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Abstract 
Cell type annotation is a critical step in analyzing single-cell RNA sequencing (scRNA-seq) data. A large number of deep learning (DL)– 
based methods have been proposed to annotate cell types of scRNA-seq data and have achieved impressive results. However, there are 
several limitations to these methods. First, they do not fully exploit cell-to-cell differential features. Second, they are developed based 
on shallow features and lack of flexibility in integrating high-order features in the data. Finally, the low-dimensional gene features 
may lead to overfitting in neural networks. To overcome those limitations, we propose a novel DL-based model, cell type annotation of 
single-cell RNA-seq data using residual graph convolutional neural network with contrastive learning (scRGCL), based on residual graph 
convolutional neural network and contrastive learning for cell type annotation of single-cell RNA-seq data. scRGCL mainly consists of a 
residual graph convolutional neural network, contrastive learning, and weight freezing. A residual graph convolutional neural network 
is utilized to extract complex high-order features from data. Contrastive learning can help the model learn meaningful cell-to-cell 
differential features. Weight freezing can avoid overfitting and help the model discover the impact of specific gene expression on 
cell type annotation. To verify the effectiveness of scRGCL, we compared its performance with six methods (three shallow learning 
algorithms and three state-of-the-art DL-based methods) on eight single-cell benchmark datasets from two species (seven in human 
and one in mouse). Experimental results not only show that scRGCL outperforms competing methods but also demonstrate the 
generalizability of scRGCL for cell type annotation. scRGCL is available at https://github.com/nathanyl/scRGCL. 
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Introduction 
Single-cell RNA sequencing (scRNA-seq) is a high-throughput 
technology that can analyze the transcriptomes of individual 
cells, providing a high-resolution view of cell-to-cell variation [1]. 
Cell type annotation is a critical step in analyzing scRNA-seq 
data, as the annotation results have important implications for 
downstream analyses, such as characterizing cellular heterogene-
ity and exploring cellular communication [2]. However, manual 
annotation is time-consuming and subjective. As an alternative, 
numerous computational methods have been developed for cell 
type annotation [3]. 

Recently, many shallow learning algorithms have been pro-
posed to annotate cell types. CHETAH [4], one of the earliest 
computational methods, used hierarchical classification to link 
unassigned cells with relevant literature to annotate cell types. 
The performance of CHETAH depends on the existence of well-
annotated reference datasets. SingleR [5], an impressive cell type 
annotation method, identified the cell type of an individual cell 
by comparing the similarity of its gene expression pattern with 
each classifier (samples in reference datasets). However, reference 
datasets cannot meet the growing demand for cell type annota-
tion. scID [6] used a linear discriminant analysis framework to
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identify cell types in scRNA-seq datasets. scID is only suitable for 
distinguishing cell types with distinct gene signatures because 
scID relies on gene signatures. CAEN [7] improved the feature 
extraction for scRNA-seq data. It encoded the categories using 
the rank of each gene sequence sample in each class, calculated 
the correlation coefficients between genes and categories, and 
identified the genes with the highest coefficient value as marker 
genes for cell type annotation. However, noise and redundant 
information in prior knowledge inevitably lead to biased results 
[8]. Shallow learning algorithms tend to deliver suboptimal results 
due to the complex structure of scRNA-seq datasets [9]. 

Large-scale scRNA-seq data provide researchers with unprece-
dented opportunities to apply deep learning (DL) approaches 
to annotate cell types. Automated cell type identification using 
neural networks (ACTINN) [10] utilized a multilayer perceptron 
(MLP) to extract high-order features and automatically annotated 
cell types. scDeepSort [11] constructed a cell–gene association 
graph and used a weighted graph neural network (GNN) for cell 
type annotation, achieving accurate cell type annotation results 
without reference datasets. scGraph [12] is a GNN-based method 
that integrated gene expression and gene interaction networks 
to overcome technical noise and annotate cell types. scMRA [13] 
built a knowledge graph to represent the features of cell types 
from multiple datasets and used a graph convolutional network 
(GCN) model to annotate cell types. CIForm [14] combined the 
transformer and patch concept to annotate cell types in large-
scale scRNA-seq data. These studies have demonstrated that DL-
based methods can effectively model the complex relationships 
between genes and cells and improve the performance of cell type 
annotation. 

These methods have achieved remarkable results. However, 
there are several limitations to these methods. First, they do 
not fully exploit cell-to-cell differential features. Second, they 
are developed based on shallow features and lack of flexibil-
ity in integrating high-order features in the data. Finally, the 
low-dimensional gene features may lead to overfitting in neural 
networks. 

In this paper, we are interested in integrating the graph 
convolutional neural network and contrastive learning to 
guide deep learning architecture to simultaneously learn high-
order features and cell-to-cell differential features for cell 
type annotation. The integration of graph convolutional neural 
network and contrastive learning makes the model more robust 
while better distinguishing cell subtypes or cell types with 
fuzzy boundaries, improving the performance of the model in 
annotating cell types. To the best of our knowledge, this is the 
first time that the integration of graph convolutional neural 
network and contrastive learning has been applied to the task 
of cell type annotation. Different from the traditional dropout 
strategy, we add weight freezing to the fully connected (FC) 
layer to avoid overfitting. The proposed method presents a more 
flexible neural network architecture and is more effective for 
cell type annotation. Here, we name the proposed cell type 
annotation method based on residual graph convolutional neural 
network and contrastive learning as scRGCL. The structure of the 
scRGCL framework is presented in Fig. 1. First, scRGCL integrates 
cell-gene information matrix and gene interaction network 
information. Second, a graph representation module is applied 
to the integrated information to extract high-order features in 
the data. Third, scRGCL uses supervised contrastive learning to 
obtain important cell-to-cell differential features. Finally, scRGCL 
combines weighted cross-entropy with contrastive learning loss to 
assign different loss values to different classes during backward 

propagation, eliminating the impact of class-imbalanced data 
and improving the performance of cell type annotation. We 
compared the performance of scRGCL with six methods (three 
shallow learning algorithms and three state-of-the-art DL-based 
methods) on eight single-cell benchmark datasets. Experimental 
results not only demonstrate that scRGCL outperforms competing 
methods but also demonstrate the generalization performance of 
the model for cell type annotation. 

Materials and methods 
Single-cell RNA sequencing dataset preparation 
To evaluate the performance of scRGCL, we used eight scRNA-
seq datasets that have been widely used by cell type annotation 
methods for benchmarking their performances [14]. The eight 
benchmark datasets contain two species (human and mouse) and 
five tissues (colon, pancreas, lung, skin, and whole mouse), with 
cell numbers ranging from thousands to hundreds of thousands. 
The eight single-cell benchmark datasets are zhangT [15], TM [16], 
Xin [17], Lung1 [18], Colon [19], Baron Human [20], Lung2 [21], 
and T [22]. The details of these datasets are listed in Table 1. To  
benchmark performance on a large-scale mixed dataset contain-
ing multiple tissues and cell types, we obtained the Human Cell 
Landscape (HCL) dataset from the HCL project. 

In the preprocessing of data, we first filtered out cells with 
counts <10 and cells with unclear or discrete cell type anno-
tations. Subsequently, we normalized the cell data by dividing 
each gene expression value in each cell by the sum of total 
expression values and then multiplying by a scaling factor of 10e6. 
Assuming that the single-cell gene expression values follow a 
negative binomial distribution, we introduced pseudocounts and 
applied a log2 transformation to each expression value. We used 
pseudocounts to prevent log transformation of invalid data when 
the original expression value was zero. 

Gene interaction networks 
Gene interaction networks within cells influence cell-to-cell dif-
ferential characteristics [23]. Considering gene interaction net-
works during modeling is of great value for an in-depth under-
standing of cell characteristics and accurate annotation of cell 
types [24]. In this article, the scRGCL model combined gene inter-
actions and utilized the neighbor information of each gene to 
update cell embedding representations. 

The gene interaction networks used by scRGCL were mainly 
derived from STRINGDB [25], which is a widely used database 
for retrieving protein–protein interactions (PPIs). It contains data 
from other databases, experimental data, and results in the lit-
erature. In addition, we collected four human and one mouse 
gene interaction networks to evaluate the performance of scRGCL 
on various backbone networks. The details of the six networks 
are summarized in Table 2. HumanNet  [26] is a functional gene 
network that integrated different omics data using a Bayesian 
statistical framework. We employed two versions of HumanNet, 
namely, HumanNet-CF and HumanNet-PI, representing cofunc-
tional networks and PPI networks, respectively. FunCoup [27] is  
a whole-genome functional association network that utilized a 
unique redundant-weighted Bayesian integration to merge 10 dif-
ferent types of functional association data. GeneMANIA [28] gen-
erated gene networks by weighting multiple functional genomics 
datasets. The mouse gene interaction network was derived from 
STRINGDB [25]. 

In our proposed scRGCL model, the gene interaction networks 
were used as prior information for scRNA-seq datasets. When the
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Figure 1. Schematic overview of scRGCL. (A) The input is the scRNA-seq data and gene interaction networks. (B) The residual graph convolutional neural 
network and contrastive learning. (C) Weight freezing module. (D) Classification module. 

Table 1. Overview of datasets used in this study. 

Dataset Tissues Species #Genes #Cells #Cell types/subtypes Source 

zhangT Colon Homo sapiens 23 459 8530 20 [15] 
TM Cell Atlas Mus musculus 19 791 54 865 55 [16] 
Xin Pancreas H. sapiens 33 899 1459 4 [17] 
Lung1 Lung H. sapiens 29 634 180 069 7 [18] 
Colon Colon H. sapiens 13 538 43 817 5 [19] 
Baron Human Pancreas H. sapiens 17 499 8569 14 [20] 
Lung2 Lung H. sapiens 15 148 32 472 17 [21] 
T Skin H. sapiens 16 291 43 817 5 [22] 

Table 2. Overview of six gene interaction networks used in this study. 

Dataset Tissues Species #Genes 

STRINGDB H. sapiens 18 606 11 016 254 
HumanNet-CF H. sapiens 14 739 252 590 
HumanNet-PI H. sapiens 15 352 158 499 
FunCoup H. sapiens 18 081 5 036 826 
GeneMANIA H. sapiens 19 551 6 979 630 
STRINGDB Mus musculus 21 291 11 944 806 

gene interaction network is applied to a single-cell benchmark 
dataset, only the gene–gene interaction pairs present in bench-
mark dataset are retained, while the remaining gene–gene inter-
action pairs in the gene interaction network are discarded. scRGCL 
constructed undirected gene networks based on gene interaction 
networks. scRGCL treated the edge from gene A to gene B as a 
pair of edges (i.e. an edge from gene A to gene B and an edge 
from gene B to gene A) and additionally assigned each gene an 
edge pointing to itself. The undirected gene network is conducive 
to aggregating the information of neighbor genes while retaining 
the gene’s own information according to the weight. This gene 
network construction method can avoid excessive aggregation of 
neighbor information, ensuring that the gene’s own information is 
retained and the node features in the network are distinguishable. 

The scRGCL framework 
scRGCL takes scRNA-seq data and gene interaction networks 
as input data and uses a deep neural network architecture to 
automatically annotate cell types. As illustrated in the Fig. 1, 
scRGCL mainly consists of five modules: (i) data input module; 
(ii) graph representation module; (iii) contrastive learning; (iv) 
weight freezing; and (v) classification module. In the data input 
module, we use scRNA-seq data and gene interaction networks 
(see sections Single-cell RNA Sequencing Dataset Preparation 
and Gene Interaction Networks). The graph representation 
module is utilized to extract complex high-order features from 
data. GraphSAGE, which includes residual connections and 
convolutional layers, can solve the problem of vanishing gradient 
and oversmoothing and improve the model’s ability to extract
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complex high-order features. Large-scale scRNA-seq data contain 
massive features and complex relationships between cells. 
Contrastive learning can help the model learn meaningful cell-to-
cell differential features. Weight freezing can avoid overfitting and 
help the model discover the impact of specific gene expression 
on cell type annotation. In the classification module, scRGCL 
combines weighted cross-entropy with contrastive learning loss 
to assign different loss values to different classes during backward 
propagation, eliminating the impact of class-imbalanced data 
and improving the accuracy of cell type annotation. Next, we 
introduce the graph representation module, contrastive learning, 
weight freezing, and classification module. 

Graph representation module 
The graph representation module consists of two GraphSAGEs, a 
residual convolutional layer, and residual connections between 
GraphSAGEs. Considering gene interaction networks during mod-
eling is of great value for an in-depth understanding of cell 
characteristics and accurate annotation of cell types. Compared 
with other feature extraction methods, the graph convolutional 
network can make full use of this interaction network to obtain 
effective cell type annotation information. However, the graph 
convolutional network may lead to over-smoothing. We introduce 
residual connections to solve this problem so that the residual 
graph convolutional network can not only utilize the graph struc-
ture information but also increase the network depth to capture 
more complex high-order features. In this section, we introduce 
GraphSAGE, residual convolutional layer (RCL), and residual con-
nections between GraphSAGEs. 

Graph networks can be used to model the interactions between 
genes. A graph represents a cell, nodes represent genes, and edges 
represent the relationships. We adopt a modified GraphSAGE [29] 
to update each node by aggregating information from neighbor 
nodes. 

hk+1 
v ← σ

(
W · MEAN

({
hk 

v

}
∪

{
hk 

u, ∀u ∈ N(v)
}

δ (Sv)
))

(1) 

where hk 
v represents k-th layer feature vector of node v, N(v) 

represents the neighbor nodes of node v, σ (·) is the nonlinear 
activation function and W represents the trainable parameters, Sv 

is the edge importance score vector, and δ is a sigmoid function. 
Each gene is embedded as an 8D feature. 

A residual network can pass input information directly to out-
put through skip connections, addressing the issues of vanishing 
gradient and oversmoothing and improving model performance. 
Assuming x and y represent input and output, respectively, the 
general forward propagation formula for a residual layer [30] can  
be expressed as: 

y = F (x, wi) + x (2) 

where F (x, wi) represents the residual mapping. In this study, the 
residual convolutional layer is mainly composed of four convolu-
tional neural network (CNN) layers: 
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In order to obtain accurate node feature representation while 
avoiding vanishing gradient and oversmoothing, we use the resid-
ual convolutional layer to connect two GraphSAGE [31]. Assuming 
that the input and output of the network are x̂ and ŷ, respectively, 
forward propagation can be defined as: 

⎧⎪⎪⎪⎨ 
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)
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(
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where RCL (·) is the residual convolutional layer, FC (·) is the fully 
connected layer, and f3 = FC

(
f1 + f2

)
represents the residual 

connection between GraphSAGEs. 
The graph network of the graph representation module can 

learn the primary features of scRNA-seq data, while the residual 
module can learn high-order and complex features. The graph 
convolutional neural network with residual connections has pow-
erful feature representation capability. 

Contrastive learning 
Contrastive learning obtains anchor samples by sampling multi-
ple positive and negative samples and then uses the loss function 
to guide positive samples to approach the anchor samples while 
pushing negative samples away and finally helping the model 
learn features that are common to the same type of cells but 
not shared by other types of cells. Contrastive learning can help 
the model more accurately discover subtle differences between 
cells and obtain feature representations with more biological 
meanings. Contrastive learning compares the differences between 
different cell types, making the model more sensitive to the gene 
expression data of cells under different biological conditions, 
helping the model to identify cell subtypes. Models containing 
contrastive learning not only learn the characteristics of samples 
but also focus on the relative relationship between samples, 
thereby optimizing the classification boundaries, making the fea-
tures learned by the model richer and the model more robust. 

We adopt the SupCon [32] loss function, which helps the model 
learn meaningful and discriminative feature representations. The 
loss function is defined as follows: 

LCON = 

− 
B∑

i=1 
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)

exp
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) + 
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)

⎤ 

⎥⎥⎥⎦ 
(5) 

where M represents a mini-batch size, yi and yj represent the 
label of the anchor sample i and the sample j, respectively. Myi 

represents the number of cells labeled type Y. li �=j, lyi=yj , and  lyi �=yj 

are indicator functions. li �=j = 1 if i �= j and li �=j = 0 otherwise. lyi=yj 

and lyi �=yj have the same situation. 

si,j = vT 
i vj/ ‖vi‖

∥∥vj
∥∥ (6) 

where si,j is cosine similarity between sample i and j, and  vi and 
vj represent the high-order feature vectors of the sample i and j, 
respectively. 

Weight freezing 
The dense connections of the FC layer increase the overfitting 
probability when using low-dimensional feature vectors of genes.
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Studies [33, 34] have shown that gene expression patterns are 
cell-type specific, and specific cell types are closely associated 
with expression patterns of specific genes. Instead of using low-
dimensional feature vectors of all genes, the model needs to focus 
on low-dimensional feature vectors of specific genes that have 
an important influence on cell type annotation. Using FC layers 
means that each neuron will affect the result of cell type annota-
tion. However, this may not be consistent with the prior knowledge 
of cell type annotation. In this section, we introduce weight freez-
ing to replace the dense connections with sparse connections to 
improve the influence of key genes on cell type annotation. Sparse 
connections are more consistent with the characteristics of gene 
expression data in scRNA-seq data and help the model more 
accurately simulate the relationship between gene expression 
and cell type annotation. 

Weight freezing does not change the forward propagation of 
the FC layer but freezes some learnable parameters during the 
backward propagation [35]: 

Wn = Wn − M � (
η · (

z̃n − zn
)

xT 
n

))
(7) 

where Wn is a learnable parameter that is iteratively adjusted 
based on the gradient calculated by the back-propagation algo-
rithm, M is a mask matrix, z̃n represents the predicted value, zn 

represents the target value, η is the learning rate of the optimizer, 
xT 

n represents the input vector of the FC layer, and � denotes 
element-wise multiplication. 

Weight freezing and dropout are both regularization methods 
to prevent neural networks from overfitting. Dropout affects both 
forward and backward propagation, while weight freezing only 
affects backward propagation. Neurons affected by dropout lose 
all decision-making ability, but neurons affected by weight freez-
ing only lose part of the decision-making ability. Weight freezing 
masks specific parameters instead of directly changing neurons 
to create sparse connections like dropout. 

Classification module 
The cross-entropy loss is used for training: 

LCE = −  
1 
N 

N∑
n=1 

M∑
m=1

[
ym 

n · log xm 
n + (

1 − ym 
n

) · log
(
1 − xm 

n

)]
(8) 

where N and M are the number of samples and cell types, respec-
tively. ym 

n is 1 if the  n-th sample belongs to the m-th cell type and 
0 otherwise. xm 

n is the predicted probability of the n-th sample 
belonging to the m-th cell type. 

The edge importance score vector S is also added to the final 
loss function. After stabilizing the model using R-DROP [36], we 
perform joint optimization using the contrastive learning loss. α 
represents the weighting factor of the contrastive learning loss, 
and LCON represents the loss function of contrastive learning. The 
final loss function is defined as follows: 

L = LCE + αLCON + λ ‖S‖ (9) 

We use the Adam [37] optimizer with an initial learning rate of 
0.01 and a weight decay of 10e-5. First, we initialize the model 
weights using cosine annealing with warm restart [38]. Then, 
when the F1 metric stops improving, the model is trained with 
a strategy of reducing the learning rate by a factor of 0.1. 

Evaluation strategies 
The two methods (k-fold cross-validation and independent 
dataset testing) are used to evaluate the model performance. 
Four evaluation metrics are used to assess the model, namely, 
the AUROC (area under the ROC curve), AUPRC (area under 
the precision–recall curve), ACC (accuracy), and F1-Score. These 
evaluation metrics are defined as follows: 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

TPR = 
TP 

TP + FN 

FPR = FP 
FP + TN 

Precision = 
TP 

TP + FP 

Recall = 
TP 

TP + FN 

ACC = TP + TN 
TP + TN + FP + FN 

F1 = 
2 × Precision × Recall 

Precision + Recall 

(10) 

We compared scRGCL with CHETAH [4], SingleR [5], scID [6], 
ACTINN [10], scGraph [12], and CIForm [14] to test the perfor-
mance of scRGCL. These methods include three shallow learning 
algorithms (CHETAH, SingleR, scID) and three state-of-the-art DL-
based methods (ACTINN, scGraph, CIForm). CHETAH (2019) is 
one of the earliest computational methods that annotated cell 
types by linking queried scRNA-seq data with relevant literature. 
SingleR (2019) identified the cell type of a single cell by comparing 
the similarity of its gene expression pattern with each classifier. 
scID (2020) used a linear discriminant analysis framework to 
identify cell types. ACTINN (2020) utilized MLP to extract high-
order features and automatically annotated cell types. scGraph 
(2022) used the GNN to annotate cell types combined with gene 
expression and gene interaction information. CIForm (2023) com-
bined transformer and patch concept to annotate cell types. All 
experiments were done on an NVIDIA RTX 3090 GPU. To avoid 
overfitting, we applied the R-drop regularization technique, set 
the dropout to 0.3, the batch size to 64 and the learning rate to 
0.001, and used Adam as the optimizer for the model. 

Results 
Ablation experiments 
To investigate the impact of key modules on scRGCL, we con-
structed four variants of scRGCL, (i) (w/o) RGNN; (ii) (w/o) Con-
trastive Learning; (iii) (w/o) Weight Freezing; (iv) Weight Freezing-
> Drop out. (w/o) RGNN represents that scRGCL does not use the 
residual graph neural network and contains a layer of GraphSAGE. 
(w/o) Contrastive Learning represents that scRGCL does not con-
tain contrastive learning. (w/o) Weight Freezing represents that 
scRGCL does not contain the Weight Freezing. Weight Freezing-
> Drop out replaces the Weight Freezing module with drop out. We 
trained the four variant models using the same hyperparameters 
and compared the performance of scRGCL with these models 
using eight single-cell benchmark datasets. 

As shown in Fig. 2A, compared with scRGCL, the F1 and ACC 
of (w/o) RGNN, (w/o) Contrastive Learning, (w/o) Weight Freezing, 
and Weight Freezing- > Drop out decreased by 3.24% and 3.89%, 
1.08% and 1.40%, 0.83% and 0.56%, and 1.30% and 0.94%, respec-
tively. Experimental results show that residual graph neural net-
work, contrastive learning module, and Weight Freezing module 
all contribute to cell type annotation.
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Figure 2. (A) Ablation experiment results. (B) AUPRCs of scRGCL in gene interaction networks at different thresholds. (C) Comparison of F1 and ACC of 
scRGCL under a real gene interaction network and a randomly generated gene interaction network. 

The effects of gene interaction network on 
scRGCL 
scRGCL incorporates the gene interaction network to model gene 
expression in cells, leveraging the neighbor information of each 
gene to update cell embedding representations. In this section, we 
investigated the effects of gene interaction networks on scRGCL 
at different thresholds. First, we adopted the threshold strategy 
of scGraph [12] and systematically filtered the STRINGDB PPI 
network using eight different thresholds, retaining the top 1%, 
3%, 5%, 10%, 20%, 30%, 40%, and 50% of the gene interaction 
pairs with the highest scores. Subsequently, we evaluated the 
performance of scRGCL on the zhangT using eight STRINGDB 
backbone networks. 

As shown in Fig. 2B and Supplementary Table 1, when the 
threshold exceeds 10%, the computation time of the model 
increases dramatically while its performance barely changes. This 
suggests that although the model uses more gene interaction 
information, low-scoring interaction pairs may contain less 
useful information and provide limited help for cell annotation. 
The F1, ACC, AUROC, and AUPRC of scRGCL using different 
STRINGDB backbone networks on the zhangT dataset are listed 
in Supplementary Table 2. Next, we evaluated the performance of 
scRGCL on seven human datasets (zhangT, Xin, Lung1, Colon, 
Baron Human, Lung2, and T) using 1%, 3%, and 5% of the 
STRINGDB network to determine the optimal threshold. As shown 
in Table 3, the maximum and minimum values of F1 and ACC 
differ by 0.005 and 0.004, respectively. This indicates that scRGCL 
exhibits robust performance in gene interaction networks at 
different thresholds. Considering that the top 1% network is the 
most condensed network, we selected the top 1% network as the 
gene interaction network of scRGCL. 

Furthermore, we used five human gene interaction networks 
(STRINGDB, HumanNet-CF, HumanNet-PI, FunCoup, and Gen-
eMANIA) to evaluate the performance of scRGCL on different 
gene interaction networks. FunCoup and GeneMANIA retained 
the top 1% interaction pairs to construct the gene interaction 
network due to the presence of numerous ambiguous edges. 
The experimental results are listed in Table 4. Although these 
networks differ in functional types, the number of nodes, and 
edges, scRGCL performs essentially the same in terms of F1 

and ACC. The experimental results show that scRGCL exhibits 
strong robustness across different gene interaction networks. 
STRINGDB is a widely used important tool for studying gene 
interaction networks, which contains experimental data, results 
from PubMed, data from other databases, and results predicted by 
bioinformatics methods. Compared with other gene interaction 
networks (HumanNet-CF, HumanNet-PI, FunCoup, and GeneMA-
NIA), the gene interaction network from STRINGDB contains more 
accurate and comprehensive information. In future research, 
we recommend using the STRINGDB gene interaction network, 
and researchers can evaluate the performance of their proposed 
model using 1%, 3%, and 5% of the STRINGDB network to 
determine the optimal threshold. 

To verify the effectiveness of a real gene interaction network, 
we also evaluated the performance of scRGCL containing ran-
domly generated gene interaction networks. We randomly gener-
ated 10 networks and calculated the average F1 and average ACC 
of scRGCL containing these networks on each dataset. As shown 
in Fig. 2C, compared with scRGCL containing a real gene interac-
tion network, the F1 and ACC of scRGCL containing a randomly 
generated network decreased by 0.039 and 0.040, respectively. The 
results are listed in Supplementary Table 3. The experimental 
result demonstrated the effectiveness of the real gene interaction 
network. 

The impact of contrastive learning on model 
PCA (principal component analysis) [39], LSTM (long short-
term memory) [40], and AutoEncoder [41] are widely used 
feature learning methods. To compare the performance of 
contrastive learning and these feature learning methods, we 
constructed three variants of scRGCL, specifically, (i) CL- > PCA; 
(ii) CL- > LSTM; and (iii) CL- > AutoEncoder. CL- > PCA represents 
replacing contrastive learning with PCA. CL- > LSTM represents 
replacing contrastive learning with LSTM. CL- > AutoEncoder 
represents replacing contrastive learning with AutoEncoder. We 
trained the three variant models using the same hyperparameters 
and compared the performance of scRGCL with these models 
using eight single-cell benchmark datasets. As shown in Fig. 3A 
and Supplementary Table 4, in terms of ACC and F1, scRGCL 
outperforms the three variants on all datasets. Experimental

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae662#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae662#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae662#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae662#supplementary-data
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Table 3. F1s and ACCs of scRGCL on seven human datasets using 1%, 3%, and 5% of the STRINGDB network. 

Methods zhangT Xin Lung1 Lung2 Colon Baron 
Human 

T Average 

F1 
STRINGDB-1% 0.903 0.994 0.980 0.941 0.946 0.992 0.751 0.930 
STRINGDB-3% 0.896 0.988 0.978 0.938 0.940 0.990 0.747 0.925 
STRINGDB-5% 0.901 0.992 0.981 0.936 0.945 0.983 0.750 0.927 

ACC 
STRINGDB-1% 0.882 0.992 0.987 0.939 0.947 0.991 0.766 0.929 
STRINGDB-3% 0.877 0.986 0.982 0.937 0.943 0.990 0.762 0.925 
STRINGDB-5% 0.880 0.992 0.984 0.928 0.946 0.983 0.764 0.925 

Table 4. F1s and ACCs of scRGCL on seven human datasets containing five human gene interaction networks. 

Backbones zhangT Xin Lung1 Lung2 Colon Baron 
Human 

T Average 

F1 
STRINGDB 0.903 0.994 0.980 0.941 0.946 0.992 0.751 0.930 
HumanNet-CF 0.894 0.986 0.967 0.934 0.939 0.987 0.747 0.922 
HumanNet-PI 0.898 0.989 0.973 0.937 0.934 0.977 0.738 0.921 
FunCoup 0.901 0.993 0.984 0.938 0.942 0.984 0.749 0.927 
GeneMANIA 0.904 0.981 0.978 0.940 0.948 0.993 0.734 0.925 

ACC 
STRINGDB 0.882 0.992 0.987 0.939 0.947 0.991 0.766 0.929 
HumanNet-CF 0.870 0.985 0.981 0.933 0.931 0.986 0.741 0.918 
HumanNet-PI 0.876 0.983 0.984 0.935 0.936 0.987 0.747 0.921 
FunCoup 0.885 0.990 0.979 0.931 0.944 0.992 0.762 0.926 
GeneMANIA 0.883 0.976 0.989 0.938 0.946 0.989 0.767 0.927 

results show that contrastive learning can help scRGCL learn 
meaningful and discriminative feature representations. PCA is a 
linear dimensionality reduction method. Using PCA for feature 
learning in the model cannot fully capture the complex nonlinear 
relationships in the data, resulting in poor cell classification 
results. The performance of LSTM depends on the sequential 
input of data and cannot effectively process high-dimensional 
sparse gene expression data in cells. The AutoEncoder may focus 
on the common features in cells when reconstructing data while 
ignoring the subtle differences and features of type-specific cells 
that are important in the classification task. 

To study the impact of contrastive learning on models when 
using mixed datasets, we collected two human datasets 10X_3-
rep1 and Scipio-rep2 from the literature [42] (https://cellxgene. 
cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67 
f446). 10X_3-rep1 contains 7750 cells, 21 231 genes, and 10 
cell types, and Scipio-rep2 contains 4425 cells, 14 912 genes, 
and 10 cell types. After preprocessing the two datasets, we 
performed gene alignment (obtaining the common genes in 
the two datasets) and then mixed the two datasets. We then 
compared the performance of scRGCL and three variant models 
and six competing methods on the mixed dataset. As shown in 
Fig. 3B and Supplementary Table 5, scRGCL outperforms the three 
variant models and six competing methods. Experimental results 
show that contrastive learning enhances feature representation 
and cell type separation across various datasets. 

The impact of noise or sparse data on model 
robustness 
To evaluate the performance of scRGCL on noise or sparse data, 
we constructed five types of data based on the eight benchmark 

datasets. Specifically, (i) GaussianNoise (10%); (ii) GaussianNoise 
(20%); (iii) Sparse(10%); (iv) Sparse(30%); (v) Sparse(50%). Gaus-
sianNoise(10%) represents that in each benchmark dataset, we 
randomly selected 10% of the genes in each cell and added 
Gaussian noise to generate noise data. GaussianNoise(20%) repre-
sents that 20% of the genes in each cell were randomly selected. 
Sparse(10%) represents that in each benchmark dataset, we ran-
domly selected 10% of the genes in each cell and set their expres-
sion values to zero. Sparse(30%) and Sparse(50%) indicate that 
30% and 50% of the genes in each cell were randomly selected, 
respectively. We compared the performance of scRGCL on the 
benchmark datasets and these five types of datasets. As shown 
in Fig. 3C and Supplementary Table 6, scRGCL showed a slight 
yet nonsignificant performance decrease. Experimental results 
demonstrated that scRGCL is robust to noise and sparse data. 

Performance comparison of methods for 
annotating cell types 
In this section, we compared the performance of scRGCL with 
CHETAH [4], SingleR [5], scID [6], ACTINN [10], scGraph [12], and 
CIForm [14]. The seven methods were tested on eight single-cell 
benchmark datasets (zhangT [15], TM [16], Xin [17], Lung1 [18], 
Colon [19], Baron Human [20], Lung2 [21], and T [22]) from two 
species (seven in human and one in mouse). We calculated the F1 
and ACC of these methods on the eight datasets using five-fold 
cross-validation. 

As shown in Fig. 4, scRGCL outperforms competing methods 
on all datasets. CIForm and scGraph are the two best-performing 
methods among the six competing methods. The detailed F1s 
and ACCs are summarized in Table 5. The  average  F1  of  scRGCL  
is 0.937, and the average F1 of CIForm and scGraph are 0.896

https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://cellxgene.cziscience.com/collections/398e34a9-8736-4b27-a9a7-31a47a67f446
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae662#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae662#supplementary-data
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Figure 3. (A) F1s and ACCs of SCRGCL and three variant models (CL- > PCA, CL- > LSTM, CL- > AutoEncoder) on eight single-cell benchmark datasets. 
(B) Performance comparison of scRGCL with three variant models and six competing methods on a mixed dataset. (C) F1s and ACCs of scRGCL on 
original data, noise data, and sparse data. 

and 0.875, respectively. The average ACC of scRGCL is 0.937, and 
the average ACC of CIForm and scGraph are 0.898 and 0.891, 
respectively. Compared with CIForm and scGraph, scRGCL 
improves F1 by 0.041 and 0.062, and ACC by 0.039 and 0.046, 
respectively. In the T dataset containing five cell types, scRGCL 

improved F1 and ACC by 0.090 and 0.095, respectively. It should 
be noted that scRGCL can also effectively annotate cell types on 
small-scale datasets containing multiple cell types. For instance, 
scRGCL outperformed CIForm and scGraph in the zhangT dataset 
containing 20 T-cell subtypes. The F1 of scRGCL is 0.903, exceeding 
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Figure 4. (A) Comparison of F1 between scRGCL and six competing methods on eight single-cell benchmark datasets. (B) F1 heatmap of scRGCL and six 
competing methods on eight single-cell benchmark datasets. (C) Comparison of ACC between scRGCL and six competing methods on eight single-cell 
benchmark datasets. (D) ACC heatmap of scRGCL and six competing methods on eight single-cell benchmark datasets. 

the 0.837 and 0.839 of the two best models (CIForm and scGraph). 
Similarly, the ACC of scRGCL is 0.882, while the ACC of the best two 
models (CIForm and scGraph) are 0.831 and 0.834, respectively. 
Figure 5 shows that scRGCL accurately annotates twenty cell 
types in the zhangT dataset. 

The comparison methods have their own strengths and 
weaknesses for cell type annotation. Specifically, CIForm uses the 
traditional Transformer, which has strong cell annotation capa-
bility and is robust to batch effects of datasets. However, CIForm 
does not fully utilize the association information between genes, 
cannot explain the biological significance of gene embedding in 
the encoder, and is sensitive to noise in high-dimensional sparse 
scRNA-seq data. scGraph effectively utilizes the interaction 
relationship of genes through graph neural networks, improves 
the interpretability of cell type annotation results, and is robust 
to batch effects of datasets. However, over-smoothing is prone 
to occur as the model depth increases, and the model cannot 
effectively learn high-order information between genes, making 
it difficult to identify cell subtypes. ACTINN automatically learns 
features in the data, reducing manual feature selection and 
making it suitable for the analysis of larger datasets. However, 
ACTINN is insensitive to subtle differences in gene expression and 
may have poor identification of rare cell types. scID can integrate 
multiple data to provide a more comprehensive analysis of cell 

characteristics and reduce dependence on reference datasets. 
However, scID is only suitable for distinguishing cell types with 
distinct gene signatures. CHETAH supports in-depth analysis of 
complex cell populations and provides accurate cell annotation 
by comparing with reference gene expression data. However, 
the performance of CHETAH depends on the existence of 
well-annotated reference datasets. SingleR does not require 
predefined cell type labels and can automatically perform cell 
annotation based on reference datasets. However, SingleR is 
highly dependent on accurate and comprehensive reference 
datasets. The reference datasets cannot meet the growing 
demand for cell type annotation. 

To verify whether the annotation results of scRGCL are con-
sistent with biological findings, we compared the true labels of 
the Colon and Baron Human datasets with the annotation results 
of scRGCL, CIForm, and scGraph. We used scRGCL to extract 
high-order features of each single cell and applied UMAP for 
dimensionality reduction and visualization. As shown in Fig. 6, 
compared with the real label UMAP graph (Fig. 6A), scRGCL did not 
identify the very few B cells and CD4 T cells next to the Myeloid 
cells. scRGCL accurately identified Myeloid cells dispersed among 
B cells and also accurately annotated complex cell types such 
as CD4 T Cell, CD8 T Cell, and ILC. CIForm annotated almost 
all Myeloid cells dispersed in B cells as B cells and has good
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Table 5. F1s and ACCs of scRGCL and six competing methods on eight single-cell benchmark datasets. 

Methods zhangT TM Xin Lung1 Colon Baron Human Lung2 T Average 

F1 
scRGCL 0.903 0.987 0.994 0.980 0.946 0.992 0.941 0.751 0.937 
CIForm 0.837 0.961 0.991 0.973 0.921 0.985 0.869 0.634 0.896 
scGraph 0.839 0.921 0.985 0.973 0.934 0.969 0.804 0.574 0.875 
ACTINN 0.741 0.886 0.966 0.917 0.919 0.904 0.903 0.622 0.857 
scID 0.508 0.563 0.877 0.597 0.613 0.463 0.588 0.451 0.583 
CHETAH 0.695 0.789 0.913 0.816 0.792 0.927 0.842 0.568 0.793 
SingleR 0.746 0.809 0.952 0.852 0.831 0.953 0.787 0.661 0.824 

ACC 
scRGCL 0.882 0.988 0.992 0.987 0.947 0.991 0.939 0.766 0.937 
CIForm 0.831 0.967 0.987 0.971 0.932 0.987 0.875 0.637 0.898 
scGraph 0.834 0.973 0.981 0.982 0.941 0.983 0.818 0.619 0.891 
ACTINN 0.662 0.761 0.872 0.901 0.916 0.953 0.904 0.671 0.830 
scID 0.578 0.590 0.892 0.632 0.627 0.535 0.611 0.548 0.627 
CHETAH 0.717 0.850 0.927 0.826 0.803 0.925 0.851 0.562 0.808 
SingleR 0.790 0.889 0.945 0.831 0.857 0.968 0.772 0.664 0.840 

Figure 5. scRGCL annotation results for twenty cell types in the zhangT dataset. 

annotation results for CD4 T Cell, CD8 T Cell, and ILC. scGraph 
cannot accurately distinguish CD4 T cells, CD8 T Cells, and ILC. As 
shown in Fig. 7, scRGCL accurately annotated each cell type and 
cell types with fewer numbers, such as mast, can also be accu-
rately identified. CIForm identified many acinar cells as alpha 
cells or beta cells, and scGraph annotated many ductal cells as 
gamma cells or alpha cells. The above results show that the 
annotation results of scRGCL are consistent with the true labels 
and perform better than CIForm and scGraph. 

Evaluating the generalization performance of 
scRGCL 
In this section, several experiments were performed to investi-
gate the generalization performance of scRGCL. To analyze the 

scalability of scRGCL, we recorded the runtime of scRGCL on eight 
benchmark datasets (Supplementary Table 7). Among these eight 
datasets, the smallest dataset is Xin, which contains 1459 cells, 
and the largest dataset is Lung1, which contains 180 069 cells. The 
runtime of scRGCL is essentially proportional to the number of 
cells, and its runtime is acceptable even for large-scale datasets. 

To verify whether the pretrained scRGCL can accurately anno-
tate cell types on another independent datasets, we collected 
three human pancreas datasets (Baron Human [20], Muraro [43], 
and Segerstolpe [44]). We trained the scRGCL model on the Baron 
Human dataset and applied the scRGCL to the Muraro dataset 
and Segerstolpe dataset. For the Muraro dataset, the accuracy 
of the scRGCL in identifying alpha cell, beta cell, ductal cell, 
delta cell, and gamma cell was 0.969, 0.957, 0.932, 0.985, and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae662#supplementary-data
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Figure 6. (A) The true cell type labels for the colon dataset. (B) The annotation results of scRGCL for the Colon dataset. (C) The annotation results of 
CIForm for the Colon dataset. (D) The annotation results of scGraph for the Colon dataset. 

0.986, respectively. For the Segerstolpe dataset, the accuracy of 
the scRGCL in identifying the alpha cell, beta cell, ductal cell, 
delta cell, and gamma cell was 0.983, 0.965, 0.907, 0.988, and 0.981, 
respectively. 

Furthermore, we trained scRGCL on a large-scale mixed dataset 
containing multiple tissues and cell types from the HCL [45] 
database and applied the trained scRGCL to an independent 
Lung2 dataset [18]. If a single cell was identified as having scores 
for all cell types below the threshold 0.1, we deleted the cell. As 
shown in Supplementary Table 8, compared to the performance 
of scRGCL trained and tested on the Lung2 dataset, the F1 and 
ACC of scRGCL decreased by 0.043 and 0.037, respectively. The F1 
and ACC of CIForm decreased by 0.055 and 0.061, respectively. The 
F1 and ACC of scGraph decreased by 0.058 and 0.059, respectively. 
Although the performance of all three methods has decreased, 
compared with CIForm and scGraph, our proposed scRGCL still 
has a powerful cell type annotation capability on large-scale 
mixed datasets. 

To investigate the performance of scRCGL in the face of techni-
cal noise generated by different sequencing technologies, we used 
the Colon [19] dataset, which sequenced samples using smart-
seq2 [46] and 10x [47] protocols, respectively. The scRGCL showed 

robustness with ACC values of 0.944 and 0.947 and F1 values of 
0.947 and 0.946 for smart-seq2 and 10x sequencing technologies, 
respectively. 

We also investigated the performance of scRGCL using the 
mouse dataset. We used the STRINGDB mouse PPI network as 
the gene interaction network of scRGCL and compared the perfor-
mance of scRGCL and competing methods on the TM dataset (see 
Table 1). The results of scRGCL and competing methods on the TM 
dataset (the second column of Table 5) demonstrated that scRGCL 
still outperformed competing methods even after integrating the 
PPI networks of other species. This suggests that the scRGCL is 
not limited to human cells in cell type annotation, and scRGCL 
can be applied to cell type annotation tasks in different species 
by replacing gene interaction networks. The above experimental 
results demonstrated the generalizability of the scRGCL in auto-
matic cell type annotation. 

Conclusions and discussion 
In this paper, we proposed a new DL-based model, scRGCL, 
based on the residual graph convolutional neural network and 
contrastive learning for cell type annotation. By incorporating

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae662#supplementary-data
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Figure 7. (A) The true cell type labels for the Baron Human dataset. (B) The annotation results of scRGCL for the Baron Human dataset. (C) The annotation 
results of CIForm for the Baron Human dataset. (D) The annotation results of scGraph for the Baron Human dataset. 

a residual graph convolutional neural network and leveraging 
contrastive learning, scRGCL effectively learns high-order fea-
tures and cell-to-cell differential features. Experimental results 
show that scRGCL outperforms state-of-the-art methods and 
exhibits superior performance in cell type annotation. Experi-
mental results demonstrated the powerful predictive ability of 
scRGCL in deciphering complex cellular relationships, improving 
the performance of cell type annotation methods. Experimen-
tal results demonstrated the generalization performance of 
scRGCL. 

The interactions between genes often form complex regulatory 
networks that regulate the biological processes of cells. Many 
genes have similar expression patterns under specific conditions, 
indicating that they may be involved in the same biological pro-
cess. Modeling co-expression networks can help the model iden-
tify these genes and their potential functions, but this information 
cannot be obtained by shallow neural networks. In this article, we 
constructed a residual graph neural network to increase the depth 
of the network, which can help the model obtain the complex 
relationships between genes and use these relationships as high-
order features to annotate cell types. 

For larger datasets, incorporating more efficient graph neural 
network architectures or employing pruning techniques could 
help scale the model more effectively for even larger datasets. We 
can also select highly expressed genes and limit the number of 
genes to reduce the computational demands. 

Integrating scRNA-seq data and scATAC-seq data can help 
the model simultaneously analyze gene expression and open 
chromatin in cells, allowing the model to learn more meaningful 
features, identify the drivers of differential gene expression, reveal 
heterogeneity between cells, and improve the accuracy of cell 
annotation. Integrating multiple gene interaction networks can 
help the model learn more features and improve the model’s per-
formance. Further improvement with contrastive learning would 
be needed to improve the performance of scRGCL in identifying 

rare cell types using multi-omics data. We will try to add 
appropriate discrimination methods in the contrastive learning 
module to select representative positive and negative samples 
from multi-omics data to further improve the ability of scRGCL 
to annotate rare cell types. 

Key Points 
• There are several limitations of existing methods. First, 

they do not fully exploit cell-to-cell differential features. 
Second, they are developed based on shallow features 
and lack of flexibility in integrating high-order features 
in the data. Finally, the low-dimensional gene features 
may lead to overfitting in neural networks. There is an 
urgent need to develop an effective method to solve this 
problem. 

• We propose a new deep learning (DL)–based model, 
called scRGCL, which uses a deep network architecture 
including a residual graph convolutional neural network, 
contrastive learning, and weight freezing to annotate cell 
types. 

• To verify the effectiveness of scRGCL, we compared 
its performance with six methods on eight single-cell 
benchmark datasets from two species (seven in human 
and one in mouse). Experimental results not only show 
that scRGCL not only outperforms competing methods 
but also demonstrates the generalizability of scRGCL for 
cell type annotation. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae662#supplementary-data
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