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Abstract

Sequencing-based microbial count data analysis is a challenging task due to the presence of numerous non-biological zeros, which can
impede downstream analysis. To tackle this issue, we introduce two novel approaches, PhyImpute and UniFracImpute, which leverage
similar microbial samples to identify and impute non-biological zeros in microbial count data. Our proposed methods utilize the
probability of non-biological zeros and phylogenetic trees to estimate sample-to-sample similarity, thus addressing this challenge. To
evaluate the performance of our proposed methods, we conduct experiments using both simulated and real microbial data. The results
demonstrate that PhyImpute and UniFracImpute outperform existing methods in recovering the zeros and empowering downstream
analyses such as differential abundance analysis, and disease status classification.
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Introduction
Microbiome studies investigate the genomes and dynamic inter-
actions of microorganisms inhabiting environments such as the
human gut, soil, and ocean to gain a deeper understanding of
their crucial ecological roles [1]. Advances in next-generation
sequencing technologies have allowed an accurate quantification
of microbial communities through feature abundance tables [1, 2].
However, analyzing these tables can be challenging due to their
sparse nature, characterized by a substantial proportion of zeros
[2–5].

The zeros in microbiome data can be divided into three cat-
egories by origin: biological, sampling, and technical zeros [5].
Biological zeros indicate the absence of a microbial feature in
the system. Conversely, sampling and technical zeros are non-
biological in nature. Sampling zeros occur when sequencing reads
are limited, leading to the undercounting of low abundance fea-
tures in skewed microbial compositions [5]. Technical zeros result
from technical bias, typically introduced during sample prepara-
tion in sequencing experiments, such as inefficient steps in DNA
extraction and PCR amplification [4]. The high proportion of zeros
in microbiome data, also known as sparsity, poses challenges
for modeling and can impact the performance in pipelines such
as differential abundance (DA) and network analysis [3]. The
proportion of zeros in sequencing-based microbiome data can be
as high as 89% [6]. High sparsity can violate the assumptions

for statistical tests and regression analysis methods, leading to
false associations or reduced power when traditional statistical
methods are directly applied [2].

Sparsity is a common issue in both microbiome and single-
cell RNA-seq (scRNA-seq) data. For scRNA-seq data, many impu-
tation methods have been successfully developed to deal with
this high sparsity, for example, scDoc [7], scImpute [8], SAVER
[9], MAGIC [10], and softImpute [11]. The imputation methods for
scRNA-seq data can be categorized into three broad and often
overlapping approaches [12, 13]: model-based imputation meth-
ods, data-smoothing methods, and data-reconstruction methods.
Model-based methods use probabilistic models to identify tech-
nical zeros and usually impute the technical zeros only while
leaving other observed expression levels unchanged. For data-
smoothing methods, similarity between cells will be measured
first based on gene expression profiles or the relationship in a
graph. Then, the gene expression values for each cell will be
adjusted by smoothing or diffusing the gene expression values
in similar cells. The third category, data-reconstruction methods,
first defines a latent space representation of the cells using
either low-rank matrix factorization, which captures the linear
relationship, or deep-learning methods, which capture the non-
linear relationships. Then, the data matrix will be reconstructed
from a low-rank or simplified representation. Hou et al. (2020)
systemically evaluated 18 scRNA-seq imputation methods, which
cover three categories of the methods, to assess their accuracy
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and usability [13]. They found that MAGIC, kNN-smoothing, and
SAVER outperform the other methods most consistently. Dai et al.
(2022) compared 12 imputation methods belonging to the two cat-
egories of model-based and deep learning-based methods using
both simulated and real scRNA-seq datasets [14]. They concluded
that each method has its own advantages and disadvantages, and
there is no outstanding method. Cheng et al. (2023) evaluated
11 imputation methods using real scRNA-seq data and recom-
mended SAVER and NE [15] for downstream analyses such as cell
clustering and marker gene analysis [16].

Although both microbiome and scRNA-seq datasets share
the characteristic of containing a large proportion of zeros, the
key difference lies in the scale of the datasets. Microbiome
datasets typically consist of a few hundred samples, whereas
scRNA-seq datasets often contain tens of thousands of cells. This
disparity makes methods based on deep learning and matrix
factorization, which are generally designed for scRNA-seq and
require large numbers of cells to perform optimally, less suitable
for microbiome count data. Furthermore, microbiome data differ
from scRNA-seq data in terms of content. The microbiome
count table represents the relative abundance of microbial
features (e.g. species or Operational Taxonomic Units) in various
samples, while scRNA-seq data are concerned with the gene
expression in different cells. Moreover, microbiome data also have
other information, such as the phylogenetic relationship among
microbial features, which can be used to empower the analysis.
Therefore, directly applying scRNA-seq imputation methods to
microbiome data may be impractical or result in a loss of power,
highlighting the need for a microbiome-specific imputation
method.

A recently proposed imputation method tailored specifically
for microbiome data, known as mbImpute [17], was developed
based on the scRNA-seq imputation method scImpute [8]. mbIm-
pute first identifies the type of zeros and determines which taxa
require imputation using a likelihood ratio test. It then utilizes
information from similar samples, similar taxa, optional sample
metadata from sample covariates, and phylogenetic information
in the imputation [8, 17], using the same model as that in scIm-
pute [8]. Compared with other scRNA-seq imputation methods,
mbImpute has better performance in recovering missing taxon
abundances for microbiome data and empowering DA taxon iden-
tification [17].

A limitation of mbImpute is that it defines phylogenetic dis-
tance as the number of branches connecting two taxa, ignoring
the branch lengths between them [17]. Microbial taxa with similar
biological functions are usually evolutionarily related, making
phylogenetic trees an essential tool for investigating microbial
composition’s association with biological/environmental factors
[18–20]. A variety of distance metrics using branch length infor-
mation have been proposed, such as the UniFrac distance matrix
[21]. UniFrac calculates the dissimilarity in microbial community
composition between samples by mapping their phylogenetic
composition onto a phylogenetic tree and comparing them based
on branch length. However, UniFrac only considers the pres-
ence/absence of the microbial taxa and ignores the abundance
information. The Weighted-UniFrac distance [22] is a variation
that remedies this limitation by assigning weights to taxa pro-
portionally to their abundances in the two samples being com-
pared. Nonetheless, branch length noise can still affect these
methods. To address this issue, Chen et al. proposed a generalized
UniFrac distance that weights the branch length by both relative
difference and its importance indicated by the branch proportion
[23]. Therefore, incorporating branch length information from a

phylogenetic tree can potentially enhance the effectiveness of the
microbiome-specific imputation method.

In this study, we propose two new imputation methods, Phy-
Impute and UniFracImpute, which utilize the Poisson-Negative
Binomial (PNB) model and incorporate branch length information
from a phylogenetic tree to identify and impute non-biological
zeros by borrowing information from similar microbial samples.
The Poisson distribution is relatively straightforward, with only
one parameter determining its shape. It can be used to account for
the probability of zero counts and low counts in microbiome data.
However, microbiome data can exhibit overdispersion, where the
variance exceeds the mean. In such instances, mixture models
combining Poisson and Negative Binomial (PNB) are more appro-
priate for accurately representing microbiome count data. This
mixture model has been successfully used in imputing single cell
count data [10], where Poisson distribution captures the excess
zeros, and Negative Binomial is used to represent the expression.
Thus, the PNB model offers a balance between capturing overdis-
persion, excess zeros, and providing interpretable parameters.
We assess the performance of PhyImpute and UniFracImpute
using synthetic studies, 16S simulation studies, and real microbial
studies. The proposed methods are compared with mbImpute, a
microbiome-specific imputation method, and five other imputa-
tion methods designed for scRNA-seq data. These results suggest
that our proposed methods provide promising approaches for
imputing missing values in microbiome data.

Materials and methods
PhyImpute and UniFracImpute are two proposed imputation
methods for microbiome data. They aim to calculate the prob-
ability of non-biological zeros, incorporate branch lengths from
the phylogenetic tree to calculate similarities between samples,
and recover non-biological zeros by borrowing information
from similar samples. The steps involved in these methods are
explained in detail below:

Step 1: calculation of the sample-to-sample distance matrix.
Here, we propose two approaches, PhyImpute and UniFracIm-

pute, to compute the similarity or distance between each pair of
microbial samples based on the microbial abundance data. These
methods incorporate phylogenetic tree information and account
for the estimated probabilities of being non-biological zeros. The
sample-to-sample distance matrix will be used to find simi-
lar microbial samples using the k-nearest neighbor approach in
Step 2.

1-(1) PhyImpute: it is based on a modified cosine similarity
between vectors in the context of a phylogenetic tree. The cosine
similarity is a measure of similarity between two vectors. Given
two vectors x and z, it measures the cosine of the angle between
them:

cosθ = x.z
‖x‖ . ‖z‖ =

∑L
k=1 xkzk√∑L

k=1 x2
k

√∑L
k=1 z2

k

(1)

where xk and zk represent the kth component of the vector x and
z, respectively, and L is the length of the vectors. Here, the cosine
similarity is used in positive space, and its value falls within the
interval [0, 1]. When the value equals 1, two vectors are exactly the
same. Conversely, when the value equals 0, two vectors are orthog-
onal or not correlated. Notably, the proposed method incorporates
the non-biological zeros’ probability and branch length from the
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phylogenetic tree into the cosine similarity calculation:

sij =
∑n

g=1 wg∗bg∗ygi∗ygj√∑n
g=1 wg∗bg∗y2

gi∗
√∑n

g=1 wg∗bg∗y2
gj

(2)

where sijis the similarity between two microbial samples/com-
munities i and j, bg is the branch length for feature/taxon g in
the phylogenetic tree, and ygi and ygj are the taxa proportions
descending from the branch g for community i and j, respectively.
The weight wg is determined based on the probabilities of non-
biological zeros for the count ygi and ygj, which are estimated using
a PNB mixture model [7]. That is, for each feature g, the probability
of being non-biological zero in the community i is expressed as
follows:

dgi = π̂gi ∗ fPois
(
ygi

)
π̂gi ∗ fPois

(
ygi

) + (
1 − π̂gi

)
fNB

(
ygi

) (3)

where πgi is the probability that an observed count belongs to a
Poisson distribution, fPois and fNB are probability density functions
for Poisson and Negative Binomial distributions, respectively. All
the parameters in the PNB model, including the parameters from
the two distributions fPois and fNB are estimated using the EM
algorithm.

Then in the phylogenic-based cosine similarity, we define the
weight wg = 1 when both dgi and dgj obtained from the PNB
models are greater than 0.5 or both dgi and dgj are less than 0.5;
otherwise, wg = average of the two probabilities. This allows for a
more nuanced and accurate measure of similarity that takes into
account the relationships and structure between the two vectors
within the context of the phylogenetic tree.

1-(2) UniFracImpute: the distance between two microbial sam-
ples/communities is calculated based on the weighted UniFrac
distance. UniFrac (qualitative) and weighted UniFrac (quantita-
tive) are widely used phylogenetic distance metrics for compar-
ing biological communities [17, 18]. These metrics calculate the
distance between pairs of samples, where all features found in
both samples are placed on a phylogenetic tree. UniFrac measures
the percentage of observed branch length unique to either sample
[17]. When two communities are the same (i.e. identical), the
UniFrac distance between them (i.e. the unique fraction of the
tree) is 0. In contrast, for two communities that do not share any
common microbes, the whole evolutionary tree of one sample is
different from the other. In this case, the UniFrac distance equals
1. Weighted UniFrac takes into account the relative abundances
of the microbial taxa in the samples, providing a more accurate
measure of the similarity between microbial communities [18]:

weighted UniFrac =
∑n

g=1 bg

∣∣∣pA
g − pB

g

∣∣∣
∑n

g=1 bg

(
pA

g + pB
g

) (4)

where bg is the length of the branch g, and pA
g and pB

gare the
taxa proportions descending from the branch g for communities
A and B, respectively. In the proposed work, we combine the non-
biological zeros’ probability into the similarity measures Sn×n =[
sij

]
,

sij = 1 −
∑n

g=1 bg ∗ wg ∗ ∣∣ygi − ygj

∣∣∑n
g=1 bg ∗ wg ∗ (

ygi + ygj
) (5)

where i and j represent the indices of two microbial samples,
bg is the branch length of the taxon g; ygi and ygj are the taxa
proportions descending from the branch g for sample i and j,
respectively. Define the weight wg = 1 when both dgi and dgj

obtained by PNB models are greater than 0.5 or both dgi and dgj

are less than 0.5; Otherwise, wg is equal to the average of dgi and
dgj. The modified sample-to-sample similarity is more accurate
because it incorporates information from the abundance, branch
length, and the probability of observing non-biological zeros.

Step 2: Imputation for non-biological zeros using the k-nearest
neighbor approach.

Based on the values dgi and dgj derived from the PNB models,
non-biological zeros are defined as instances where one prob-
ability is greater than 0.5, and the other is less than 0.5. Then
to recover values for identified non-biological zeros, we use a k-
nearest neighbor (KNN) algorithm to impute values by borrowing
information from similar samples [10]. The KNN algorithm works
by finding the k closest neighbors to the target samples i, and then
imputing the non-biological zeros based on the k most similar
samples whose indices are saved in a set V. The imputed value
for taxon g in sample i can be calculated as follows:

Impgi =
∑

kεV sik ∗ ygk∑
kεV sik

(6)

where sik is the similarity between the target sample i and can-
didate sample k from the first step (either by PhyImpute or by
UnifracImpute), and V is the set of K nearest samples. In micro-
biome data studies where the sample size is typically small, we
suggest using a default value of k = 5.

Synthetic datasets
We first evaluate the performance of the proposed methods using
synthetic datasets. The following three microbial datasets and
phylogenetic tree information are used to generate synthetic
datasets.

3-(1) Dataset 1 is based on a study of Type II diabetes (T2D) [24].
After applying a filter to remove taxa with zero abundance in over
95% of the samples, there are 53 samples and 193 features. We
utilize the same strategy as mbImpute to simulate ‘complete’ data
without non-biological zeros, and then subsequently introduce
artificial zeros into the taxa to create zero-inflated data. Firstly, we
apply the gamma-normal distribution to estimate the parameters
of the missing value percentages for each taxon (zg) and taxon’s
abundance (μg) for the set � which contains the features that
are unlikely to be non-biological zeros, according to mbImpute.
Hence, these features do not need imputation. Secondly, we deter-
mine the percentage of artificial zeros added into the abundance
of taxon j in the complete data by randomly selecting a value from
the interval of

{
zg :

(
μg ∈ μ

comp
j − max

(
μ

comp
j

)
−min

(
μ

comp
j

)
3 , μcomp

j + max
(
μ

comp
j

)
−min

(
μ

comp
j

)
3

)}

(7)
where μ

comp
j represents the average abundance of a taxon j across

samples. Lastly, the Bernoulli distribution is employed to create
zero indicators and then the zero-inflated dataset is generated.

3-(2) Dataset 2 is based on QinJ_2012_T2D_control dataset [25].
We calculate the percentage of zeros for each taxon and extract a
sub-dataset containing less than 15% zeros, which we use as the
complete data. This sub-dataset consists of 50 samples and 145
features. To generate zero-inflated data, we add false zeros to the
complete data, mimicking the pattern of the zeros observed in the
real data.

3-(3) Dataset 3 is based on a colorectal cancer study of
Zeller_2014 [26]. By applying the same procedure as for the
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QinJ_2012_T2D_control dataset, a total of 50 samples and 134
features are preserved, while additional zeros are included.

Simulated dataset
To thoroughly assess the effectiveness of the proposed methods
in DA analysis, we utilize a simulator called sparseDOSSA [27]
to generate simulated 16S rRNA count data. For this simulated
dataset, there are 300 taxa in 100 samples under two conditions
where 60 taxa were predefined as truly differentially abundant.

Five real microbiome datasets
The proposed methods are evaluated for their performance in
classification analysis using five publicly available real micro-
biome datasets. For each of these datasets, there are two groups
of microbial samples such as diseased group and control group.
Support Vector Machines (SVMs) and Random Forest [28] are
utilized for classification analysis, and the Precision-Recall Area
Under the Curve (PR-AUC) was calculated. The details of the
datasets used are summarized below.

5-(1) NielsenHB dataset: Nielsen et al. [29] investigated 435 taxa
at the species level with phylogenetic information across 206
samples, comprising of 63 control samples and 143 samples from
patients with Inflammatory Bowel Disease (IBD).

5-(2) QinJ dataset: Qin et al. [25] conducted a two-stage
metagenome-wide association study to assess and characterize
the gut microbiota of individuals with type 2 diabetes. With
phylogenetic information, we analyze 139 samples, comprising
89 controls and 50 patients with T2D on 365 taxa at the species
level.

5-(3) YuJ dataset: Yu et al. [24] assessed the diagnostic capability
of fecal metagenomes in detecting colorectal cancer (CRC). We
focus on 417 species with phylogenetic information, for 53 con-
trols and 75 patients with CRC.

5-(4) TettAJ dataset: Tett et al. [25] conducted a study on pso-
riasis. We focus on 114 taxa at the species level, analyzing 48 (37
controls and 11 patients) samples with phylogenetic information.

5-(5) ShiB dataset: Shi et al. [30] conducted metagenomic shot-
gun sequencing to characterize the subgingival microbiome in
periodontitis patients before and after treatment. The analysis
focuses on 181 species taxa with phylogenetic tree information
for 48 oral samples (24 periodontitis and 24 scaling and root
planning).

Performance evaluation on imputation accuracy
To evaluate the performance of the proposed imputation meth-
ods in imputation accuracy on the three synthetic datasets, we
employ four criteria to compare the imputed data with the com-
plete data:

1. Mean squared error (MSE) between imputed data and com-
plete data, is calculated as follows:

MSE = 1
mn

∑n
i=1

∑m
g=1

(
Compgi − Impgi

)2

where Compgi and Impgi are the complete value and the
imputed value for the gth feature/taxon in the ith sample,
and n and m are the total number of samples and the total
number of features/taxa, respectively,

2. Pearson correlation of each taxon between the imputed data
and the complete data,

3. Mean and standard deviation (SD) of the taxon abundance;
and comparison of the mean abundance after imputation to
the true mean from complete data using linear regression,

4. Library size (i.e. the total number of counts from all features
in a sample) and the Wasserstein distance between the
imputed and complete data.

Performance evaluation on DA analysis
To further evaluate the effects of proposed imputation meth-
ods on downstream analysis such as DA analysis, we perform a
comparative study using eight state-of-the-art methods for DA
analysis based on simulated 16S rRNA data using sparseDOSSA
[27]. Many DA tests have been developed for microbiome data. In
a recent study [31], the performance of 14 DA testing methods
were compared on 38 16S rRNA gene datasets with two sample
groups. While the results depend on data pre-processing, ALDEx2
and ANCOM-II are found to produce the most consistent results
across studies and agree best with the intersection of results
from different approaches. The DA methods we employ in this
study are ALDEx2 [32], ANCOM-II [33], corncob [34], Deseq2 [35],
MaAsLin2 [36], Omnibus [37], metagenomeSeq [38], and Wilcoxon
test [39]. The recall, precision, F1 score, number of true positives,
and number of false positives are employed to measure their
performance:

Recall = TP
TP + FN

Precision = TP
TP + FP

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

where true positives (TP) represent the number of features
correctly detected as differentially abundant features (DAFs),
false positives (FP) represent the number of features incorrectly
detected as DAFs, and false negatives (FN) represent the number
of features incorrectly detected as not belonging to DAFs.

Results
Overview
We present new approaches for imputing microbiome count data
that leverage phylogenetic information to calculate the proba-
bility of zeros and low counts that are unlikely to be biological
zeros, referred to as non-biological zeros. Using this probability,
we compute the sample-to-sample similarity (as shown in Fig. 1)
and recover the value for possible non-biological zeros based on
this similarity.

PhyImpute and UniFracImpute improve the
performance of recovering non-biological zeros
To evaluate the imputation accuracy of PhyImpute and UniFracIm-
pute, we first applied them on three synthetic datasets: Karlsson
et al. [24], Qin et al. [25], and Zeller et al. [26] and compare the
imputed data against the complete data. Details regarding the
generation of these datasets are provided in the Methods section.
The original datasets are downloaded from the curatedMetage-
nomicData [40] Bioconductor package. Given to the small number
of samples in microbial studies, deep-learning-based imputation
methods designed for scRNA-seq data are not well-suited for
microbial count data. Therefore, we compare our methods with
mbImpute [17], to date, which is the only available imputation
method for static microbiome data, and several commonly used
model-based and smoothing-based imputation methods for
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Figure 1. Illustration of microbiome data imputation workflow. First, the probability of non-biological zeros is estimated for each taxon in each sample
from the raw count using the PNB mixture model. Second, raw count, non-biological zeros probability, and branch length from the phylogenetic tree are
used to compute sample-to-sample similarity. Third, abundance levels of the detected non-biological zeros are imputed.

Figure 2. Evaluation metrics for the synthetic dataset of Karlsson et al. (a) MSE, and (b) Pearson correlation between imputed data and complete data.
Colors represent different imputation methods.

scRNA-seq count data, including scDoc [7], scImpute [8], SAVER
[9], MAGIC [10], and softImpute [11].

Figures 2 and 3 show the results of Karlsson et al.’s synthetic
dataset. The results of Qin et al. and Zeller et al.’s datasets are
available in the supplemental materials (S1–S4, S9–S11). Our pro-
posed methods, PhyImpute and UniFracImpute, outperform other
imputation methods across all three datasets, exhibiting smaller
MSE values. We calculated Pearson correlations (Fig. 2) based on
the raw data on the log-scale. Microbiome count data on the
log-scale resemble a continuous normal distribution and micro-
biome datasets usually follow a log-normal distribution [41]. Both
PhyImpute and UniFracImpute demonstrate higher correlation
with the ground truth. Additionally, plots of taxon mean ver-
sus taxon SD (Fig. 3a) reveal that the proposed methods more
effectively recover zeros compared to other imputation methods
or the raw data with no imputation. In contrast, methods such
as MAGIC, softImpute, and SAVER show much lower mean and
SD of the taxa. Scatter plots comparing imputed versus true
mean also demonstrate that the proposed methods outperform

others, closely following the 45◦ line (Fig. 3b). The R2 and p-
value of models for Fig. 3(b) are shown in the supplementary
file (S5). Furthermore, when assessing the Wasserstein distance
between the sample library size of imputed data and complete
data, our methods exhibit a smaller distance (Fig. 3c), indicating
that imputed data more closely resemble the original data. Over-
all, the proposed imputation methods show promising results for
all three synthetic studies.

PhyImpute and UniFracImpute empower DA
analysis
In the downstream DA analysis, we compare the results using
imputed data by PhyImpute and UniFracImpute with those using
raw data (i.e. no imputation) and using imputed data by mbIm-
pute. Higher precision, recall, and F1 score (Fig. 4 and S12–S14) are
expected if the statistically significant results closely align with
the predefined DA. We found that our proposed methods perform
well using ALDEx2, ANCOM-II, Corncob, DESeq2, and MaAsLin2.
However, metagenomeSeq and Omnibus, which use zero-inflated

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
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Figure 3. Feature visualization and sample library size for the synthetic dataset of Karlsson et al. (a) For each taxon, the mean and SD of its abundances are
calculated for the complete data, the raw data without imputation, and the imputed data by each imputation method; (b) cloud plot for the taxon means
after imputation versus the true mean for each imputation method, with an added linear regression line showing the relationship betweenimputed
and true means, and a reference line with a slope of 1 representing perfect agreement; (c) histogram of the sample library size (bp) for the imputed and
complete data with Wasserstein distance between the two distributions shown at the top of each plot.

Gaussian and zero-inflated negative binomial regression models,
respectively, may not be suitable for imputed data.

We observe that PhyImpute and UniFracImpute perform very
well using ALDEx2 and ANCOM-II which is consistent with the
findings in a rencent systematic study where these two methods
produce consistent results across 38 studies amongst 14 DA
testing methods [31]. Additionally, we evaluated the number of
true and false positive features across all eight DA methods, both
with and without imputation, as illustrated in Fig. 5 and S15. Our
findings indicate that PhyImpute and UniFracImpute enhance
the DA analysis when paired with ALDEx2, ANCOM, Corncob,
and DESeq2. For the remaining three methods (metagenomeSeq,
Omnibus, and Wilcoxon), UniFracImpute shows lower true

positives but also lower false positives. MaAsLin2 detects more
true positives but higher false positives in PhyImpute.

PhyImpute and UniFracImpute enhance the
performance of disease status classification
Next, we apply the proposed methods to five real microbiome
datasets, which are all generated using the whole genome shot-
gun sequencing technologies and can be downloaded from the
curatedMetagenomicData Bioconductor package [40], for disease
status classification. Three of these studies focus on stool samples
[25, 29, 42], one study analyzes skin samples [43], and one study
examines oral samples [30]. The specifics of each dataset details
are summarized in the Materials section.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
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Figure 4. Accuracy measurements for eight DA methods coupled with different imputation methods in the 16S simulation studies using an FDR threshold
of 0.05.

We first identify DA features between the two conditions in
each of the five datasets. DESeq2 is often chosen for DA analysis,
especially in contexts like RNA-seq or microbiome studies. A
recent evaluation paper found that DESeq2 was one of the top-
performing tools overall among those tested [44]. It is also valued
for its ease of use. We explore the DA features identified by
DESeq2 in the raw data and in data that are imputed using various
methods, which are relevant for diagnosing the status. These
identified DA features, along with the diagnosis status serving
as classification labels, are used to evaluate classification results
(Fig. 6 and S16 for SVM method). Data imputed using PhyIm-
pute or UniFracImpute show slightly higher prediction accuracy
compared to mbImpute or no imputation, particularly in the
QinJ, ShiB, TettAJ, and YuJ studies. The Random Forest results are
provided in Supplementary S18. Given that no single imputation
method consistently outperformed across all studies, we included
these results in the supplementary materials for the readers’
benefit. Additionally, results are comparable in the NielsenHB
study. These indicate that proposed methods generally improve
the performance of classification analysis in microbiome studies.
Additionally, we compile a list of unique DA features discovered
in the imputed-DESeq2 analysis, which consistently align with
findings from previous literature in terms of pathway enrichment
analyses (Table 1).

Microbiome profiling has emerged as an effective approach for
studying host-microbiome interactions. In this study, we utilize
the identified DA features to conduct enrichment analysis using
MicroPattern [45] on three selected datasets (NielsenHB, ShiB, and
TettAJ), and the results are presented in Fig. 7 and Supplementary
file (S6–S7 and S17). In Fig. 7, the identified DA features are linked

Table 1. Selected list of differentially abundant features
detected uniquely in the imputed datasets using PhyImpute and
UniFracImpute methods.

Datasets DA features

NielsenHB Flavonifractor plautii [47], Dorea formicigenerans [48],
Citrobacter freundii [49]

QinJ Clostridium symbiosum [25], Roseburia intestinalis [25],
Coprococcus comes [50], Lactobacillus amylovorus [51],
Lactobacillus plantarum [51], Bacteroides xylanisolvens [52]

ShiB Veillonella atypica [53], Streptococcus salivarius [54],
Streptococcus sanguinis [55], Actinomyces oris [56],
Capnocytophaga granulosa [55], Actinomyces sp oral taxon
448 [57]

TettAJ Escherichia coli [57]
YuJ Fretibacterium fastidiosum [58], Bacteroides stercoris [59]

to their respective diseases. For instance, in the study focusing on
IBD, as shown in Fig. 7(a), the DA features identified through the
proposed imputation methods establish a connection between
Irritable Bowel Syndrome (IBS) and Enterocolitis Necrotizing
Disease. IBD and IBS are two common chronic gastrointestinal
disorders that exhibit significant overlap in terms of symptoms,
pathophysiology, and treatment. This suggests that despite being
at opposite ends of the spectrum, they might be a single disease
entity [46].

Significant features detected in the ShiB and TettAJ studies are
associated with periodontal diseases and psoriasis, respectively,
which align with the original focus of these studies. However,
in QinJ and YuJ studies, the DA features could not establish

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
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Figure 5. The number of true and false positive features detected from eight DA methods coupled with different imputation methods for the simulation
study with 300 features and 100 replicated simulations. Each bar represents the mean number of features that are detected as differentially abundant
at an FDR threshold level of 0.05, and the error bars represent 1 SD calculated from 100 replications.

Figure 6. Comparison of the classification accuracy of imputation meth-
ods on five real datasets. The bar plots show classification accuracy from
different imputation methods, measured by a five-fold cross-validated
PR-AUC by the SVMs for predicting diagnosis status in five real datasets.

a link between diabetes mellitus type 2 and colorectal cancer,
as indicated in the supplementary materials. The DA features
identified in the NielsenHB (stool study), ShiB (oral study), and Tet-
tAJ (skin study) datasets, after imputation using PhyImpute and
UniFracImpute, provide a meaningful functional interpretation.

Discussion
In our proposed work, we utilize the probability of non-biological
zeros, along with an abundance table, and the total branch length

of the phylogenetic tree. This allows us to calculate the sample-
to-sample similarity and recover the values of detected non-
biological zeros by leveraging information from K similar samples.
For most microbiome count data, the default K = 5 is sufficient,
but for larger sample sizes, users can opt for a larger K value.
Our method incorporates modifications to the weighted UniFrac
distance and cosine similarity in our method. The sample-to-
sample similarity calculated in our approaches incorporates fea-
ture weight based on the probability of non-biological zeros. This
enhances the accuracy of the sample-to-sample similarity cal-
culations and improves the recovery of non-biological zeros. It
is important to note that a limitation of both PhyImpute and
UniFracImpute arises when a phylogenetic tree is unavailable. In
such cases, we assume that all branches have the same length of
1, and UniFracImpute functions similarly to scDoc [7].

In the simulation and real data analysis, the PNB distribu-
tion is used to model the microbiome data with excess zeros,
as well as to estimate the probability of non-biological zeros.
Alternatively, the estimated probability of non-biological zeros
using the zero-inflated log-normal (ZILN) distribution, available
through the metagenomeSeq [38] package in R Bioconductor, can
also be used for this purpose. The performance comparison of
various methods is shown in Fig. S8 in the Supplementary file.
As demonstrated, metrics such as MSE and Pearson correlation
coefficients are similar for both the PNB and ZILN models and
both outperform other imputation methods. In practice, users can
explore different models, such as PNB and ZILN, to estimate the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae653#supplementary-data
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Figure 7. Enrichment analysis of differentially abundant features for three selected datasets, namely (a) NielsenHB (stool study), (b) TettAJ (skin study),
and (c) ShiB (oral study). The differentially abundant features are detected based on imputed data using PhyImpute and UniFracImpute, respectively.
The x-axis is the FDR value, and the vertical dashed line indicates the FDR level of 0.05.

probabilities of non-biological zeros and choose an appropriate
model for their data. Identifying the most appropriate and robust
model for microbiome data, however, remains a challenging and
ongoing area of research.

The proposed imputation methods are able to take the raw
read matrix as input and produce a count matrix with the same
dimensions as output. This output count matrix eliminates the
influence of many non-biological zeros and can be seamlessly
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integrated with downstream analyses, such as DA analysis and
classification. Through simulation studies, the proposed imputa-
tion methods have proven their effectiveness in recovering non-
biological zeros and have shown significant utility in the down-
stream analysis of microbial count data. The results obtained
from three synthetic microbial datasets and 16s rRNA simulation
data highlight that the proposed imputation methods consis-
tently outperform mbImpute and existing scRNA-seq imputa-
tion methods. They exhibit superior accuracy based on various
evaluation metrics, including MSE, Pearson correlation, the mean
and SD of each taxon, and Wasserstein distance. To evaluate the
performance of the imputation methods in DA analysis, we use
simulated 16s rRNA data with predefined DAFs and conducted
DA analysis using eight state-of-the-art methods. We assess the
precision, recall, F1-score, number of false positives, and number
of false negatives, and find that the proposed imputation meth-
ods, yield promising results across most DA methods. However, it’s
important to note that PhyImpute and UniFracImpute may not be
suitable for certain DA analysis methods, such as metagenome
and Omnibus, which employ zero-inflated models.

When comparing the computing time of our proposed meth-
ods, PhyImpute and UniFracImpute, to existing imputation meth-
ods, we observe that our approaches offer a balance between
accuracy and computational efficiency. Our methods run faster
than mbImpute, but much slower than scRNA-seq imputation
methods such as MAGIC and softImpute. Using synthetic data
(53 samples and 193 features) as an example, PhyImpute and
UnifracImpute take 28.92 minutes and 68.4 minutes, respectively.
In comparison, mbImpute takes 168.6 minutes, MAGIC and soft-
Impute only take less than 10 seconds, scDoc takes 2.73 minutes,
scImpute takes 7.1 minutes, and SAVER takes 16.47 minutes using
Apple M1 Pro, 16GB memory.

Furthermore, we apply the proposed approaches, combined
with the DA testing approach, to five real microbiome datasets,
which include samples from various anatomical locations, such
as the human gut, skin, and oral cavity. The results of this analysis
showcase that DAFs detected using imputed data with DESeq2
empower the accuracy for disease status classification. Impor-
tantly, the DAFs detected in the analysis are consistent with
previous biological findings regarding their association with the
respective disease.

In this study, we explored methods for imputing non-biological
zeros in microbiome data, addressing the challenges posed by
sparsity and zero-inflation. Both PhyImpute and UniFracImpute
have shown effective performance using the PNB model, and we
have provided an alternative approach using ZILN model. Moving
forward, longitudinal microbiome studies have become increas-
ingly popular to capture the temporal dynamics of microbial com-
munities. Our future research will focus on refining imputation
methods that are tailored specifically for longitudinal microbiome
data. This work will involve developing models that incorporate
temporal dependencies, allowing us to better estimate missing
values in a way that respects the natural progression of microbial
communities over time.

Key Points

• We developed two imputation methods, PhyImpute and
UniFracImpute, to deal with the excess zeros issue in
microbiome data.

• The methods have been consistently effective across
synthetic studies, 16S simulation studies, and real data
applications, demonstrating their robustness in recover-
ing non-biological zeros.

• PhyImpute and UniFracImpute significantly improve
downstream analyses, such as DA analysis and classifi-
cation tasks, making them valuable tools for microbiome
data processing.
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