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Abstract

The mutations driving cancer are being increasingly exposed through tumor-specific genomic data. However, differentiating between
cancer-causing driver mutations and random passenger mutations remains challenging. State-of-the-art homology-based predictors
contain built-in biases and are often ill-suited to the intricacies of cancer biology. Protein language models have successfully addressed
various biological problems but have not yet been tested on the challenging task of cancer driver mutation prediction at a large scale.
Additionally, they often fail to offer result interpretation, hindering their effective use in clinical settings. The AI-based D2Deep method
we introduce here addresses these challenges by combining two powerful elements: (i) a nonspecialized protein language model
that captures the makeup of all protein sequences and (ii) protein-specific evolutionary information that encompasses functional
requirements for a particular protein. D2Deep relies exclusively on sequence information, outperforms state-of-the-art predictors,
and captures intricate epistatic changes throughout the protein caused by mutations. These epistatic changes correlate with known
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to maintain protein function, have been shown to enhance
mutation effect prediction [16–19]. Addressing higher-order epis-
tasis, involving more than two amino acids in different positions in
the sequence, remains a challenge despite numerous converging
evidence on their crucial role in protein evolution and fitness
[20–22]. To our knowledge, only EVE [23] and AlphaMissense [8]
are able to incorporate such higher-order constraints. EVE relies
on evolutionary information learned by amino acid sequences for
each protein across different species using multiple sequence
alignments (MSAs) and clusters the learned representations
into benign or pathogenic groups based on their likelihood
to occur. Because alternative isoforms of the same gene have
identical homologs, it remains uncertain whether this approach
can differentiate the effect of mutations on different isoforms
[24]. Also, as an unsupervised model, it encounters challenges
to discern protein-specific structural or functional alterations.
To capture protein-specific nuances, the integration of direct
functional and contextual data for a particular protein has
been shown to lead to substantial improvements in prediction
[25, 26]. AlphaMissense incorporates such data in a supervised
setting, but considers frequently observed variants in human
and primate populations as benign, whereas absent variants are
labeled as pathogenic, resulting in an inherently noisy and biased
training set, as rare variants can also be benign [27]. None of these
predictors provide an interpretation of results that could support
possible clinical decisions based on them.

Another deep-learning method for variant effect prediction
utilizes protein language models, a technique originating from
natural language processing. Protein language models (pLMs) do
not rely on explicit homology and can estimate the likelihood
of any possible amino acid sequence, learning from common
patterns across protein families, allowing information to be gen-
eralized [28–30]. They have demonstrated the ability to implicitly
learn how protein sequences influence various aspects of protein
structure and function, including secondary structure and sub-
cellular location [31, 32]. However, they have not yet been tested
on the challenging task of cancer driver mutation prediction at a
large scale.

We present D2Deep, a protein sequence–only prediction
method to distinguish driver from passenger mutations in
cancer that is based on an original combination of protein-
specific evolutionary information (EI) from MSAs with pLMs. pLMs
inherently represent the probability of amino acids occurring
in various contexts, in other words the grammar (or syntax)
of natural protein sequences, while MSAs represent protein-
specific evolutionary information that incorporates the effect
of each mutation on protein function (semantic correctness).
By employing a Gaussian mixture model (GMM) on the pLM
features across evolutionary related sequences, we can therefore
capture the site-specific evolutionary variation of proteins and so
detect when sequences are semantically incorrect. The features
extracted from this approach, which now combine general
protein sequence principles with specific protein information,
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Figure 4. D2Deep confidence scores. Predictions for ClinVar annotations on two cancer driver genes (TP53, BRAF) when (a) all D2Deeps’ predictions are
shown. (b) High confidence predictions for ClinVar annotations are shown. (c) D2Deep confidence scores of correctly (intense colors) and incorrectly
(soft colors) classified mutations for TP53 gene. We chose to demonstrate the predictions of genes with a relatively large number of high-quality labels
in ClinVar. The rest of the available predictions can be found on our webserver.

To illustrate this behavior, we first compared the D2Deep features
with long-range effects proposed by MAVISp [39] for the KRAS
gene (Fig. 5). MAVISp uses the protein’s structure to calculate the
free energy changes caused by the mutations on the Switch I
region, suggesting that some of these changes might contribute to
protein activation through distal effects. In accordance with MAV-
ISp findings, the D2Deep features have higher signal at positions

corresponding to peaks in allosteric free energy changes, relying
solely on sequence information.

Additionally, we collected ClinVar benign and pathogenic
mutations on the TP53 gene and analyzed each mutation’s impact
on distant amino acids. Figure 6a shows the features of two
pathogenic mutations, E258K and C238R. Their features have the
highest values, and thus influence, distant in sequence amino
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Figure 6. Long-range effect of TP53 mutations. (a) D2Deep features used in the downstream prediction of 149 benign and pathogenic ClinVar TP53
mutations. Two pathogenic mutations E258K and C238R were considered to study the influence of features in distant amino acid and capture potential
co-evolution forces. (b) Predicted AlphaFold2 TP53 structure with focus on the surrounding regions of the mutations E258K and C238R. The amino acids
that correspond to the highest D2Deep features are highlighted. (c) D2Deep features for benign (blue) and pathogenic (red) mutations of TP53. ClinVar
benign mutations (352 mutations) have low feature signal while ClinVar pathogenic mutations (176 mutations) have high D2Deep signal. The VUS
features follow the ground truths suggesting a correlation between known and unknown mutations. We consider the top 10 highest values as peaks.
(d) D2Deep features of novel mutations Ala138Val, Ala276Ile, and Glu358Val. Only the sequence region where the D2Deep features are most affected by
the mutation are shown, with the most influenced amino acids enriched in COSMIC mutations.
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Gene Census oncogene or in a tumor suppressor gene (namely,
Tiers 1, 2, and 3 in COSMIC as described in Supplementary Fig. 7).
Their distribution in cancer-related diseases in ClinVar can be
seen in Supplementary Fig. 8. We additionally collected 2657
somatic variants with known molecular consequences from Can-
cer Genome Interpreter (CGI). To balance the (likely) pathogenic
SAVs of each gene with a balanced benign set, we curated the
UniProtKB/Swiss-Prot humsavar dataset (release 21 December
2021) keeping the 39 325 benign/likely benign SAVs. To this we
added the ClinVar dataset with benign annotations that resulted
in 43 030 benign SAVs. Additionally, we included common vari-
ants, SAVs frequently observed in the general population, from
the gnomAD database, keeping mutations with allele frequen-
cies (AF) >0.1%. Lastly, we mined single nucleotide polymor-
phisms (SNPs) from the Single Nucleotide Polymorphism database
(dbSNP) excluding mutations with conflicted or uncertain inter-
pretation, pathogenic, or risk associations. The mapping of the
chromosomal position provided by dbSNP to protein coding posi-
tions was performed with the use of TransVar software [44]. After
removing dataset overlap, 178 979 benign SAVs were retained.
To establish a well-balanced training set at the gene level, we
gathered both pathogenic and benign mutations for each gene
while maintaining a ratio of not exceeding the 40%–60% class
balance. To ensure fairness, for genes with a limited number of
available mutations, we enforced a maximum difference of two
mutations between the pathogenic and benign classes. After the
filtering out the sequences with >2200 amino acids, the final
training set contained 6608 mutations, 2956 deleterious and 3652
benign, internally balanced within 1012 genes. The script and data
for the above workflow are publicly available.

Test sets
DRGN: To assess the construction bias affecting the in silico pre-
dictors, researchers introduced the DRGN set [2], comprising a
total of 4093 variants. Among these variants, 1809 were iden-
tified as deleterious, while 2284 were categorized as passenger
mutations. These variants were mapped to 153 driver genes. The
deleterious variants were specifically selected from CGI, based on
their experimental validation as cancer driver variants [45]. As
for the passenger mutations, they encompassed 63 525 germline
variants unrelated to cancer, sourced from Humsavar [35]. To
ensure a comprehensive evaluation, the final test set included
genes that had at least one positive (deleterious) and one negative
(passenger) sample, comprising 3608 mutations.

Consensus pathogenic variants: We calculated the output
of the method on 269 cancer driver genes included in Next
Generation Sequencing (NGS) panel of biopsies of hematological
and solid tumors from Compermed Guidelines (https://www.
compermed.be/docs/Guidelinesjan2020-2.pdf). For the demon-
stration of predictions, we chose genes with a relatively large
number of high-quality labels in ClinVar, three tumor suppressor
genes (TP53, PTEN, CHEK2), and two oncogenes (BRAF, AR)
with Review status: Practice guideline, Expert panel, Multiple
submitters, Single submitter (downloaded in March 2023).

Transfer learning with pretrained model
ProtT5-XL
Language models (LMs) are typically based on the Transformer
architecture, which uses a mechanism called “self-attention” to
weigh the importance of different words in a sentence when mak-
ing predictions. This allows them to capture long-range depen-
dencies in text. Protein LMs (pLMs) leverage vast datasets of
protein sequences, similar to the training of language models. By

training on billions of amino acids, these models learn to model
statistical dependencies among amino acids based on their co-
occurrence patterns across sequences. The learned representa-
tions have been shown to retain critical biophysical properties,
making them valuable inputs for downstream tasks [31]. The best-
performing pLM for our task was ProtT5-XL [31], trained on the
BFD100 [46] and Uniref50 [47] datasets, from which we extracted
1024-dimensional (1024-D) amino acid representations.

Gaussian mixture model
The MSAs for both the training and test sets were generated using
the mmseq2 algorithm with the Uniref100 and PDB70 databases
[47]. The resulting alignments were filtered according to the pro-
tocol proposed by Hopf et al. [15]. In line with this protocol, we
retained sequences that aligned to at least 50% of the target
sequence and had at least 70% column occupancy. For five protein
isoforms in our training set (out of a total of 1132), the filtering
process resulted in fewer than two aligned sequences in the
MSA. To address this, we applied a more lenient filtering cutoff,
retaining sequences with at least 20% identity to the original
protein.

Each amino acid in the MSA was then mapped to the 1024-D
embedding learned during the pretraining phase. We applied a
GMM from the sklearn library to each MSA column to measure
how mutations deviate from the underlying distribution. Since
the feature space (1024-D) exceeded the number of sequences
in some MSAs, which could lead to overfitting, we performed
dimensionality reduction. We reduced the feature dimensions
using max-pooling with a kernel size of 50 and a stride of 50,
resulting in 20-dimensional vectors (20-D) for each amino acid.
The selection of 20-D was based on an evaluation of different
dimensions to determine which provided the highest probability
for the GMM and thus the best fit.

To prevent bias from the GMM’s structure in each dimension,
we employed a threshold-based approach. We fitted a GMM to the
20-D samples of each MSA column, computed the log-likelihood
of the WT features to be in the model and the log-likelihood
threshold, below which 1% of the samples lie. Then, we computed
the distance between the log-likelihood and this threshold (WT-
threshold). When a mutation is introduced, the pretrained embed-
dings of the entire sequence are affected. To capture its effect, we
calculated the distance between the mutation’s log-likelihood and
above 1% threshold (MUT-threshold). This allowed us to quantify
the mutation’s impact, even when the WT and mutation features
were similar in magnitude but opposite in sign.

The final feature was obtained by computing the difference
between WT-threshold and MUT-threshold at each sequence posi-
tion, yielding one value per position. These differences were con-
catenated across the sequence to form the feature set used in the
downstream supervised learning task.

Model architecture and training
We built a deep-learning model for the mutation classification.
The model receives the features produced by the GMM part of the
algorithm and predicts the mutation’s pathogenicity as a proba-
bility value from 0 to 1. The classifier is composed of two fully con-
nected (FC) layers followed by a batch normalization for faster and
more stable training. Because the FC layers must have a defined
input length, we chose as maximum length the 2200 amino acids,
padding shorter sequences with zero, which did not affect 90% of
the cancer gene panel (Supplementary Fig. 9). To select the hyper-
parameters of D2Deep, we performed a grid search using 90% of
the training data to train the model and the remaining 10% as
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the validation set to select the hyperparameters (Supplementary
Fig. 10, Supplementary Table 1). The test sets were not used
for hyperparameter selection. The model was trained for 200
epochs. The number of epochs to train were selected based on
the early stopping technique choosing the epoch on each the
validation error starting increasing while the training error con-
tinues decreasing. Dropout layers of 0.3 are applied during train-
ing to all layers to avoid overfitting, followed by a Rectified Lin-
ear Unit (ReLU) activation function. The final FC layer is used
to decide pathogenicity with the use of a sigmoid activation
function incorporated in the BCEWithLogitsLoss loss function.
The use of BCEWithLogitsLoss is recommended in the PyTorch
documentation (https://pytorch.org/docs/stable/generated/torch.
nn.BCEWithLogitsLoss.html), over a plain Sigmoid followed by a
BCELoss, as numerically more stable. The weights of the classifier
were initialized using Xavier normal initialization, and the batch
size was set to 64. Instead of depending only on the current
gradient to update the weights in every step, a gradient descent
with momentum of 0.1 aggregates current and past gradients. The
optimizer used was AdamW with a learning rate of 0.00003 and
a scheduler with a warmup period of 1000 steps. The model was
trained in the PyTorch framework.

pLM comparison
For the comparison between pLMs and pLMs/EI, we follow
the workflow proposed by ESM-1v [37]. We first calculated
the pLM embeddings for the training dataset using the EMS-
1v (esm1v_t33_650M_UR90S_1.ptk) pLM. As suggested by the
authors, we kept a mean representation of 1280 dimensions
for each mutated sequence. We then reduced the dimensions
to 60 using principal component analysis, which was used
for downstream supervised learning. The authors’ grid search
identified support vector regressor as the best model for
variant prediction, which we also used. For leave-one-out cross-
validation, we used the Training set described in Methods and
materials. The same workflow was followed for the Prot-T5, using
1024-D embeddings as proposed by the authors.

Calculation of confidence score
We calculated the average GMM log-probabilities of the amino
acids present in each position of the MSA of each protein
sequence. We performed a grid search and selected the confi-
dence formula that optimized the weighted performances across
all test sets. This procedure resulted in Equation (1) for pathogenic
mutations and Equation (2) for benign mutations.

overall_confidencepathogenic(x) = 1
M

∑M

i=1

(
log

(
pGMMx(i)

))
(1)

overall_confidenceconfidence(x) = 1 − 1
M

∑M

i=1

(
log

(
pGMMx(i)

)) · 1.3

(2)

where M is the number of samples of fitted GMM (equal to number
of sequences in the MSA), log(pGMMx) is the log-probability of each
sample under the current model, and x is the position of the muta-
tion. The inversion of overall_confidence for the benign mutations
can be interpreted by Supplementary Fig. 11 where it is shown that
the benign mutations have more confident predictions when the
average log-probability of the samples on the position is smaller.

The calculation of the weighted performance was done by
multiplying each performance metric by its corresponding weight
(i.e. overall_confidence). This ensures that the contribution of
each prediction to the overall performance is proportional to its
confidence level. We then summed up the weighted performance
metrics for all predictions and divided the sum of the weighted

performance metrics by the sum of the weights as shown in
Equation (3):

∑n
i=1 wi· pi∑n

i=1 wi
(3)

where w1, w2, . . . , wn are the weights assigned to each prediction
and p1, p2, . . . , pn are the performance metrics for each prediction.
We proceeded by min–max normalizing the confidence of each
prediction to obtain a range of 0%–100% for all genes.

Key Points

• The detection of cancer-driving mutations from
genomics data is increasingly feasible, but many
challenges remain, particularly detecting such muta-
tions beyond the well-known hotspot regions of cancer-
related genes.

• We present the first large-scale benchmark of protein
language models for predicting cancer-driving muta-
tions.

• Our findings highlight the necessity of including evolu-
tionary information in the features captured by protein
language models, which we achieve with the D2Deep
method.

• The D2Deep features capture the epistatic effect of a
mutation, which correlates with known mutations in
the clinical setting and long-range allosteric effect from
other tools.

• We introduced a statistical approach to generate con-
fidence scores, crucial for clinical interpretation and
mutation prioritization.

Supplementary Data
Supplementary data is available at Briefings in Bioinformatics
online.
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Data availability
All data used for training and testing the model are available
in the public Zenodo repository: https://zenodo.org/doi/10.5281/
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