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Abstract

Reusing massive collections of publicly available biomedical data can significantly impact knowledge discovery. However, these public
samples and studies are typically described using unstructured plain text, hindering the findability and further reuse of the data.
To combat this problem, we propose txt2onto 2.0, a general-purpose method based on natural language processing and machine
learning for annotating biomedical unstructured metadata to controlled vocabularies of diseases and tissues. Compared to the previous
version (txt2onto 1.0), which uses numerical embeddings as features, this new version uses words as features, resulting in improved
interpretability and performance, especially when few positive training instances are available. Txt2onto 2.0 uses embeddings from a
large language model during prediction to deal with unseen-yet-relevant words related to each disease and tissue term being predicted
from the input text, thereby explaining the basis of every annotation. We demonstrate the generalizability of txt2onto 2.0 by accurately
predicting disease annotations for studies from independent datasets, using proteomics and clinical trials as examples. Overall, our
approach can annotate biomedical text regardless of experimental types or sources. Code, data, and trained models are available at
https://github.com/krishnanlab/txt2onto2.0.
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Introduction
Currently, there are millions of public omics samples available
via resources like the Gene Expression Omnibus (GEO) [1],
the Sequence Read Archive (SRA) [2], Proteomics Identification
Database (PRIDE) [3], and MetaboLights [4]. In GEO alone, >7.1
million genomics samples from >224 thousand studies contribute
to a vast collection of data from various biological contexts. This
massive data collection can be incredibly valuable in revealing
novel insights into the molecular basis of numerous tissues,
phenotypes, diseases, and environments. However, although
these data are available, finding datasets and samples relevant
to a biological context of interest is still difficult because
these data are described using unstructured, unstandardized,
plain-text metadata, which is not easily machine-readable and
unambiguously searchable [5].

To tackle this issue, significant efforts have been made to
manually annotate datasets [6]. However, manual annotation is
not feasible for the exponentially-growing volume of datasets,
which now runs in the millions. To automate the annotation
process using the metadata, natural language processing (NLP)
have been employed to overcome these challenges. Rule-based
NLP methods annotate metadata using text-matching or regu-
lar expressions [7–9]; however, these methods are vulnerable to
misspellings or variations of a query term in the study or sample

descriptions, and cannot infer annotations based on biomedical
concepts in the text that are different from but relevant to a
query term.

The emergence of transformer architecture-based models has
revolutionized the application of NLP in the biomedical domain
[10, 11]. Utilizing the power of transformer models, previous meth-
ods have framed the annotation task as translation [12] or Q&A
[13]. For example, GeMI [12] uses a fine-tuned GPT-2 model to
annotate a wide array of term types related to a sample, including
species, sequence type, tissue, and cell type, where the ‘question’
is metadata, and the ‘answer’ is term types and corresponding
predicted terms. Further, to combat the black-box nature of trans-
former models, GeMI used the saliency map technique to high-
light prediction-related text. However, GPT-based models require
a restructuring of the input such that it follows a fixed template,
which guides the model in generating coherent and meaningful
responses. This constraint makes it difficult to adapt fine-tuned
models for annotating biomedical text from sources that do not
fit the template. Moreover, GeMI’s output labels are not assigned
to controlled vocabularies from ontologies, leading to lingering
ambiguity in the annotation terms, which in turn hinders data
discovery. Additionally, the GPT model is not lightweight enough
to efficiently predict samples at a large scale for millions of
metadata [14, 15].
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Traditional machine learning (ML)-based approaches have also
been used to extract information from metadata [6, 16]. For exam-
ple, Wang et al. [6] manually curated studies related to disease,
drug, and gene perturbations from GEO. Then, they converted
metadata into a term frequency-inverse document frequency
(TF-IDF) matrix that considers the relative frequency of indi-
vidual n-grams across all metadata documents. Combined with
curated labels, these data were used to train ML classifiers to
automatically extract signatures from GEO. However, since the
features of the TF-IDF matrix are text, trained models cannot
handle input text that includes unseen words, such as meta-
data from other databases, which limits the generalizability of
the model.

Furthermore, the advancement of biomedical Large Language
Models (LLMs) has allowed for the conversion of biomedical text
to numerical representations, also called embeddings, which can
effectively capture information in the text [17]. Leveraging this
technique, txt2onto [18] represented sample descriptions as the
average embeddings of words in metadata, then trained ML mod-
els to annotate tissue and cell types using these embeddings.
Theoretically, the txt2onto framework can be adopted to annotate
any kind of general biomedical text. However, one issue with the
txt2onto approach is that averaging the embeddings of all words in
a description can dampen the signal from informative biomedical
terms. Furthermore, the trained model coefficients of the embed-
ding features do not provide insight into which specific words in
the sample descriptions contributed to the model’s predictions,
limiting interpretability.

To tackle the challenges mentioned above, we present txt2onto
2.0, a novel and lightweight approach that assigns standardized
tissue, cell type, and disease annotations to unstructured sample-
and study-level metadata. Txt2onto 2.0 combines the power of
semantic relationships captured by LLMs (as in txt2onto 1.0 [18])
with the high interpretability offered by word-based modeling,
leading to significant improvements in performance while pro-
viding transparent, easily understandable predictions. In the fol-
lowing sections, we demonstrate that our ML framework not only
outperforms txt2onto 1.0 in sample-level tissue and study-level
disease annotation, especially for highly specific tissues and dis-
ease terms with limited training instances, but also highlights rel-
evant words in each metadata associated with the annotated tis-
sues and diseases. Moreover, our model can differentiate between
similar tissues and similar diseases, enhancing the specificity of
the annotations. Furthermore, we demonstrate that our disease
classification models, trained on descriptions of transcirptomics
studies from GEO, are proficient at infer disease annotations for
biomedical metadata from any source.

Methods
Overview of txt2onto 2.0 for disease and tissue
annotation
The primary goal of our work was to develop interpretable clas-
sifiers that annotate unstructured metadata of omics samples
or studies to controlled tissue, cell type, and disease terms from
ontologies. To increase the interpretability of our models com-
pared to the previous state-of-the-art method, txt2onto 1.0 [18],
txt2onto 2.0 introduces a key improvement: instead of using aver-
age word embeddings as features, it converts sample or study
metadata into a TF-IDF vector, which serves as input to the ML
classifier. During the prediction phase, this classifier accepts the
TF-IDF vector of each new unlabelled metadata as input and
leverages word embeddings from an LLM to map words in the

new metadata, including those unseen during training, to the
training feature space. With text as features, our approach uses
model coefficients to easily track the biomedical words/phrases
that strongly influencing model predictions (Fig. 1). A detailed
comparison of the key differences between txt2onto 1.0 and 2.0
is provided in Table S1.

Collecting and processing training data
We began by collecting unstructured metadata from GEO
to train the tissue and disease annotation classifiers. GEO
metadata can be divided into two groups: study-level descriptions,
which describe the study’s aim and design, and sample-
level descriptions, which detail the source and processing of
individual samples within studies. These two metadata groups
were qualitatively different in terms of the tissue and disease
information they contained. Sample descriptions invariably
contain information about the sample’s tissue-of-origin while
study descriptions often lack explicit tissue source information;
further, a single study may include samples from multiple tissues.
Hence, we decided to train the tissue classifiers at the sample-
level. On the other hand, study descriptions contained notes about
the disease being studied while sample descriptions mostly only
containing modifiers such as ’yes/no’ or ’wt/ctrl’ without any
mention of the disease. Therefore, we decided to train disease
classifiers at the study-level.

To create the input text for these classifiers, we identified
and extracted relevant fields from the original metadata. Some
choices were clear: fields like source name and description
contain information directly related to classification tasks while
fields such as dates and contact information are irrelevant. Other
fields like lab protocols and data processing methods were less
clear because they may contain potentially useful information.
We observed that the choice of which fields to include during
training indeed impacts classifier performance (Fig. S1). For
details about the fields used in the following analysis, see
Supplementary Methods, Preprocessing input. After extracting
the relevant fields from each metadata entry, we removed poten-
tially uninformative elements (e.g. punctuation, URLs), converted
the remaining words to lowercase, and concatenated the text
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might have even fewer positive instances in the training set (as
low as two instances), which is insufficient for hyperparameter
tuning. Our model has top performance even in these cases
(Fig. S5a and b).

Among models using different feature types, word-based mod-
els slightly outperform phrase-based models (Fig. 2). One reason
could be the high sparsity of phrase-based feature matrices com-
pared to word-based matrices because multi-word phrases occur
less frequently than individual words. Models based on clusters of
semantically-similar word and phrase features show a decrease
in performance for both tissue and disease classification (Fig. 2).
Consequently, we selected the LR model with word features as the
optimal approach for all subsequent analyses.

We also investigated the potential improvement of this
approach by combining predictions with MetaSRA (Supplementary
Methods, Combining txt2onto 2.0 and MetaSRA predictions).
Previously, we showed that combining txt2onto and MetaSRA
predictions leads to performance gains [18]. However, when
using our novel word feature-based approach, there’s minimal
performance improvement when combining tissue predictions
from both models (Fig. S6).

This choice was also confirmed by the comparison of the LR
model with an even simpler baseline model that makes pre-
dictions by greedily aggregating the occurrence individual fea-
tures one-by-one, weighted by each feature’s informativeness
(Supplementary Note 1). Although the performance of this base-
line method is comparable to LR, it is oversensitive to uninforma-
tive words (Figs S7 and S8) and cannot output probabilities.

Txt2onto 2.0 models learn features relevant to
tissue and disease classification tasks
One of the primary goals in this new version of txt2onto was to
develop interpretable models that capture words and phrases in
sample and study metadata that are most predictive of annota-
tions to specific ontology terms. To inspect the interpretability
of the models, we summarized predictive word features from
top-performing tissue and disease models as word clouds, where
the size of each is proportional to its regression coefficient. For
example, the keywords for Glucagon-secreting cells (CL:000170)
(Fig. 3a top) are ‘alpha’, ‘islets’, ‘pancreatic’, ‘developmental’,
‘fetal’, ‘adult’, ‘stage’, and ‘gestational’. These terms refer to
the endocrine function of the pancreas, with ‘alpha’ referring
to alpha cells that produce glucagon, a hormone that regulates
blood sugar levels. ‘Islets’ are the islets of Langerhans, clusters of
cells in the pancreas. The words ‘developmental’ and ‘gestational’
imply a context of fetal (early developmental) or adult stages
where these cells are involved. The informative words for Coronary
artery disorder (MONDO:0005010) (Fig. 3b top) include ‘coronary’,
‘artery’, ‘disease’, ‘stenosis’, ‘atherosclerosis’, ‘myocardial’, ‘CAD’,
‘heart’, ‘blood’, and ‘ventricular’. These words are clearly linked
to the cardiovascular system, specifically the arteries that supply
blood to the heart. Coronary artery disease (CAD) involves the
narrowing of the arteries due to atherosclerosis, potentially
leading to myocardial infarction or heart attacks. Similarly, the
appearance of key terms such as ‘MECP2’ for Rett syndrome
(Fig. 3b, middle), ‘merlin’ for Meningioma (Fig. 3b, bottom),
‘sickle’ for Erythrocyte (Fig. 3a, middle), and ‘bronchoalveolar’ for
Pulmonary acinus (Fig. 3a, bottom) demonstrate that our models
successfully identify relevant features from the metadata text
that significantly contribute to its the correct tissue and disease
annotation predictions.

Worthy of note is that, by leveraging their ability to capture
term-related words and phrases, our models are able to annotate

samples/studies even if the name of the tissue or disease term
is absent in the metadata. Pulmonary acinus (UBERON:0008874)
(Fig. 3a) is one among many good examples of terms to which
where metadata are correctly annotated solely via the words and
phrases associated with that term. To demonstrate this potential
across models for both tissue and disease classification tasks, for
each term, we compared the performance of our models before
and after removing every mention of that term’s name from the
metadata corpus. Results show that removing the ontology term
names leads to a negligible drop in performance, demonstrat-
ing our models’ robustness to missing information in metadata
(Fig. 3c).

Txt2onto 2.0 models accurately predict instances
related to specific tissues and diseases
To truly promote the discovery of existing data relevant to spe-
cific biomedical questions of interest, it is crucial that metadata
annotation is accurate for specific tissue and disease terms (e.g.
Rett syndrome) and not just general terms (e.g. Neurological disorder).
Therefore, we evaluated the effect of term specificity on txt2onto
2.0’s disease and tissue annotation performance. Using the struc-
ture of the appropriate ontology the tissue and disease term are
a part of, we defined each term’s specificity using its information
content (IC) of a term. Higher IC indicates specific terms closer
to the leaf nodes of the ontology while lower IC indicates general
terms closer to the root of the ontology. We included all disease
and tissue terms without redundancy filtering in the analysis to
help examine model performance across a wide range of term
specificities.

This analysis showed that there is a clear association between
tissue/disease term specificity (IC) and model performance
(Fig. 4). The smaller data points, representing terms with fewer
positive samples in the training set, tend to cluster towards the
higher end of the IC scale and the performance metric. When
cast in the context of the number of positive examples available
during training, these trends indicate that our models are capable
of accurately annotating to very specific terms in both the tissue
and disease ontologies even when the amount of training data
is limited. This trend persists across models trained on various
features, including phrases, word embeddings, phrase clusters,
and word clusters (Fig. S9). When we examined four tissue and
four disease outlier models which are outliers of this trend, i.e.
specific (high IC) terms having low performance (Supplementary
Note 2), we found that poor performance often resulted from
mislabeled samples or studies, suggesting that tasks with very few
positive instances in the training data are sensitive to mislabeling.

Txt2onto 2.0 models can differentiate between
similar tissues or diseases
Following the specificity analysis, we evaluated the ability of the
txt2onto 2.0 models to correctly differentiate between similar or
related diseases or tissues, such as distinguishing Crohn’s disease
from Ulcerative colitis, or Skeletal muscle from Smooth muscle. For this
evaluation, we defined the semantic similarity between pairs of
terms within an ontology as the cosine similarity between their
corresponding text embedding vectors calculated using BioMed-
BERT [29] (see Supplementary Methods, Differentiate similar
terms). Then, we split all term pairs based on the cosine similarity
into four equal-size quantile bins corresponding to term pairs
with increasing similarity. Finally, within each bin, we quantified
(using area under the receiver operating characteristic curve;
auROC) each term model’s ability to assign higher probabilities
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Table 1. Disease annotation performance for studies from PRIDE. This table displays the annotation performance of the top six disease
classification models, evaluated based on their top ten and bottom ten predictions. Each row corresponds to a disease term, and each
column represents a performance metric. The metrics included are as follows: Acc (Accuracy), calculated from unshuffled predictions;
log2(Acc/R Acc), the accuracy normalized by the random accuracy calculated from shuffled predictions, then log base 2 transformed;
and log2(F1/R F1), the F1 score normalized by the random F1 score calculated from shuffled predictions, then log base 2 transformed.

Term Acc F1 log2(Acc/R Acc) log2(F1/R F1)

Invasive ductal breast carcinoma (MONDO:0004953) 0.83 0.67 1.30 -0.76
Cytomegalovirus infection (MONDO:0005132) 1.00 1.00 1.18 1.24
Pancreatic ductal adenocarcinoma (MONDO:0005184) 0.87 0.83 0.15 0.22
Uveal melanoma (MONDO:0006486) 0.77 0.68 0.89 4.26
Head and neck squamous cell carcinoma (MONDO:0010150) 1.00 1.00 1.29 1.29
Covid-19 (MONDO:0100096) 1.00 1.00 1.29 1.29

Table 2. Disease annotation performance for studies from ClinicalTrials. This table presents the annotation performance of the top six
disease classification models, evaluated based on their top ten and bottom ten predictions. Each row corresponds to a disease term,
and each column represents a performance metric. The metrics included are as follows: Acc (Accuracy), calculated from unshuffled
predictions; log2(Acc/R Acc), the accuracy normalized by the random accuracy calculated from shuffled predictions, then log base 2
transformed; and log2(F1/R F1), the F1 score normalized by the random F1 score calculated from shuffled predictions, then log base 2
transformed.

Term Acc F1 log2(Acc/R Acc) log2(F1/R F1)

Atrial fibrillation (MONDO:0004981) 0.90 0.86 0.92 0.90
Urinary bladder carcinoma (MONDO:0004986) 0.70 0.57 0.91 0.97
Gastric adenocarcinoma (MONDO:0005036) 0.80 0.75 1.10 1.58
Periodontitis (MONDO:0005076) 0.77 0.68 0.70 4.35
Pulmonary hypertension (MONDO:0005149) 0.97 0.96 1.13 1.39
Allergic rhinitis (MONDO:0011786) 0.93 0.93 0.20 0.19

contributing to the prediction, providing a way to easily evaluate
and confirm the annotations.

Discussion and conclusion
Reusing existing biomedical data is paramount to advancing sci-
entific research and accelerating medical discoveries [31, 32].
However, the samples and studies stored in current vast biomed-
ical data repositories are often described using unstandardized,
unstructured, plain-text descriptions. This poor quality of meta-
data is a major hindrance for researchers in discovering the
datasets most relevant to their context or question of interest.
In this work, we propose txt2onto 2.0, a computational approach
that combines NLP techniques and ML to annotate any biomedical
descriptions to standardized tissue and disease ontology terms.
Thus, by providing a way to index public metadata for easy search
using controlled vocabularies, txt2onto 2.0 addresses the first goal
of the FAIR (Findable, Accessible, Interoperable, and Reusable)
principles [33].

Through systematic and rigorous evaluations, we have demon-
strated that our method outperforms the state-of-the-art method,
txt2onto 1.0 [18], in disease and tissue classification. Especially in
disease classification, our method markedly outperforms txt2onto
1.0, particularly when dealing with highly imbalanced cases. Dis-
ease classification poses greater challenges than tissue classifica-
tion for the previous version due to the longer study descriptions
used to infer diseases (Fig. S11). Long text inputs are not amenable
to txt2onto 1.0’s idea of representing metadata as the average
of the embeddings of all the constituent words, which dampens
the signal from informative words. Txt2onto 2.0 overcomes this
limitation by utilizing a TF-IDF feature matrix to represent text,
naturally avoiding the mixing of signals from predictive words
with the rest of the text. This strategy enables txt2onto 2.0 to

predict a wider range of tasks than txt2onto 1.0, allowing for
accurate predictions of understudied tissues and diseases.

In addition to inferring accurate tissue and disease annotations
of metadata, it is crucial to address interpretability and explain-
ability to increase trust in and verifiability of the annotation
results. By using word-level features combined with a large lan-
guage model, txt2onto 2.0 achieves both these desired qualities: (i)
Each tissue or disease term model is highly interpretable in terms
of the most informative text features learned during training,
and (i)ii) Each predicted annotation (of an input metadata to
a particular tissue or disease term) is explainable in terms of
the specific text snippets in the new metadata that drove the
prediction. As a contrast, using average word embeddings as
features makes in txt2onto 1.0 makes both interpretability and
explainability infeasible. Recent GPT-based models are promising
for extracting disease and tissue labels from unstructured text
due to their strong text comprehension powers. However, they
operate as ‘black boxes’. Efforts in explainable AI, such as GeMI’s
use of saliency maps to highlight words related to an annotation,
have been made to explore the reasoning behind such models
[13]. Nevertheless, these techniques have limitations, such as
providing only post-hoc explanations without deeper insights into
the model’s internal logic and lacking systematic evaluation of
interpretability. In the era of LLMs, we acknowledge that using bet-
ter models like GPT-4 and state-of-the-art explainable AI methods
could achieve better interpretability and explainability. However,
it is critical to continue exploring simple and elegant methods like
txt2onto 2.0 for building models with high annotation accuracy
and inherent transparency that are also lightweight and cost-
effective so that they can scale to exponentially growing number
of samples and studies across biomedical data repositories.

Extremely imbalanced data is a common challenge in
biomedical prediction studies [34]—an issue also present in ours
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is important to realize this generalizability without having to
(re-)training the underlying models based on curated metadata
labels from every database. The models also need to be versatile
in dealing with any generic biomedical metadata, regardless of
the varying format or writing style. Our method meets this need
by treating metadata as a bag-of-words, making it flexible enough
to accept input from any source. Further, by using the latent
embedding space that captures semantic similarities between
words, txt2onto 2.0 is able to utilize words in new metadata to
inform an annotation even if those words were never seen during
training (Fig. 6a).

Our study opens up numerous avenues for refinement
and exploration in the future. First, the informative keywords
identified by our method occasionally include generic words
because they are overrepresented among the few positive
instances (compared to negative instances) available during
training. For instance, words such as ‘sample’, ‘week’, and ‘cells’
are highlighted as predictive words for Glucagon secreting cell
(CL:0000170) (Fig. 3a) despite not being specifically related to
this cell type. This problem could be more prevalent in tissue
annotation (of samples) compared to disease annotation (of
studies), as the richer context in study summaries reduces the
likelihood of selecting spurious words, while the limited context in
sample descriptions makes the model more prone to latching on
to generic words. In future work, we may employ causal inference
techniques [38] or map extracted terms to biomedical knowledge
graphs and perform graph-based reasoning to remove irrelevant
words [39]. Second, we annotated disease labels at the study
level but did not attempt sample-level disease annotation, i.e.
annotating samples within a study as ‘healthy’ and ‘disease’. This
is because sample-level metadata in public databases is severely
lacking in completeness and quality (e.g. sample metadata lacking
any information about the disease being studied and containing,
if at all available, only indicators like ’yes’, ’wt’, or ’ctrl’). In
the future, sample-level disease annotation could be achieved
by employing additional computational models that integrate
information from samples across studies to train a single model
to classify between healthy and disease samples. Third, future
work can expand to other annotation categories beyond tissue
and disease such as sex, age, phenotype, or environment. Finally,
moving from one model per term towards a unified model for
annotating multiple terms via a shared representation learning
will likely lead to improve prediction performance across the
board, and especially for terms with few positive instances.

Overall, txt2onto 2.0 is a novel, light-weight, interpretable, and
explainable ML-based approach to annotate biomedical text from
various sources with standardized tissue and disease labels, even
when there are limited amounts of training instances. Biomedical
researchers will be able to use the labels predicted by our method
to drastically improve data organization and curation, and to
effectively reuse existing data to make potentially novel scientific
discoveries in downstream analyses. To ensure that our approach
can benefit the research community for data reuse, we released
txt2onto 2.0 on our GitHub repository. Users can either predict
disease or tissue labels using provided models or build their own
models from scratch.

Key Points

• We developed txt2onto 2.0, a computational method that
combines language models and machine learning to
annotate public samples and studies with standardized

tissue and disease terms, with a focus on interpretability
and explainability.

• Txt2onto 2.0 uses word/phrase occurrence statistics to
represent sample/study metadata, train machine learn-
ing models, and predict terms in controlled vocabular-
ies to annotate each sample and study. This approach
allows the model to keep track of predictive words
related to model decisions and easily separate informa-
tive from uninformative words.

• Txt2onto 2.0 outperforms its predecessor, txt2onto 1.0, in
tissue and disease annotation, especially when training
data are limited.

• The predictive features learned by txt2onto 2.0 are highly
interpretable. These features not only include explicit
mentions of the actual disease or tissue terms but also
related biomedical concepts, including words that are
unseen by the model during training.

• Although trained on metadata of transcriptomes,
txt2onto 2.0 is capable of annotating disease and tissue
for any kind of biomedical metadata, making it a
versatile tool for sample and study annotation.
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