabling joint
learning of interaction or shared layer features [63, 65].

Model architecture
Figure 2 illustrates the general model framework and compu-
tational process for predicting chromatin interaction matrices.
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Table 1. Models for predicting chromatin interaction matrices based on DNA sequence and epigenetic information in the past 5 years.

Feature
Classification

Input Features Model Dimension
Transformation Method

Bulk data Cite

DNA DNA sequence Akita 1D to 2D Hi-C Nat Methods, (2020) [57]
DNA sequence DeepC zig-zag stripe Hi-C Nat Methods (2020) [58]
DNA sequence Orca 1D to 2D Micro-C Nat Genet, (2022) [59]
DNA sequence HiCDiffusion 1D to 2D Hi-C bioRxiv,2024 [60]

Epigenetic related Histones+TFs + DNase I HiC-Reg anchor regions Hi-C Nat Commun, (2019) [61]
Histones+CTCF+DNase I Epiphany zig-zag stripe Hi-C Genome Biol, (2023) [62]

DNA+ Epigenetic
related

Motif+scATAC ChromaFold V-stripe Hi-C bioRxiv,2023 [63]
DNA + ATAC EPCOT-COP 1D to 2D Hi-C,Micro-C,

ChIA-PET
Nucleic Acids Res, (2023) [64]

DNA + ATAC+ CTCF C.Origami 1D to 2D Hi-C Nat Biotechnol, (2023) [65]
Motif+GC + TF+
Histones

ChIPr anchor regions ChIA-PET Genome Biol, (2024) [66]

Table 2. The code resources of the model.

Model Link

Akita https://github.com/calico/basenji/tree/master/manuscripts/akita
DeepC https://github.com/rschwess/deepC
Orca https://github.com/jzhoulab/orca
HiCDiffusion https://github.com/SFGLab/HiCDiffusion
HiC-Reg https://github.com/Roy-lab/HiC-Reg
Epiphany https://github.com/arnavmdas/epiphany
ChromaFold https://github.com/viannegao/ChromaFold/tree/main
EPCOT-COP https://github.com/liu-bioinfo-lab/EPCOT
C.Origami https://github.com/tanjimin/C.Origami
ChIPr https://git.biohpc.swmed.edu/s206442/chipr

The core framework consists of two modules: the Encoder and
the Decoder (Fig. 2C). The Encoder extracts structural features
related to chromatin interactions from 1D feature information.
This section includes five commonly used modules, such as CNNs
and attention mechanisms. In the Decoder section, we present
three commonly used methods that transform 1D information
into two-dimensional (2D) information. Ultimately, using actual
chromatin interaction data, the model computes the loss func-
tion, updates its weights, and outputs predictions of chromatin
interactions.

“CNNs” are a feature extraction models that uses multiple
layers of nonlinear processing units for feature learning and
pattern recognition. They are suitable for static data with grid
structures and can effectively extract spatial features. In deep
learning models for predicting chromatin interaction matrices,
they are suitable for capturing features of proximal chromatin
interaction features [79].

“Long Short-Term Memory Networks (LSTMs),” including their
bidirectional counterparts (Bi-LSTMs), are specialized recurrent
neural networks designed for processing sequence and dynamic
data, enabling them to encode the order, context, and long-range
dependencies. In deep learning models designed to predict chro-
matin interaction matrices, LSTM/Bi-LSTM networks are partic-
ularly effective at elucidating the interaction patterns between
genomic regions and their flanking sequences [80].

“Transformer” is a model architecture widely used in the
field of natural language processing [81], leverages multiple
layers of self-attention module and Multi-head attention. Self-
attention modules, which include Query (Q), Key (K), and Value
(V) components, generate contextually rich representations.

Multi-head attention is an extension of the self-attention,
enhances model’s ability to extract features and operate with high
parallelism. This design enables the transformer to effectively
handle long-distance dependencies and large-scale parallel
computing [82].

“Generative Adversarial Networks (GANs)” are powerful frame-
work for unsupervised learning used to generate new data sam-
ples. They typically operate through the competitive interaction
between two components: a generator and a discriminator, which
together produce high-quality data. In predicting chromatin inter-
action matrices, the ultimate goal is to generate matrices indistin-
guishable from actual data by the discriminator [83].

“Dilated Convolutions” are a special type of convolutional oper-
ation. Compared to regular convolutions, they increase the recep-
tive field while maintaining resolution by inserting dilated spaces
(or skipping certain pixels/ features) between the convolution
kernels. This allows them to extract a broader range of contextual
information without increasing the number of parameters [84].

“Complex structures including cascade structures, transfer
learning, and diffusion processes.” Cascade structures employ a
hierarchical multi-resolution encoder design to explore genomic
interaction matrix information at multiple scales [59] (Fig. 2D).
As the input scale increases and the resolution becomes coarser,
the broader visual angle enhances the prediction of long-range
chromatin interactions.

Transfer learning allows a model to apply knowledge learned
from one task (source task) to another related but different task
(target task). Typically, a model is trained on a data-rich task and
then fine-tuned on the target task to adapt to the specific needs
of the less data-abundant target task [58] (Fig. 2E).
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Figure 2. Feature encoding and key components in chromatin interaction prediction models. (A) Feature encoding based on DNA sequences, including
GC content, one-hot encoding, and motif scores. (B) Feature encoding related to epigenetic modifications, involving transcription factor binding sites,
histone modifications, and chromatin accessibility. (C) Model architecture, showing the functions of encoders and decoders and how they process
1D information to predict 3D chromatin interactions. (D) Multilevel decoding mode. (E) Schematic diagram of transfer learning. (F) Data dimension
transformation methods, including stripe methods and 1D to 2D conversion techniques.

The diffusion process is a generative model in deep learning
that introduces noise incrementally and learns to remove this
noise during training to generate data [60].

“Traditional Machine Learning Models” are algorithms widely
used before the rise of deep learning. Random Forest (RF) is a com-
monly used traditional machine learning models that solves clas-
sification, regression, and clustering problems through ensemble
learning methods like Bagging and Bootstrapping (Fig. 2C). Due to
their superior feature interpretability and stronger generalization
capabilities with limited data, traditional machine learning meth-
ods are more suitable for specific functional chromatin interac-
tion predictions [61, 66].

Data dimension transformation
Traditional machine learning methods, such as RF, commonly uti-
lize anchor regions that form chromatin interaction information
as input samples. In contrast, deep learning models typically use
large-scale fixed windows as input samples. These two types of
input samples are essentially based on 1D feature information.
To predict chromatin interaction matrices from one dimension to
two dimensions, the decoder must transform the linear 1D signal
into a 2D signal. Deep learning models mainly use the following
two data transformation methods (Fig. 2F).

“Stripe methods” utilize the partitioning concept from tradi-
tional machine learning, dividing 1D genomic information into
bins to capture interactions between two bins. The main dif-
ference is that the Stripe method focuses on chromatin inter-
actions along specific paths. As the window slides, this path
generates a series of continuous 2D data. In deep learning models,

various Stripe methods have developed based on specific pathway
patterns. The V-stripe approach focuses on interactions between
the center bin of the window and its upstream and downstream
regions. The Zig-zag stripe mode begins at the center of the
window, moving equidistantly toward both ends. It focuses on
interactions between bins at corresponding positions and their
adjacent bins, ultimately forming a Z-shaped path perpendicular
to the center of the window.

“1D to 2D Conversion Methods” uses an encoder to extract
features and perform operations like tiling and transposition
to transform tensor dimensions. This conversion helps models
capture local features and global relationships within linear
sequences, enhancing the model’s learning ability and gener-
alization performance. Specifically, operations like unsqueeze
and Reshape are typically used to insert new axes at specific
tensor dimensions, thus accomplishing the transition from 1D
to 2D data.

Performance evaluation criteria for
predicting chromatin interaction matrices
Evaluating the model performance is a critical for ensuring the
accuracy and reliability of predicted chromatin interactions. This
process not only guides model optimization but also enhancers
the understanding of new gene regulatory mechanisms, advanc-
ing biological knowledge. To reflect the degree of consistency
between model predictions and actual data, the predictive per-
formance of chromatin interaction matrices is typically assessed
based on the following five criteria:
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Contact matrices correlation
The chromatin interaction matrix, the core data form of technolo-
gies like Hi-C, displays the frequency of chromatin interactions
across the genome or local regions. By calculating the correlation
between the interaction matrix predicted by the model and that
from the actual data, the model’s accuracy in the global view and
specific structural units of the 3D genome can be evaluated. Pear-
son and Spearman coefficients are commonly used to quantify
the correlation, to comprehensively assessing the model’s predic-
tive ability for the complexity of genomic spatial organization.

Distance-stratified correlation
This method divides chromatin interaction matrices into different
levels based on genomic distance, revealing distance-dependent
regulatory patterns. By calculating the correlation between the
model’s predictions and the actual data at various distance lev-
els, the model’s predictive accuracy at different spatial scales is
assessed. In addition to Pearson and Spearman coefficients, Area
Under the Curve is also an important quantification metric.

Chromatin loop correlation
Chromatin loop refer to interaction events in the chromatin inter-
action matrices that are significant and biologically meaningful
compared to the random background. Calculating the correlation
between chromatin loops predicted by computational models and
those found in actual data, this helps to verify the model’s ability
to capture interactions that actually affect gene regulation.

Insulation score correlation
The 3D structure of the genome is closely related to chromatin
interactions, determining cell fate and biological processes. The
insulation score, a metric calculated from chromatin interac-
tion matrices, is crucial for identifying topologically associating
domains (TADs). Therefore, evaluating the consistency of the
insulation scores between the chromatin interaction matrices
predicted by models and the actual data, or verifying the accuracy
of the detected TADs, constitutes another important criterion for
measuring model performance.

Model loss rate
The model loss rate, commonly known as the output value of the
loss function during model training, serves as an indicator of the
difference between the model’s predictions and the actual data.
The loss function is a core component of the model training pro-
cess, guiding the optimization of model parameters and improv-
ing predictive performance. Common loss functions include Mean
Squared Error, Cross Entropy Loss, etc. Choosing the appropriate
loss function is critical for building an effective machine learning
model, as it directly impacts the model’s learning objectives and
performance.

Deep learning in predicting chromatin
interaction matrices
Using DNA sequence information and multi-dimensional epige-
netic features to predict chromatin interaction matrices, the cho-
sen of features and their encoding methods significantly impacts
the prediction results. Based on the input features, existing mod-
els can be categorized into three groups (Table 1): those that use
only DNA as input, those that use only epigenetic information,
and those that combine both DNA sequences and epigenetic

features. The following will introduce examples of these three
groups of models.

Models based on DNA sequence
Table 3 shows that, during the encoder stage, deep learning
models using DNA features as input commonly employ CNNs
and dilated convolutions to extract features. These architectures
excel at capturing both local and long-range dependencies within
sequences. Compared to earlier models like Akita [57], DeepC
[58], Orca [59], and HiCDiffusion [60] introduced more complex
structures (Table 3).

DeepC first developed a pre-trained model for chromatin epi-
genetic features. Then, through transfer learning, this model was
fine-tuned for predicting chromatin interactions. This innovative
approach significantly enhanced the model’s ability to recover
chromatin interaction matrices from low-depth sequencing data.

Orca adds a cascading structure to CNNs and dilated convolu-
tions, enhancing the model’s performance in feature extraction
and generalization. This design strategy allows the model to
perform excellently when handling chromatin interaction data,
and processing genomic data at various scales simultaneously
[59].

The HiCDiffusion model builds on CNNs and dilated convo-
lutions, further integrating a Transformer structure to enhance
feature extraction and generalization capabilities. The unique-
ness of this model lies in its introduction of a diffusion model,
a generative model that aids in producing higher-resolution Hi-C
matrices [60].

For data dimensionality transformation, while DeepC employs
Z-stripe, the other three models utilize 1D to 2D methods. This
suggests that 1D to 2D transformation may be more widely appli-
cable in most cases.

Models based on epigenetic information
HiC-Reg [61] and Epiphany [62] are predictive models for chro-
matin interaction matrices that use epigenetic features as input.
Both models incorporate histone modifications, transcription fac-
tor binding profiles, and chromatin accessibility as sample fea-
tures. However, the key difference is that HiC-Reg uses anchor
regions of chromatin interaction as samples, employing tradi-
tional machine learning method like RF to learn epigenetic infor-
mation from these samples. Epiphany uses fixed windows as
samples and employs CNN, Bi-LSTM, and GAN to learn epigenetic
information from the samples, utilizing Z-stripe for dimensional-
ity transformation (Table 3).

HiC-Reg [61] can operate with less training data and a limited
number of features, allowing it to construct a model that pre-
dicts the interaction strength between any two regions. Epiphany
[62] enhances the resolution of chromatin interaction predictions
through its GAN architecture. Although this does not significantly
improve the correlation between predicted and actual data, the
GAN module reconstructs the chromatin interaction matrix with
greater precision.

Models combining DNA and epigenetic
information
EPCOT-COP [64], ChIPr [66], C.Origami [65], and ChromaFold [63]
are predictive models for chromatin interaction matrices that
combine both DNA sequences and epigenetic information as
inputs, utilizing different feature fusion methods and model
frameworks (Table 3).

EPCOT-COP and ChIPr employ a preliminary feature integration
method. EPCOT-COP concatenates DNA sequences and chromatin
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accessibility data into a feature vector within a 1 Mb region. This
vector is then fed into modules such as CNN and self-attention
mechanisms. The ChIPr model integrates seven distinct feature
sets: RAD21, H3K27ac, H3K27me3 ChIP-Seq signals, genomic dis-
tance, GC content, and CTCF motif orientation. By utilizing dense
neural networks, RFs, and gradient boosting, it effectively models
the interaction strength between anchor regions by extracting and
integrating these features.

C.Origami and ChromaFold employ a preliminary feature
extraction method. C.Origami quantifies CTCF narrow peaks
and chromatin accessibility as genomic features while using
one-hot encoding as DNA features. Two CNN modules process
DNA features and genomic features separately. Subsequently,
they concatenate these features column-wise to enhance the
model’s ability to recognize long-distance interactions. Similarly,
ChromaFold utilizes DNA information (CTCF motif score) com-
puted by FIMO and peak information detected in scATAC-seq data
as input features. Two independent CNN modules process DNA
information and scATAC-seq data separately, and concatenate the
extracted information before using linear regression to predict
chromatin interaction matrices in Hi-C data.

Model performance and feature importance
analysis
Impact of model structure on performance
Research results indicate that when input sample format and
features are consistent, and the model output resolution is <10 kb,
the Orca model with a cascade structure and the HiCDiffusion
model with a diffusion structure achieve higher prediction accu-
racy (Fig. 3A). This finding highlights the positive impact of model
complexity on predictive performance, when handling large-scale
datasets and complex feature sets. Further comparative studies
indicate that (Fig. 3B), under the same resolution and sample
format, Transformer architectures outperform LSTM networks,
demonstrating their superiority in capturing complex interactions
between sequences.

Impact of feature encoding on performance
Based on reported model performances, we can preliminarily
evaluate the impact of different feature encodings on the predic-
tion performance of chromatin interaction matrices. In the same
cell line, the EPCOT-COP model outperforms the Orca and Akita
models in both GM12878 and Human foreskin fibroblasts (HFF)
cell lines (Fig. 3C). At the same resolution for chromatin interac-
tion matrix prediction, we observed that the Epiphany model
exhibits similar performance to the DeepC model, while the
EPCOT-COP model demonstrates the highest prediction accuracy
(Fig. 3D). This suggests that combining DNA sequence features
with epigenetic information can enhance the model’s perfor-
mance in predicting chromatin interaction matrices. In cross-
cell line predictions, models that integrate multi-dimensional
features achieve performance above 0.4. In contrast, models using
only DNA information as input achieve an average performance
of 0.26, indicating that multi-dimensional feature integration
yields significantly higher cross-cell line prediction performance
(Fig. 3E).

Analysis of key features influencing chromatin
interaction matrices
Chromatin interactions are essential for gene expression regu-
lation, cellular differentiation, and disease development within
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Figure 3. Performance evaluation for predicting chromatin interaction matrices. (A) Comparison of Pearson correlation coefficients for different model
designs in predicting chromatin interaction matrices. Akita employs CNNs and dilated convolutions, while orca and HiCDiffusion add more complex
structures. (B) Comparison of model prediction accuracy between LSTM and transformer structures in the EPCOT-COP model. (C) Comparison of Pearson
correlation coefficients for different feature encoding in predicting chromatin interaction matrices. Orca and Akita use DNA sequences as the sole input,
while EPCOT-COP utilizes a combination of DNA sequences and epigenetic information. The numbers in the parentheses indicate the resolution of the
predicted chromatin interaction matrices. (D) Comparison of Pearson correlation coefficients for different feature encodings in predicting chromatin
interaction matrices. Epiphany uses epigenetic information as the input, and DeepC uses DNA sequences as the input. (E) Comparison of Pearson
correlation coefficients for cross-cell lines predictions. Akita, DeepC, and orca represent models using DNA sequences as the input, showing predictions
in GM12878 after training in IMR90. ChIPr, C. Origami, and EPCOT-COP represent models using both DNA and epigenetics as inputs, demonstrating
cross-cell line predictions across multiple cell lines. ∗∗∗ represents P < 0.001, the result of t-test. (F) The importance of selecting key features in chromatin
interaction matrix prediction models. The vertical axis displays the various models used for key feature analysis, while the horizontal axis lists all key
features identified by seven models, sorted according to individual transcription factor binding profiles, histone modifications, and feature combinations.
The blank areas in the figure indicate that the feature was either not mentioned in a particular model or its impact on the model’s predictive ability
is negligible. To quantify the importance of features, we assigned each feature selected by the models a value between 0 and 1, with values closer to 1
indicating the importance of the feature. The model performance comparisons and key features mentioned in the article are sourced from previously
reported literature, including Refs. 57–66.
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the field of 3D genomics. Analyzing key features of chromatin
interactions, such as CTCF binding sites, chromatin accessibility,
and specific histone modifications, is crucial for understanding
the 3D structure of the genome and its influence on gene regula-
tion and cellular functions. Deep learning models can simulate
these complex interactions, enabling predictions of chromatin
interaction matrices and identification of features that influence
chromatin structure. Key features analyze methods primarily fall
into two categories: model selection methods and gradient-based
methods.

Model selection methods, such as forward selection, feature
ablation, and feature perturbation, identify essential features
by optimize model performance through varying feature counts
(Fig. 3F).

For DNA sequence-based models, base perturbation is com-
monly used, due to the unique one-hot encoding. Models like
Akita and Orca use this strategy to quantify how base changes
affect predictions, highlighting CTCF (CCCTC-binding factor)
binding sites in chromatin interactions. Orca model further
reveals that, after removing CTCF-enriched regions, H3K27me3
has a greater impact on chromatin interaction matrices than
H3K4me3 or combinations of H3K27ac and H3K4me1.

Epigenetic signal-based models frequently use feature abla-
tion techniques to assess each feature’s contribution. This
method involves setting specific epigenetic features to zero and
comparing predictions to actual data. Notably, the Epiphany,
C.Origami, and ChromaFold models have successfully applied
this strategy, with finding showing that CTCF is most significant
in single-feature ablation experiments. Epiphany further reveals a
synergistic effect of the combination of H3K27me3 and H3K4me3,
while C.Origami and ChromaFold emphasize the importance
of ATAC-seq signals. ChIPr combining feature ablation and
permutation testing, identifies genomic distance and RAD21
as the critical factors in GM12878 cell line predictions, while
the combination of H3K27ac and H3K27me3 is relatively more
significant than CTCF alone. The Hi-C-Reg model uses various
methods to assess feature importance, including single-feature
permutation and feature counting, ranks genomic distance,
CTCF, and H4K20me1 in decreasing importance for chromatin
interaction predictions. Additionally, Hi-C-Reg employs co-
occurrence counts and Non-negative Matrix Factorization (NMF)-
based clustering analysis to assess preferences for different
feature combinations across categories of chromatin interactions
(Fig. 3F).

Gradient-based methods reveal the importance of features
within neural networks through forward and backward propaga-
tion. DeepC uses gradient-based image visualization techniques
to evaluate the significance scores of CTCF and DNase peaks,
revealing their important impact on chromatin interaction matrix
(Fig. 3F).

Integrating these feature selection methods, clarify key fea-
tures the importance and preferences in genomics, unraveling
the complexity of chromatin interaction matrices. Specifically,
features related to CTCF binding profile are widely recognized
as critical for predicting chromatin interactions (Fig. 3F). Addi-
tionally, the chromatin accessibility along with epigenetic marks
such as H3K27ac and H3K27me3, recognized by the three models
as having an important impact on model performance. Notably,
DNA-noly models show limitations in identifying key features for
chromatin interactions, suggesting that incorporating epigenetic
data can provide a more comprehensive understanding of the
chromatin complexity and dynamics.

Challenges and limitations
Despite significant advancements in deep learning for predicting
chromatin interaction matrices, single-cell sequencing technol-
ogy has underscored the importance of genome’s 3D structure for
cellular function and gene regulation. However, research in this
field still faces several challenges and limitations.

First, combining single-cell sequencing with chromosome con-
formation capture techniques (such as scHi-C [85] and sci DLO
Hi-C [86]), has enabled chromatin structure and function studies
at the single-cell level. Multi-omics techniques, such as scCARE-
seq [87], LiMCA [88], and GAGE-seq [89], detect both genomic
structure and gene expression simultaneously, revealing complex
regulatory relationships between 3D chromatin structure and
gene expression. Additionally, long-read sequencing technologies
like scNanoHi-C [90], has further advanced the study of multi-
directional interactions between enhancers and promoters. How-
ever, single-cell data have greater intrinsic variability and sparsity
than traditional methods [91]. This variability, along with spa-
tiotemporal dynamics of cellular states, demands models capa-
ble of capturing chromatin conformation changes at different
developmental stages or under varying environmental condi-
tions. Thus, modeling dynamic changes in 3D chromatin structure
across time and tissue types remains a key challenge.

Second, the growing volume of experimental data, along with
variations in experimental conditions, technological platforms,
and sequencing depth, adds to data dimensionality and com-
plexity, increasing computational demands. These factors may
introduce biases or batch effects that obscure biological sig-
nals, limiting chromatin interaction model training and impact
downstream analysis reliability. Consequently, data standardiza-
tion, batch effect correction, large-scale epigenomic dataset inte-
gration and computational resource management, have become
essential for integrating DNA sequence and epigenetic data, par-
ticularly in single-cell data.

Finally, Deep learning models have been widely applied in
bioinformatics because of their powerful predictive capabilities.
However, the black-box nature of these models hampers biological
interpretability, complicating the extraction of underlying biologi-
cal mechanisms. Although recent methods have been proposed to
improve model transparency and interpretability, few solutions or
concrete research examples exist for addressing these challenges
in model interpretability.

Conclusion and prospects
In the field of 3D genomics, the collaborative use of deep learning
and traditional machine learning has advanced chromatin
interaction matrix prediction models, providing powerful tools
for exploring gene expression regulation and molecular biology
mechanisms. This review systematically examines innovations,
which leverage multi-dimensional omics features, such as DNA
sequences or epigenetic signals. Through various machine
learning and deep learning frameworks, these models have
transformed 1D information into 3D representations, significantly
enhancing the model’s ability to capture feature relationships
on a global scale. Notably, neural networks and transformer
frameworks have significantly improved prediction accuracy.
Under conditions with fewer chromatin interaction features,
traditional machine learning methods like RF show distinct
advantages. Moreover, integrating multi-dimensional features,
such as DNA sequences, chromatin open regions, histone
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modifications, and transcription factor binding information, can
considerably enhance predictive performance compared to single
features. In-depth analyses reveal that besides CTCF binding
sites, ATAC signals, H3K27ac, H3K27 methylation, RAD21 and
chromatin interaction distance are critical factors in regulating
chromatin interactions.

To address challenges in single-cell research, future studies
should focus on improving model generalization to maintain high
predictive accuracy even in new cell lines. For example, toolboxes
for the analysis of the heterogeneity in single-cell data, such as
SCRAT [92], along with data imputation algorithms like DeepIm-
pute (neural network frameworks) [93]. Additionally, data impu-
tation algorithms scHiCluster (linear convolution and random
walks) [94] and Higashi (hypergraph neural networks) [95], offer
effective solutions for processing single-cell Hi-C data. The SNN-
Cliq (Shared Nearest Neighbor, SNN) [96] method for dimension-
ality reduction and clustering, aids in identifying single-cell types.
These algorithms, provide a stronger foundation for understand-
ing chromatin interaction data at the single-cell level, advancing
single-cell chromatin interaction research.

In large-scale genomics, high-performance computing and
optimized algorithms address data integration and computa-
tional challenges. Methods like ICE, HiCNorm, KR, and SCN [97–
99] standardize data and correct batch effects reducing technical
variability and enhancing comparability. Algorithms such as
BatchI [100] and ComBat-seq [101], adjust for batch effects to
ensure that integrated data accurately reflect biological phenom-
ena accurately. RUVseq [102] corrects for library preparation and
sequencing depth variations, minimizing technical biases. In the
analysis of single-cell data, the Seurat v3 [103] strategy provides
an integration method for scRNA-seq and scATAC-seq data,
exploring chromatin activity and transcription relationships.
CellHint [104] employs clustering tree to address differences in
cell type annotation and technical biases across various datasets,
while PRPS [105] eliminates tumor purity and batch effects.

Deep learning models, given their capacity for large-scale data
processing, require significant computational resources influ-
enced by data volume, model complexity, batch size, learning
rate, hyperparameters, and GPU performance. For instance, the
Akita model, with its 500 ∗ 2000 ∗ 4 encoded vector per sample,
requires at least a 16GB Graphics processing unit (GPU), while
training Orca model necessitates more substantial computational
resources, specifically four NVIDIA Tesla V100 GPUs (32GB of
memory). Thus, we recommend high-performance GPUs (such as
the NVIDIA Tesla or RTX series) and ample memory, enabling
parallel computing and distributed storage systems to accelerate
analysis. Deep learning also aids in data dimensionality reduction,
simplifying subsequent analyses and thereby reducing computa-
tional demands. Large models encoding DNA sequences are an
emerging trend, with methods like DeepLncLoc [106], dna2vec
[107] and GP-GCN [108], which are based on sequence embedding
or graph models of K-mer feature encoding, as well as techniques
like byte pair encoding and DNABERT-2 [109], effectively extract
the order, position, and inter-feature DNA relationships.

To improve model interpretability, recent methods focus on fea-
ture importance and transparency, facilitating better understand-
ing of predictive results. Attribution algorithms, which assess
input importance to outputs for enhancing model interpretability
[110], such as layer-wise relevance propagation [111], DeepLIFT
[112], and SHAP tools [113]. Occlusion-based methods like Shap-
ley value [114] assess output variations, while gradients-based
methods, such as Gradient∗Input [115], calculating the impact of
input features on outputs. The LIME [116] algorithm is utilized

to approximate the local interpretability of complex models and
explain the structure of each model layer. Attention mechanisms
are widely used to identify sequence fragments linked to protein
functions, enhancing model interpretability in tasks like allele-
specific activity prediction [117]. Advances in model interpretabil-
ity provide readers with valuable insights and practical tools for
chromatin interaction prediction.

The combination of 3D genomics and deep learning promises
significant advancements in the research of animals, plants, and
microorganisms. As datasets grow in scale and diversity, more
refined and comprehensive predictive models will be developed.
Besides chromatin interactions based on DNA–DNA, these models
will extend to predict interaction matrices involving RNA–DNA
and RNA–RNA interactions. A multimodal data approach, incor-
porating DNA sequences, epigenetic information, and transcrip-
tion factor binding sites, will enable comprehensive 3D genome
modeling, shedding light on biological developmental processes.
Model interpretability combined with experimental validation
will enhance trust and understanding of predictions, grounding
genomic research in a solid theoretical framework.

In summary, the role of 3D genomics in genomic research is
increasingly prominent. Chromatin interaction matrix prediction
models based on deep learning will continue to be essential for
elucidating biology processes. As technology and methodology
advance, these models will play an even more critical role in
future research.

Key Points

• Deep learning models playing a crucial role in predicting
chromatin interaction matrices from DNA sequences
and epigenomic profiles.

• Integrating multi-omics features such as DNA
sequences, chromatin accessibility, histone modifica-
tions, and transcription factor binding information sig-
nificantly improves the prediction accuracy compared to
using single features.

• Modules that can capture long-distance dependencies,
such as those using Transformer architectures, are more
effective at predicting chromatin interactions.

• The field of chromatin interactions still faces challenges
in model generalization, biological interpretability, and
encoding high-dimensional features.

• The following features are critical for predicting chro-
matin interactions: CTCF binding sites, ATAC signals,
Histone modifications H3K27ac and H3K27me3, Chro-
matin interaction distances.

A Glossary of Key Terms

AUC (Area Under the Curve): Indicates the area enclosed
by the ROC (Receiver Operating Characteristic) curve and
the coordinate axis, and represents the model’s ability to
distinguish between classes.
3D Genomics: The field studying the three-dimensional
structure of the genome, which influences gene expression
and cellular function.
ChIA-PET: A technique for identifying protein-mediated
chromatin-chromatin interactions genome-wide, by combin-
ing chromatin immunoprecipitation and proximity ligation
with paired-end tagging sequencing.
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ChIP-seq: A technique combining chromatin immunoprecip-
itation with massively parallel DNA sequencing to identify
the profile of DNA-associated proteins on the genome.
Chromatin Interactions: The physical contacts between
genomic regions that can affect gene expression and regu-
lation through chromatin structure changes.
Chromatin loop: A DNA loop formed by chromatin fibers,
bringing distant regulatory elements and genes into spatial
proximity.
CNN (Convolutional Neural Network): It is a deep learning
model. It has powerful feature extraction ability to process
image data by imitating human visual system.
Deep Learning: An AI technology, that uses neural networks
with multiple layers to model and learn complex patterns,
enabling tasks such as speech recognition and image classi-
fication.
Dilated Convolutions: A technique in convolutional neural
networks, which expand the receptive field by inserting gaps
between kernel units, allowing the capture of broader con-
textual information.
Epigenetics: The study of heritable gene function changes
without DNA sequence changes, such as DNA methylation
and histone modifications.
GAN (Generative Adversarial Network): A deep learning
framework consisting of a generator and discriminator,
which compete to improve the generator’s ability to produce
realistic data.
Hi-C: A chromosome conformation capture technique that
maps 3D genome organization.
Insulation score: A measure of the degree to which a
genomic region is insulated from interactions with other
regions, indicating potential regulatory boundaries.
LSTM (Long Short-Term Memory): A recurrent neural net-
work architecture capable of learning long-term dependen-
cies, suitable for sequential data.
Random Forest: An ensemble learning method. It is operated
by constructing multiple decision trees.
TAD (Topologically Associating Domain): Local regions in
the genome. In three-dimensional space, they tend to be
closer to each other and interact with each other to form
structural and functional units.
Transformer: A neural network architecture based on self-
attention mechanisms, effective for processing sequen-
tial data.
Transfer learning: An approach applying a pre-trained model
to a new but related problem, leveraging learned features to
improve performance.
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