
Received: July 22, 2024. Revised: November 3, 2024. Accepted: December 7, 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Briefings in Bioinformatics, 2025, 26(1), bbae666

https://doi.org/10.1093/bib/bbae666

Problem Solving Protocol

stHGC: a self-supervised graph representation learning
for spatial domain recognition with hybrid graph and
spatial regularization
Runqing Wang 1,2, Qiguo Dai 1,2,*, Xiaodong Duan1,2, Quan Zou 3,*

1College of Computer Science and Engineering, Dalian Minzu University, 116600 Dalian, China
2SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, 116600 Dalian, China
3Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611730 Chengdu, China

*Corresponding authors. Qiguo Dai, College of Computer Science and Engineering, SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University,
116600 Dalian, China, Email: daiqiguo@dlnu.edu.cn; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of
China, 611730 Chengdu, China, Email: zouquan@nclab.net

Abstract

Advancements in spatial transcriptomics (ST) technology have enabled the analysis of gene expression while preserving cellular spatial
information, greatly enhancing our understanding of cellular interactions within tissues. Accurate identification of spatial domains is
crucial for comprehending tissue organization. However, the effective integration of spatial location and gene expression still faces
significant challenges. To address this challenge, we propose a novel self-supervised graph representation learning framework named
stHGC for identifying spatial domains. Firstly, a hybrid neighbor graph is constructed by integrating different similarity metrics to
represent spatial proximity and high-dimensional gene expression features. Secondly, a self-supervised graph representation learning
framework is introduced to learn the representation of spots in ST data. Within this framework, the graph attention mechanism is
utilized to characterize relationships between adjacent spots, and the self-supervised method ensures distinct representations for non-
neighboring spots. Lastly, a spatial regularization constraint is employed to enable the model to retain the structural information of
spatial neighbors. Experimental results demonstrate that stHGC outperforms state-of-the-art methods in identifying spatial domains
across ST datasets with different resolutions. Furthermore, stHGC has been proven to be beneficial for downstream tasks such as
denoising and trajectory inference, showcasing its scalability in handling ST data.

Keywords: spatial transcriptomics; spatial domain identification; self-supervised graph representation learning; hybrid neighbor graph;
spatial regularization.

Introduction
Spatial transcriptomics (ST) technologies, such as 10x Visium
[1], Stereo-seq [2], and Slide-seqV2 [3], have revolutionized our
understanding of cellular interactions within tissues by enabling
the simultaneous analysis of gene expression and cellular spatial
information [4]. This advancement has greatly enhanced our abil-
ity to unravel the complex organizational functions of biological
systems [5]. The accurate identification of spatial domains, which
involves segmenting tissue regions based on distinct gene expres-
sion patterns and spatial locations [6], is crucial for exploring
biological tissue development, uncovering disease mechanisms,
and guiding drug developments [7–9].

A wide range of methods have been developed for spatial
domain identification, ranging from traditional clustering
algorithms to advanced deep learning techniques. Traditional
approaches, such as K-means and Louvain algorithms [10], often
overlook spatial information, while probabilistic models like
Giotto [11] and BayesSpace [12] incorporate spatial relationships
but may still be limited in their ability to capture the full
complexity of ST data.

More recently, deep learning methods, particularly those lever-
aging graph neural networks (GNNs), have shown promise in

integrating spatial locations with histological features to identify
spatial domains [13, 14]. Researchers have developed multiple
methods for spatial domain identification, such as stLearn [15],
SpaGCN [16], and DeepST [17]. These methods leverage GNNs
to integrate spatial locations with histological features, grouping
spots with similar gene expression patterns. However, the utility of
these methods is profoundly dependent on the quality of histolog-
ical imagery [18]. In contrast, utilizing only ST data offers a unique
advantage in capturing gene expression characteristics, as it is
unaffected by issues of image quality [19]. For instance, STAGATE
[20] uses a graph attention auto-encoder (GATE) to integrate spa-
tial information with gene expression data. This method learns
complex latent representations of cells and identifies diverse
spatial domains, thereby achieving better spatial domain identi-
fication. On the other hand, SEDR [19] gains deeper insights into
cellular interactions and tissue organization by integrating similar
features and combining a deep autoencoder with masked self-
supervised learning. Additionally, GraphST [21] integrates graph
convolutional networks with contrastive learning to learn embed-
ding representations. By utilizing graph structures and traversal
strategies, it concurrently elucidates interactions between local
spots and highlights the structural characteristics of the entire
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sample. This approach optimizes the identification of spatial
domains. However, despite significant progress in the field of
spatial domain identification in recent years, several challenging
problems remain. Firstly, the construction of neighbor graphs is
crucial but often relies on a single similarity measure, making
graphs sensitive to noise and outliers. Secondly, GNN-based meth-
ods can overly focus on local neighbor information, neglecting
broader global relationships and leading to oversmoothing issues.
Thirdly, when handling high-dimensional ST data, the model may
overfit certain patterns such as local and rare gene expression
patterns, leading to insufficient generalization ability.

To address these challenges, we propose a novel self-supervised
graph representation learning framework based on a hybrid
neighbor graph and spatial regularization, named stHGC. Firstly,
a hybrid neighbor graph is constructed using multiple similarity
metrics, including Euclidean distance and cosine similarity. This
hybrid neighbor graph approach alleviates reliance on a single
measure and reduces the impact of noise and outliers. Secondly, a
graph attention auto-encoder (GATE) grounded in self-supervised
contrastive learning is introduced. Within the framework, the
attention mechanism captures relationships between spots in ST
data, while self-supervised contrastive learning maintains the
similarity of features between neighboring spots and preserves
differentiation between distant spots, effectively mitigating
the issue of oversmoothing. Finally, we introduce a spatial
regularization constraint based on comparing neighboring and
non-neighboring spots, enabling the model to better understand
the continuity of spatial information and reducing the risk of
overfitting. The proposed stHGC approach has been validated
on multiple ST datasets from different species and spatial
resolution platforms, yielding reliable outcomes in spatial domain
identification. Furthermore, it has demonstrated its capabilities
in downstream tasks, such as denoising and trajectory inference.

Materials and methods
The overview of the stHGC
In this section, the stHGC method for identifying spatial domains
from ST data is explained in detail, with its overall framework
illustrated in Fig. 1. Firstly, a neighbor graph is constructed
using hybrid similarity measures to reduce the reliance on
a single similarity metric. Secondly, the self-supervised graph
representation learning framework is proposed. stHGC employs
an attention mechanism to adaptively adjust the connection
weights between spots and utilizing self-supervised contrastive
learning to compare the features of different spots. Thirdly, spatial
regularization constraint is introduced to maintain the spatial
continuity and differentiation in the representation process
by making the embeddings of neighboring spots more similar
and those of non-neighboring spots more distinct. Finally, a
clustering algorithm is employed to group spots with similar
latent representations, with each group considered a spatial
domain.

Hybrid neighbor graph construction
In ST data, the relationship between spots is related not only to
spatial distance but also to gene expression at each spot [18].
Different spots may be spatially proximal but exhibit completely
different gene expression patterns. To comprehensively represent
the relationships between spots, we propose constructing a hybrid
neighbor graph using both of similarity measures to capture
both spatial proximity and similarity in high-dimensional feature
space among spots. It is designed to deliver a more comprehensive

description of the relationships between spots in ST data. Prior
to constructing the hybrid neighbor graph, data preprocessing is
essential. Initially, the top M highly variable genes are selected
(in this study, M was set to 3000). Subsequently, the retained gene
expression data are normalized to ensure comparability across
different spots. Lastly, a logarithmic transformation is applied
to further diminish the disparities between gene expression
values.

Let X = {x1, x2, x3, ..., xN} ∈ R
N×M be the gene expression

matrix, where N denotes the total number of spots, and xi rep-
resents the gene expression feature of the ith spot. Let C =
{(a1, b1), (a2, b2), ..., (aN, bN)} ∈ R

N×2 be the coordinates of spots,
where (ai, bi) is the coordinate of the ith spot.

Construct the hybrid neighbor graph as follows:

(1) All spots with Euclidean distances within the pre-defined
radius d are considered neighbors in the subsequent calcu-
lation of the adjacency matrix.

(2) The spatial proximity between spots i and j is determined by
calculating the Euclidean distance within a similarity matrix
that utilizes the Gaussian kernel function:

ESij = exp

(
−‖Ci − Cj‖2

2η2

)
(1)

where Ci and Cj are the coordinates of spots i and j, respec-
tively, and η is the standard deviation of the Gaussian kernel.

(3) When dealing with high-dimensional data such as gene
expression, Euclidean distance may be sensitive to small
changes in spatial position [22]. In contrast, cosine similarity
can capture similarities in gene expression patterns and
is not influenced by feature dimensions and scales [18].
Therefore, cosine similarity is used to calculate the similarity
between spot pairs:

CSij = xi · xj

‖xi‖‖xj‖ (2)

where xi and xj are the gene expression vectors of spots i and
j, respectively.

(4) A weighted approach is employed to construct the spatial
adjacency matrix Sh:

Shij = αESij + βCSij (3)

where α and β are the weights of the two adjacency matrices,
respectively. In Sh, neighbors are considered if the similarity
between two spots is greater than 0. This ensures that only
neighbors with significant spatial and gene expression asso-
ciations are preserved.

(5) The neighbor relationships are constructed into a hybrid
neighbor graph G = (Sh, X), which takes into account both
spatial distance and gene expression features. This hybrid
neighbor graph not only considers the spatial adjacency
between spots but also takes into account the similarity
of their gene expression features, thus more effectively
capturing the complex relationships between spots in
ST data.

Self-supervised graph representation learning
framework
We propose self-supervised graph representation learning frame-
work for learning the representations of hybrid neighbor graphs.
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Self-supervised contrastive learning
To enhance the discriminative capacity of the representations,
we adopted a self-supervised contrastive learning strategy. In
this process, data augmentation is a critical step. First, in the
gene expression data, positive spots are constructed based on the
hybrid neighbor graph G = (Sh, X). Second, to generate negative
spots that offer a different view from the positive spots, we con-
struct them by randomly shuffling the rows of the gene expres-
sion matrix X (i.e. shuffling the spots), resulting in X′. Finally, a
negative sample hybrid neighbor graph G′ = (S′

h, X′) is constructed,
where X′ and G′ denote the shuffled gene expression matrix and
the negative sample hybrid neighbor graph, respectively.

In ST data, the gene expression of individual spots within the
same tissue slice typically is related to the global characteristics of
that tissue slice [24]. This inherent coherence acts as a supervising
signal, which can be utilized to guide the learning process of spot
embeddings.

Specifically, inspired by the DGI [25] a graph-level summary
representation is generated through the readout function R :
R

N×M → R
M, which is denoted as r = R(U). Here, U is used to

represent the embeddings of spots, and r is the global graph-
level summary. Then, the discriminator D employs a bilinear layer
to assess the similarity between positive and negative samples
in relation to the global summary representation of the graph.
Finally, a binary cross-entropy loss function as follows:

Lgcl = − 1
2N

(
N∑

i=1

(
E(X,U) [log D(U, r)] + E(X′ ,U′)

[
log

(
1 − D(U′, r)

)]))

(8)

where U′ represents the embeddings of the corresponding spots
in the negative sample graph G′.

Spatial regularization
A spatial regularization constraint is introduced to better utilize
spatial information, which aids in the reduction of overfitting
risks. This method enhances data representation by considering
the spatial proximity between spots, thereby improving the under-
standing of spatial patterns in ST data.

Specifically, a loss function for spatial regularization constraint
is defined to measure the similarity of expression features
between spatially neighboring and non-neighboring spots as
follows:

Lsr = −
N∑

i=1

⎛
⎝∑

j∈Ni

log
(
ψ

(
Hij

)) +
∑
o/∈Ni

log
(
1 − ψ

(
H′

io

))⎞⎠ (9)

where ψ represents the activation function, Hij represents the
cosine similarity between spot i and its neighboring spot j, H′

io

represents the cosine similarity between spot i and its non-
neighboring spot o, and Ni is the set of neighboring spots for
spot i.

Model optimization
In the training process of stHGC, the aforementioned three types
of loss functions, namely Lrec, Lgcl, and Lsr, are jointly optimized.
This joint optimization serves as the final training objective as
follows:

L = λLrec + μLgcl + γ Lsr (10)

where λ, μ, and γ are the weights of different loss functions, and
are determined by experimental tuning.

The stHGC embeddings U are utilized to identify spatial
domains. Spots are clustered into different clusters using the
mclust [26] method, with each identified cluster representing a
spatial domain.

Results
Datasets
To assess the performance of the stHGC model, we employed
a diverse set of ST datasets that are generated from several
platforms with different resolutions. Specifically, as depicted
in Table 1, these datasets included one centered on the human
dorsolateral prefrontal cortex (DLPFC) dataset, produced using
10x Visium technology and comprising 12 slices [6]; the mouse
olfactory bulb dataset obtained via Stereo-seq [19]; another
mouse olfactory bulb dataset acquired by Slide-seqV2 [27]; and
datasets of human breast cancer and bronchiolar adenoma
obtained through the 10x Visium platform [2]. These datasets,
characterized by their intricate compositional nature, have been
widely employed in research endeavors across diverse scientific
teams [21, 24, 28], serving as a stringent benchmark to gauge the
efficacy of stHGC.

Evaluation metrics
The Adjusted Rand Index (ARI) [29] and Normalized Mutual Infor-
mation (NMI) [30] are utilized in this work as evaluation metrics.
These metrics are derived by contrasting the clustered labels pro-
duced by the tested method against the true labels of each sample,
evaluating their agreement to quantify the similarity between
the two sets of labels. The ARI, a chance-adjusted Rand index,
provides a more reliable measure of clustering accuracy, ranging
from -1 to 1, with higher values signifying better clustering perfor-
mance. NMI is based on mutual information, which quantifies the
shared information between two data distributions, effectively
evaluating both overlapping and non-overlapping clustering. The
range of NMI values is 0 to 1, with higher values reflecting better
clustering outcomes.

For datasets with unknown true labels, we use the Davies–
Bouldin Index (DB) [31] and Cophenetic Correlation Coefficient
(CCC) [32] to evaluate clustering performance. DB assesses the
compactness and separation of clusters by measuring the simi-
larity ratio between each cluster and its most similar counterpart.
Lower DB values indicate that spots within clusters are more
tightly grouped, while the separation between different clusters
is higher. CCC reflects the stability and validity of the clustering,
with values ranging from 0 to 1. A higher CCC value indicates that
the clustering results better preserve the original structure of the
samples, suggesting that the model captures the data structure
more accurately. The Jaccard index [33] is used to measure the
overlap between the expression of marker genes in a specific
domain and the overall gene expression within that domain. A
higher Jaccard index indicates a greater overlap, implying better
clustering performance.

Together, these metrics offer diverse viewpoints on clustering
performance, providing a more comprehensive evaluation of the
clustering results.

stHGC improves the performance of identifying
known layers on the DLPFC dataset
The performance of the proposed method for identifying spa-
tial domains in twelve slices of the DLPFC [6] was validated.
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Table 1. Statistical information on all datasets used in the study

Datasets Organisms Slices Spots Genes Domains Platforms

DLPFC Human 12 3460–3789 33 538 5–7 10x Visium
Olfactory bulb Mouse 1 19 109 14 376 7 Stereo-seq
Olfactory bulb Mouse 1 20 139 18 675 9 Slide-seqV2
Breast cancer Human 1 3798 36 601 20 10x Visium
Bronchiolar adenoma Human 1 4002 36 601 4 10x Visium

The DLPFC datasets were manually annotated with authentic
labels, including DLPFC layers (4-6 layers) and white matter (WM)
[6]. Seven existing methods were compared, including one non-
spatial method (implemented via SCANPY [34]), three methods
based on ST data (STAGATE [20], GraphST [21], SEDR [19]), and
three methods incorporating image features (stLearn [15], DeepST
[17], conST [35]). All methods were run with their default param-
eters on the same dataset.

As shown in 2, the stHGC method effectively recognized each
layer domain on the twelve DLPFC slices, outperforming other
methods. For example, in sample 151672, the distribution of all
layers was effectively detected by stHGC, achieving high clustering
accuracy (ARI=0.77, NMI=0.75) ( Fig. 2A). The analysis revealed
that, with the exception of the SCANPY approach, all other meth-
ods identified a five-layer structure, but some aspects still showed
deficiencies. The stLearn and conST methods exhibited discontin-
uous cluster boundaries. DeepST also showed insufficient clus-
tering accuracy, with unclear layer boundaries. SEDR, GraphST,
and STAGATE incorrectly clustered layer_3 into two parts and
unable to effectively cluster layer_4. These experimental results
demonstrate that stHGC identifies spatial domains in ST data
more clearly and highlight the necessity of utilizing spatial infor-
mation.

Figure 2(B) showed the box plot distribution of ARI and NMI val-
ues across the 12 slices, demonstrating the effectiveness of these
methods on the DLPFC dataset. Clearly, the stHGC method exhib-
ited excellent performance in terms of mean evaluation results
(ARI=0.57, NMI=0.67), indicating that the model’s performance
was more centralized across the 12 slices, with less influence from
outliers. The ARI values for SCANPY and stLearn were generally
low. The evaluation results for conST, DeepST, STAGATE, and SEDR
were widely distributed. While GraphST’s evaluation results were
relatively stable, stHGC showed slightly better consistency.

Combining gene expression with spatial information enabled
the stHGC method to achieve gene expression embedding and
spatial trajectory inference (Fig. 2C), which could explore whether
the development of individual cortical layers was organized
[36]. For example, in Fig. 2(C), the UMAP [37] plot generated by
stHGC showed well-organized cortical layers. Additionally, the
trajectory inference generated by the stHGC method using the
PAGA [38] technique depicted a linear trajectory from layer_3 to
the WM region. In contrast, the trajectory inferences of SEDR
and DeepST were not linear. The inferred trajectory of GraphST
was linear; however, the separation of spots from different layers
in the UMAP plot was not distinct. Although STAGATE exhibited
clearer separation between different layers in the UMAP plot,
stHGC also demonstrated the ability to depict a linear trajectory
similar to that of STAGATE in trajectory inference. These results
validated that stHGC improved spatial domain identification
performance across multiple consecutive DLPFC datasets while
contributing to the preservation of their underlying biological
features.

These results validated that stHGC improved spatial domain
identification performance across multiple consecutive DLPFC
datasets while contributing to the preservation of their underlying
biological features.

Spatial domain identification across different
spatial resolution platforms using stHGC
In this subsection, we evaluated the performance of the stHGC
method on mouse olfactory bulb datasets generated by Stereo-
seq [39] and Slide-seqV2 [40]. For comparative analysis, four addi-
tional methods were selected, including three spatial clustering
approaches—SEDR, GraphST, and STAGATE—as well as a non-
spatial clustering approach implemented by SCANPY.

The Stereo-seq platform, which utilized DNB chips and in
situ RNA capture technology, offered wide-field nanoscale reso-
lution for spatiotemporal omics [39]. The DAPI-stained images
annotated the coronal mouse olfactory bulb’s layered structure:
the olfactory nerve layer (ONL), the rostral migratory stream
(RMS), the external plexiform layer (EPL), the internal plexiform
layer (IPL), the glomerular layer (GL), the mitral cell layer (MCL),
and the granule cell layer (GCL). While the DB score for stHGC
(DB=3.6) was lower compared to STAGATE (DB=2.0), it demon-
strated better performance in the CCC metric (CCC=0.59) (Fig. 3C).
This was further validated by comparing the known marker gene
expression patterns[41] with the visualizations of each spatial
domain from stHGC and four other methods (SEDR, GraphST,
STAGATE, and SCANPY) (Fig. 3E, Supplementary Figure 5). stHGC
delineated the clustering boundaries of each domain more dis-
tinctly, especially for the GL, GCL, and EPL domains. SEDR incor-
rectly identified the MCL domain when detecting the RMS domain.
GraphST did not consistently identify the MCL domain, while STA-
GATE failed to clearly define the boundary between the GCL and
RMS domains. The non-spatial clustering method implemented
by SCANPY failed to identify the GL and EPL domains. From
Supplementary Table 1, STAGATE achieved the highest Jaccard
index in the RMS and ONL domains (0.11, 0.34), while stHGC
outperformed other methods in the MCL, GL, and EPL domains
(0.22, 0.19, 0.14). This indicates a notable competitive advantage
of stHGC in spatial domain identification.

Additionally, stHGC was applied to the Slide-seqV2 [40] profiled
mouse olfactory bulb ST dataset, which featured a 10 μm spatial
resolution. In addition to the spatial domains included in the
Stereo-seq platform dataset, the dataset generated by Slide-
seqV2 also contained two specific spatial structures, namely
the accessory olfactory bulb (AOB) and the granular layer of
the accessory olfactory bulb (AOBgr), which might be due to
differences in sampling locations [28]. Fxyd6 and Atp2b4 were
respectively used to validate AOB and AOBgr [28]. By comparing
with the mouse olfactory bulb atlas from the Allen Mouse Brain
Atlas (Fig. 3B) [42], it was found that stHGC not only clustered the
same six spatial domains as those identified in the Stereo-seq

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae666#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae666#supplementary-data
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Figure 2. Comparison of spatial domain identification results between stHGC and seven other methods on the human DLPFC dataset. (A) Clustering
results of this work’s method with seven other methods (SEDR, GraphST, STAGATE, DeepST, conST, stLearn, SCANPY) on 151 672 slices. Along with
manually annotated real clustering results. (B) Distribution of ARI and NMI values for 12 slices of DLPFC on stHGC and other methods. (C) Results of
UMAP and PAGA plots generated by the five methods, stHGC, SEDR, GraphST, STAGATE, and DeepST.

platform dataset but also effectively identified specific regions
(AOB and AOBgr) in the Slide-seqV2 platform dataset. Fig. 3(D)
shows a comparison between stHGC and four other methods:
both stHGC and STAGATE clearly identify the MCL domain,
but stHGC delineates the boundaries between different spatial
domains more distinctly. The non-spatial clustering method
SCANPY shows unclear boundaries between adjacent domains.
GraphST incorrectly clusters the MCL, EPL, and GL as a single
spatial domain. SEDR fails to identify the AOBgr domain. As
shown in Fig. 3(D), stHGC (DB=2.3) displayed a slightly inferior
performance in the DB metric compared to STAGATE (DB=1.7)
and GraphST (DB=2.1). However, it outperformed all other tested
methods in the CCC metric (CCC=0.63). This demonstrates
that stHGC has competitive performance in distinguishing
between different spatial domains. Similarly, on this dataset,

the effectiveness of these five methods in identifying spatial
domains was further validated by comparing the visualization
results of each spatial domain with its corresponding known
marker gene expression patterns (Fig. 3(E), Supplementary Figure
6). From Supplementary Table 2, it can be seen that stHGC
outperforms other methods in terms of Jaccard index in the
MCL, EPL, AOB, and AOBgr (0.09, 0.08, 0.13, 0.12). STAGATE
achieved excellent indices in the GCL and AOB domains (0.44,
0.13). Although other methods achieved good metrics in certain
spatial domains, there are still some spatial domains that remain
unidentified.

In general, the testing results indicated that stHGC effectively
mitigated overfitting issues, enhanced the model’s generalization
ability, and improved the identification of spatial domains in ST
data across different spatial resolutions.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae666#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae666#supplementary-data
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Figure 3. Application of the stHGC method to mouse olfactory bulb tissues on the Stereo-seq and Slide-seqV2 platforms. (A) Annotated map of the
laminar organization of the mouse olfactory bulb on DAPI-stained images. (B) Images of the mouse olfactory bulb from the Allen Mouse Brain Atlas.
(C) Spatial domain clustering results of mouse olfactory bulb datasets on the Stereo-seq platform obtained by applying five methods: stHGC, SEDR,
GraphST, STAGATE, and SCANPY. (D) Spatial domain clustering results of mouse olfactory bulb datasets on the Slide-seq platform obtained by applying
the same five methods. (E) stHGC identifies the spatial domains and corresponding marker genes in the slices from both platforms (Stereo-seq and
Slide-seqV2). NA indicates unrecognized spatial domains.

Performance of the stHGC method in identifying
spatially heterogeneous structures in human
cancer tissue
Due to the complexity of the microstructure of cancer tissues, we
applied stHGC and four other methods to cancer tissue datasets to
further validate their performance in identifying heterogeneous
spatial structures in cancer tissues. We selected the human
breast cancer (HBC) tissue dataset [43] and the human bronchial
adenoma (BA) tissue dataset [24], which were generated by the
10x Visium platform, The HBC dataset is annotated to include
normal healthy tissue (Healthy), invasive ductal carcinoma (IDC),
ductal carcinoma in situ/lobular carcinoma in situ (DCIS/LCIS), and
peri-tumor regions with fewer malignant features [43] (Fig. 4A).
As shown in Fig. 4(B), stHGC is more consistent with manual
annotations in spatial domain identification and can more
effectively and smoothly label multiple specific tumor regions
compared to the other four methods (SEDR, GraphST, STAGATE,

SCANPY). SCANPY and STAGATE fail to continuously identify
IDC and Tumor_edge domains, leading to confusion between
identified domains and blurred boundaries of neighboring
clusters. SEDR and GraphST can identify spatial domains more
continuously, but their identification of the IDC domain shows
significant discrepancies compared to manual annotations. The
bar charts of ARI and NMI evaluation values reveal that stHGC
achieved the highest values for both results (ARI=0.59, NMI=0.67)
(Fig. 4C).

Bronchial adenoma (BA) is an infrequent lung tumor typically
arising in the bronchial epithelium, with ST analysis of these
tumors being rarely conducted [44]. The BA dataset includes
different regions [24], such as Tumor, Normal, Bronchus, and
Blood vessel (Fig. 4D). As shown in Fig. 4(E), the stHGC method
outperforms other methods in recognizing spatial domains, espe-
cially in the Tumor and Normal domains. SCANPY incorrectly
identified 10 domains, while SEDR was unable to identify the
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Figure 4. Spatial domain identification by applying stHGC to two cancer datasets (HBC and BA). (A) Manually annotated human breast cancer (HBC)
dataset. (B) Spatial domain identification results of the HBC dataset using five methods (stHGC, SEDR, GraphST, STAGATE, SCANPY). (C) Histograms of
ARI and NMI assessment values for the HBC dataset obtained by applying the five methods. (D) Manually annotated fine BA dataset. (E) Spatial domain
identification results of the BA dataset using five methods (stHGC, SEDR, GraphST, STAGATE, SCANPY). (F) Histograms of ARI and NMI assessment values
for the BA dataset obtained by applying the five methods.

Normal domain continuously. GraphST and STAGATE were unable
to identify continuous tumor domains. Figure 4(F) presents the
qualitative and quantitative analyses of these four methods on
the BA dataset.

The analysis results in this section indicate that utilizing stHGC
to analyze ST data from different cancer datasets can uncover
regional gene expression variations in cancer tissues, offering
deeper insights into the spatial heterogeneity of tumors.

Validation of stHGC for denoising of gene
expression
Spatial transcriptome data are often noisy, and some data may
dropout during the profiling process, potentially affecting the
accuracy of gene expression analysis [18].

stHGC was validated on DLPFC’s 151673 slices to reveal the
spatial expression patterns of genes, demonstrating efficient
denoising capabilities in this task (Fig. 5A). Six layer-marker genes
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Figure 5. stHGC was utilized to remove noise and enhance the expression of layer-marked genes in DLPFC sections. (A) The raw expression of six layer-
marker genes on section 151673 from the DLPFC dataset (upper) and the visualization of gene expression after denoising using the stHGC method
(lower). (B) Violin plot of the raw expression of layer-marker genes. (C) Violin plot of gene expression after denoising.

(ATP2B4, RASGRF2, LAMP5, NEFH, RXFP1, and B3GALT2) [45] were
selected to compare their expression levels in the original dataset
with those in the datasets denoised by stHGC and three other
methods (SEDR, GraphST, and STAGATE) (Fig. 5, Supplementary
Figure 7). Specifically, Fig. 5(A) and Supplementary Figure 7
illustrate the spatial expression of layer-marker genes after
data enhancement. In the original data, genes like LAMP5 and
RXFP1 exhibit sparse expression patterns, making it challenging
to discern a clear pattern (Fig. 5A). stHGC and the other three
methods showed good performance in denoising and enhancing
gene expression (Supplementary Figure 7A). However, SEDR’s
performance on genes like RXFP1 and B3GALT2 showed blurred
boundaries in the WM and layer_6. Compared to GraphST, stHGC
and STAGATE retained a smoother expression distribution while
preserving the gene expression pattern structure. For NEFH,
stHGC demonstrates clearer spatial boundaries between the
white matter (WM) and layer_6 compared to STAGATE.

Additionally, violin plots were used to compare the raw and
estimated expression data from the four aforementioned meth-
ods (Fig. 5B, Supplementary Figure 7B). This allows for observ-
ing the distribution shape of each gene in different groups, and
to determine whether the grouping differences are significant
and whether the distribution is reasonable. In the figure, stHGC
and STAGATE showed clearer differences in gene expression,
with more distinct groupings, while the original data distribution
appeared more scattered. In comparison, GraphST and SEDR
seemed to be slightly less effective than stHGC in reflecting
differences in distribution. For example, NEFH expression showed
no significant difference between layer_5 and layer_6 in GraphST

results, and ATP2B4 did not exhibit clear differences in distribu-
tion in SEDR’s enhancement results.

These results indicated that the gene expression data recon-
structed by the stHGC method reduced noise interference, allow-
ing clearer observation of the expression patterns of layer-marker
genes across domains. This enhanced our understanding of subtle
gene expression differences across different regions of the brain.

Ablation study
The previous section demonstrated the reliable performance of
the stHGC method compared to other methods. In this subsection,
we conducted ablation experiments and designed four stHGC
variants. The first two variants used only Euclidean distance to
construct the neighbor graph (stHGC w/o CS) and only cosine
similarity to construct the neighbor graph (stHGC w/o ES), respec-
tively. The third variant did not use self-supervised contrastive
learning (stHGC w/o cl), and the fourth variant did not use spatial
regularization (stHGC w/o reg). These variants were used to assess
the impact of each component on the overall model performance.
Figure 6 clearly showed the distribution of ARI and NMI values for
the four variants and the stHGC method across 12 DLPFC slices
and the HBC slice.

As shown in Fig. 6(A, B), on the DLPFC dataset, the ARI
and NMI values for the four variants—stHGC w/o CS (mean:
ARI=0.54, NMI=0.65), stHGC w/o ES (mean: ARI=0.54, NMI=0.63),
stHGC w/o cl (mean: ARI=0.53, NMI=0.65), and stHGC w/o reg
(mean: ARI=0.52, NMI=0.64)—were all inferior to those of stHGC
(mean: ARI=0.57, NMI=0.67). This corroborates the significance
of employing hybrid neighbor graph, self-supervised contrastive

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae666#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae666#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae666#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae666#supplementary-data
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Figure 6. stHGC and its four variants were applied to the DLPFC and
HBC datasets. (A) NMI evaluation metric for the DLPFC dataset. (B) ARI
evaluation metric for the DLPFC dataset. (C) ARI and NMI evaluation
metrics for the HBC dataset.

learning, and spatial regularization in discerning datasets with
relatively few spatial domains. Figure 6(C) demonstrates that for
the HBC dataset, which has a large number of spatial domains,
both stHGC w/o cl (ARI=0.50, NMI=0.66) and stHGC w/o reg
(ARI=0.56, NMI=0.66) underperform relative to stHGC(ARI=0.59,
NMI=0.67), underscoring the efficacy of self-supervised con-
trastive learning and spatial regularization in identifying multiple
spatial domains. However, the variants stHGC w/o CS (ARI=0.59,
NMI=0.67) and stHGC w/o ES (ARI=0.59, NMI=0.67) show no
significant difference in performance compared to stHGC
(ARI=0.59, NMI=0.67) on the HBC dataset. This might have been
due to the higher complexity of neighborhood relationships in
the HBC dataset, which obscured or smoothed between similarity
measures.

Through these ablation experiments, it could be seen that
each module in the stHGC method had its own importance. The
integration of self-supervised contrastive learning and spatial
regularization in stHGC facilitated more effective clustering of
spatial domains and enhanced the overall model performance. At
the same time, the hybrid neighbor graph played an important
role in handling cases with fewer spatial domains, but further

exploration was needed for datasets with complex microenviron-
ments.

Discussion and conclusion
Accurately identifying spatial domains was essential for under-
standing tissue structures and biological functions in microenvi-
ronments. To this end, we proposed a self-supervised graph repre-
sentation learning framework for spatial domain recognition with
a hybrid neighbor graph and spatial regularization (stHGC). stHGC
optimized ST data processing and analysis in several ways. Firstly,
it constructed a hybrid neighbor graph by considering different
similarity measures to thoroughly analyze spatial relationships
from multiple perspectives. Secondly, during embedding, the self-
supervised graph representation learning framework adaptively
adjusted weights, reducing noise and irrelevant information. Con-
trastive learning further uncovered potential spatial patterns and
relationships by comparing similarities between different spots.
Finally, the spatial regularization constraint introduced losses
for neighbors and non-neighbors, effectively reflecting spatial
adjacency relationships during representation learning and opti-
mizing the learned representations. This method was tested on
five ST datasets from different spatial resolution platforms. The
results showed that the spatial domains identified by stHGC were
more consistent with manually annotated real spots and could
extend to downstream tasks.

Despite its advantages, the stHGC’s computational complexity
and resource intensity pose challenges for larger and higher-
resolution datasets. The rapid advancement of ST technology
offers unlimited prospects for finer measurements and richer
datasets. Future optimizations may include using parallel pro-
cessing and small-batch processing to tackle resource issues.
Additionally, we are exploring multi-slice mapping to improve ST
data analysis due to the significant connections between consec-
utive slices.

Key Points

• stHGC is a novel self-supervised graph representation
learning framework that accurately identifies spatial
domains, and effectively performs downstream tasks
such as UMAP visualization, trajectory inference, and
denoising.

• stHGC employs a hybrid neighbor graph approach with
different similarity measures, facilitating a comprehen-
sive analysis of spatial relationships from multiple per-
spectives.

• A spatial regularization constraint is implemented to
enhance the distinction between neighboring and non-
neighboring spots, ensuring continuity in spatial rela-
tionship representations.

• Experiments demonstrate that stHGC outperforms other
state-of-the-art methods in the spatial domain identi-
fication tasks on ST datasets across different spatial
resolutions and species.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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