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Abstract

Motivation: Spatial transcriptomics (ST) technologies have revolutionized our ability to map gene expression patterns within native
tissue context, providing unprecedented insights into tissue architecture and cellular heterogeneity. However, accurately deconvolving
cell-type compositions from ST spots remains challenging due to the sparse and averaged nature of ST data, which is essential for
accurately depicting tissue architecture. While numerous computational methods have been developed for cell-type deconvolution and
spatial distribution reconstruction, most fail to capture tissue complexity at the single-cell level, thereby limiting their applicability in
practical scenarios. Results: To this end, we propose a novel cycle-consistent generative adversarial network named STCGAN for cellular
deconvolution in spatial transcriptomic. STCGAN first employs a cycle-consistent generative adversarial network (CGAN) to pre-train on
ST data, ensuring that both the mapping from ST data to latent space and its reverse mapping are consistent, capturing complex spatial
gene expression patterns and learning robust latent representations. Based on the learned representation, STCGAN then optimizes a
trainable cell-to-spot mapping matrix to integrate scRNA-seq data with ST data, accurately estimating cellular composition within each
capture spot and effectively reconstructing the spatial distribution of cells across the tissue. To further enhance deconvolution accuracy,
we incorporate spatial-aware regularization that ensures accurate cellular distribution reconstruction within the spatial context.
Benchmarking against seven state-of-the-art methods on five simulated and real datasets from various tissues, STCGAN consistently
delivers superior cell-type deconvolution performance. Availability: The code of STCGAN can be downloaded from https://github.com/
cs-wangbo/STCGAN and all the mentioned datasets are available on Zenodo at https://zenodo.org/doi/10.5281/zenodo.10799113.
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Introduction
The functions of complex tissues are intricately related to the
spatial distribution of different cell types [1–3]. The development
of spatial transcriptomics (ST) has revolutionized our ability to
map gene expression patterns in native tissue contexts, providing
unprecedented insights into cellular heterogeneity and spatial
tissue [4, 5]. However, initial ST techniques lacked the resolution
and gene coverage of single-cell RNA sequencing (scRNA-seq). For
example, the popular 10x Visium platform can capture transcrip-
tomes at scRNA-seq scale; however, it employs 55 μm spots—
substantially exceeding the size of typical cells (5–10 μm) [6, 7],
resulting in each spatial spot representing a mixture of various
cell types. Due to the sparse and averaged nature of ST data,
performing cellular deconvolution to estimate the proportions of
cell types or states within each spatial spot is crucial for analysing
complex tissues [8–10].

To address this challenge, several cellular deconvolution
methods have emerged, broadly categorized into probabilistic-
based, non-negative matrix factorization (NMF)-based, and deep

learning-based methods. Probabilistic-based methods leverage
probability distributions that align with scRNA-seq gene count
distributions and employ likelihood-based inference to estimate
cell annotation proportions within capture spots. For instance,
Cell2location [11] employs variational Bayesian inference with a
negative binomial distribution model for gene expression data,
enabling efficient cell type abundance inference, although it
requires manual hyperparameter tuning. STdeconvolve [12],
based on latent Dirichlet allocation, identifies highly co-expressed
genes for each cell type, effectively identifying tissue structures
but requiring careful handling of cell type mappings. Similarly,
SpatialDecon [13] enhances cell abundance estimation accuracy
through log-normal regression and background modeling, albeit
at the cost of increased computational time.

NMF-based methods seek a non-negative reference matrix
that establishes the correspondence between scRNA-seq and
ST expression profiles. For example, SpatialDWLS [14] utilizes
damped weighted least squares to precisely determine cell type
compositions at specific locations, effectively addressing spatial
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heterogeneity but potentially exhibiting bias when estimating
rare cell type proportions in imbalanced datasets. SPICEMIX
[15], a probabilistic latent variable modeling method, enhances
cell type inference accuracy in ST data but faces challenges in
distinguishing cell type patterns without scRNA-seq reference
data. On the other hand, SPOTlight [16] achieves high-precision
spatial resolution across tissues using NMF regression and non-
negative least squares though it lacks integration of spatial
location information in its spatial decomposition.

Deep learning-based methods employ specialized neural
network architectures and loss functions to estimate cell
annotation proportions. For instance, DSTG [17] utilizes a
semi-supervised graph convolutional network to recover cell
annotation proportions by learning the linkage graph from shared
spaces, with its performance heavily dependent on the quality of
the learned linkage graph. Tangram [18] maximizes the spatial
correlation between scRNA-seq and ST data by rearranging
scRNA-seq expression profiles, demonstrating compatibility
with various ST data types despite its computational intensity.
Conversely, GraphST [19] integrates graph neural networks with
self-supervised contrastive learning to align scRNA-seq and ST
data, successfully achieving single-cell spatial resolution and
constructing high-resolution cellular atlases.

While these methods have shown promise, they often
struggle to achieve single-cell resolution or fully leverage spatial
information in ST data. To address these limitations, we propose
STCGAN, a novel cycle-consistent generative adversarial network
for cellular deconvolution in spatial transcriptomics analysis.
First, STCGAN employs a cycle-consistent generative adversarial
network (CGAN) to pre-train spatial transcriptomic data. By
adhering to the cycle consistency principle, we iteratively feed
the reconstructed ST data back into the encoder, ensuring
consistency between the mapping from ST data to latent space
and its reverse mapping. This enables robust modeling of the
data distribution and precise estimation of spatial expression
patterns across tissue coordinates. Next, we present a novel
cellular deconvolution strategy by learning a trainable cell-to-
spot mapping matrix. This strategy integrates scRNA-seq data
with corresponding spatial locations by projecting the scRNA-
seq data into the ST space, thereby achieving accurate recon-
struction of cellular distribution in spatial transcriptomic data.
Furthermore, we incorporate spatial-aware regularization into
cellular deconvolution to preserve the intrinsic spatial structure
during deconvolution, ensuring the reconstruction of consistent
cellular distributions in the spatial context. The comprehensive
evaluations against seven state-of-the-art methods using five
simulated and real ST datasets from various tissues demonstrate
that STCGAN consistently outperforms the others in cellular
deconvolution.

Materials and methods
STCGAN comprises two primary steps: pre-training and scRNA-
seq mapping. In the pre-training stage, a CGAN is employed to
acquire the complex spatial gene expression patterns and learn
a robust representation X̂ of the underlying data distribution
(Fig. 1A). In the scRNA-seq mapping stage, we learn a trainable
cell-to-spot matrix to map scRNA-seq data to the predicted ST
expression matrix Pst. Subsequently, Pst is concatenated with the
reconstructed expression X̂ for alignment using the pre-trained
network (Fig. 1B). Furthermore, spatial-aware regularization is
integrated to maintain tissue structure. Finally, the trained map-
ping matrix M is then utilized for cellular deconvolution (Fig. 1C).

Spatial graph construction
To leverage spatial information effectively, we employ the K-
nearest neighbors (KNN) method to establish structural relation-
ships among capture spots. Let A ∈ R

Nspot×Nspot represents the spa-
tial adjacency matrix. If spot j is among the K-nearest neighbors
of spot i based on their Euclidean distance, we set Aij = Aji = 1;
otherwise, we assign 0.

Variational graph autoencoder
STCGAN utilizes a Variational Graph Autoencoder (VGAE)
with Graph Attention Networks (GATs), specifically employing
GATv2Conv [20] as the convolutional layer. This architecture
enables effective learning of latent features that capture the
underlying structure within the ST data. The VGAE takes the
adjacency matrix A and the ST expression matrix X as input,
undergoing an optimal transformation to yield the reconstructed
expression matrix X̂ and adjacency matrix Â as output. The 0-
th layer of the encoder produces a compressed representation:
the 0-th GATv2(0) layer of the encoder produces a compressed
representation:

X(1) = GATv2(0)(X, A) (1)

Subsequently, it generates crucial vectors μ and log(σ 2), denot-
ing the mean and variance of the latent space:

μ = GATv2(μ)(X(1), A)

log σ 2 = GATv2(σ )(X(1), A)
(2)

The latent variable z is then obtained from z = μ + log σ 2 ∗ ε,
where ε ∼ N(0, 1).

In the decoding stage, VGAE reconstructs the expression matrix
and adjacency matrix using dedicated decoders, DX and DA,
respectively. The decoder DX mirrors the encoder’s structure,
while DA is defined by the inner product of latent variables:

X̂ = DX(z) = GATv2(2)(GATv2(1)(z, A), A)

Â = DA(z) = sigm
(
zz�) (3)

where sigm (·) is a logistic sigmoid function.
The objective function minimizes the reconstruction loss for

both the expression and adjacency matrix and the Kullback–
Leibler divergence between the latent feature distribution and the
normal distribution:

Lre =
∥∥∥X − X̂

∥∥∥2

2
+ γ (Eq(z|X,A)[log p(A | z)]

− KL[q(z | X, A)‖p(z)])

(4)

where γ is a tradeoff parameters, Eq(z|X,A)[log p(A | z)] is the binary
cross-entropy function, and p(z) = ∏

i N(0, 1).

Cycle-consistent generative adversarial network
Inspired by CycleGAN [21], STCGAN incorporates a cycle-
consistent mechanism to enhance its generalization. This ensures
data consistency during the transformation between source
and target domains, encouraging the preservation of underlying
spatial distribution across iterative transformations. Specifically,
the encoder first encodes ST data into a latent embedding z.
The decoder then reconstructs ST expression X̂ from z, and X̂ is
re-encoded to generate back-embedding bz. This cycle enforces bz

to closely match the original z.
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Figure 1. Overview of STCGAN method. (A) Pre-training: the VGAE encodes ST data X into embedding z and decodes it to reconstruct expression X̂. Next,
X̂ is re-encoded into back embedding bz. Then, the domain discriminator aligns the original embedding z with the back embedding bz into a unified latent
space. (B) scRNA-seq mapping: a mapping matrix M is trained to transfer scRNA-seq data to the predicted ST matrix Pst. Subsequently, Pst is concatenated
with X̂ and aligned using the pre-trained model. (C) Cellular deconvolution: the trained mapping matrix M is used for cellular deconvolution.

To address inconsistent embedding feature distributions, we
introduce a domain discriminator Dz, a two-layer multi-layer
perceptron (MLP) network that aligns data from different domains
(z and bz) into a unified latent space. The discrimination loss is
articulated as:

Ld(cz) = − 1
2N

∑
i

M∑
d=1

Did log
(
pid

)
(5)

where cz =
[

z
bz

]
is the concatenated vector containing z and bz,

M = 2 represents the number of domains, Did is a sign function
indicating if the true domain label of spot i belongs to z, assigned
1 if true, otherwise 0, and pid denotes the discriminant probability
that spot i belongs to domain z.

The overall CGAN loss function is:

Lcyc = Ld(cz) + αLre (6)

where α is a weight parameter.

Cellular deconvolution
STCGAN introduces an innovative cellular deconvolution strategy
that seamlessly integrates scRNA-seq and ST data for accurate
cellular deconvolution in spatial transcriptomics analysis. At the
core of this strategy lies a trainable mapping matrix M ∈ R

Ncell×Nspot ,
which models the probability of scRNA-seq cells mapping to
each capture spot. Specifically, we randomly initialize M, where
Mij represents the probability of cell i mapping to spot j, with

∑Ncell
i Mij = 1. This initialization allows the model to start with

a broad assumption of cell-to-spot relationships, which are then
iteratively refined during training. The predicted spatial gene
expression matrix Pst is obtained by projecting scRNA-seq expres-
sion profiles Xsc onto M, calculated as:

Pst = MT × Xsc (7)

To further refine Pst and capture the spatial distribution of
ST data, we concatenate Pst with the pre-trained output X̂. This
concatenated input propagates through the pre-trained encoder

to yield the embedding ĉz =
[

pz

bz

]
, where pz represents the

latent embedding of Pst. The embedding ĉz is then fed to the
domain discriminator. The adversarial training is used to refine
the mapping matrix M, ensuring it accurately captures spatial
distributions while preserving tissue structure. Moreover, STC-
GAN introduces spatial-aware regularization [22] that leverages
spatial neighbor information to optimize the mapping matrix M,
enhancing the accuracy and robustness of cellular deconvolution.
The regularization loss is formulated as:

Lreg = −
Nspot∑
i=1

⎛
⎝∑

j∈Ri

log
(
σ

(
Cij

)) +
∑
k/∈Ri

log
(
1 − σ

(
Cik

))⎞⎠ (8)

where C denotes the cosine similarity matrix of pz, and Ri is the
set of spatial neighbors of spot i.

By incorporating the regularization, STCGAN encourages the
mapping matrix to preserve the spatial tissue structure, further
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enhancing cellular distribution fidelity. The overall cellular decon-
volution loss is:

Lmap = Ld(ĉz) + Lreg + β

∥∥∥X̂ − Pst

∥∥∥2

2
(9)

where β is a weight parameter. By optimizing the mapping loss, M
is iteratively updated.

Especially, Cellular deconvolution operates independently of
scRNA-seq annotations, such as cell types or disease states,
enabling flexible projecting of these annotations onto capture
spots using the mapping matrix M. Formally, let S ∈ R

Ncell×Nannot

denote a one-hot annotations matrix, and Nannot is the number of
annotation labels. The cell annotations probability P ∈ R

Nspot×Nannot

across spots can be computed as:

P = MT × S (10)

To mitigate the influence of low-scoring locations, we empiri-
cally retain the top 15% annotation scores for each spot.

Model training
STCGAN training occurs in sequential to optimize VGAE, CGAN,
and cellular deconvolution. First, VGAE is pre-trained for 1000
epochs to effectively capture complex spatial gene expression
patterns by minimizing the reconstruction loss Lre. Then, the
CGAN is trained for 500 epochs. During this stage, adversarial
loss Lcyc is optimized to improve data consistency and refine
the reconstructed ST data distribution, with updates to both
VGAE and the domain discriminator Dz. Finally, in the cellular
deconvolution stage, the mapping matrix M is fine-tuned over
300 epochs by minimizing the deconvolution loss Lmap, enabling
accurate mapping of cell annotations from scRNA-seq data to
corresponding spots.

Results
Experiment settings
For STCGAN, we set the learning rate to 0.001 and use a weight
decay of 5e-4, optimizing with the Adam optimizer [23]. The
selection of highly variable genes (HVGs) differs according to the
characteristics of the platform. For instance, the top 3000 HVGs
were selected for 10x Visium, the top 5000 HVGs for seqFISH+,
and all available genes were used for MERFISH.

To ensure gene consistency, scRNA-seq data is preprocessed
using the same methods as the ST data. The weighting parameters
α, β and γ are optimized by searching within {0.01, 0.1, 1, 10}. To
find the optimal weighting parameter values, we conducted a
parameter analysis using seqFISH+ datasets with 10,000 genes
per spot (Fig. S1). The experiments reveal that the optimal
performance is achieved with the parameter combination of
α = 10, β = 1, and γ = 1. For performance evaluation,
all experiments are repeated 10 times, and root mean square
error (RMSE) and Jensen–Shannon Divergence (JSD) are used to
evaluate the cellular deconvolution performance on simulated
datasets.

Data preparation and baselines
In this study, we collected five datasets, both simulated and
experimentally acquired, paired with their corresponding scRNA-
seq datasets: seqFISH+ [24], MERFISH [25], DLPFC [26], Mouse
brain anterior and posterior [27], and Human breast cancer [26].
The dataset statistics are summarized in Table S1. Additionally, we

selected seven representative methods as baselines: Probabilistic-
based methods: Cell2location [11], STdeconvolve [12], and Spa-
tialDecon [13]. NMF-based methods: SpiceMix [15] and SPOTlight
[16]. Deep learning-based method: Tangram [18] and GraphST [19].
Notably, SpiceMix and STdeconvolve are reference-free methods
that rely solely on spatial locations and spot gene expression pro-
files from ST data, without requiring external scRNA-seq data for
inference. In contrast, the remaining methods require scRNA-seq
data from the same tissue as the ST data for accurate estimation.

Simulations
To evaluate the effectiveness of STCGAN, we performed compara-
tive analyses with seven state-of-the-art methods recommended
by [28] on the seqFISH+ [24] and the MERFISH [25, 29] datasets.
These methods included Cell2location, GraphST, SpatialDecon,
SpiceMix, SPOTlight, STdeconvolve, and Tangram. The seqFISH+
dataset (71 spots and 10,000 genes) exhibited sparse spot distri-
bution but high gene richness, while the MERFISH dataset (3,067
spots and 135 genes) displayed dense spot distribution but limited
gene richness. These contrasting attributes provided complemen-
tary perspectives, allowing for a comprehensive evaluation of
method performance across various scenarios of spot resolution
and gene richness.

In particular, we focus on the distribution of inhibitory
neuron cell proportions, which exhibit distinct and localized
patterns. Comparisons against ground truth showed that STCGAN
consistently outperformed other methods regarding RMSE and
JSD scores. Notably, STCGAN achieved RMSE and JSD values of
0.11 and 0.32, respectively, indicating a close match to ground
truth patterns (Fig. 2A). Furthermore, we visualized the proportion
of inhibitory neuron cells deconvolved (Fig. 2B) by STCGAN across
varying gene richness per spot (10,000, 6000, and 3000 genes
per spot). The visualizations, accompanied by corresponding
RMSE values, demonstrated STCGAN ’s superior performance
compared to other state-of-the-art methods, highlighting its
robustness across different gene richness. To provide insights
into the performance across different cell types, spider plots
illustrated RMSE values for all eight methods across various
cell types identified in the MERFISH dataset (Fig. 2C). Notably,
STCGAN consistently outperformed the other methods across
most cell types, except for excitatory neuron and OD cell type,
where cell2location exhibited slightly superior performance.
Similar results were also observed in the seqFISH+ dataset
(Fig. S2). This finding highlights the robustness and effectiveness
of STCGAN across diverse gene richness and resolutions.

STCGAN can predict spatial distributions of cell
types in DLPFC
In this section, we used the DLPFC [26] dataset to validate the cel-
lular deconvolution performance of STCGAN on real-world data.
The DLPFC exhibited a clear laminar tissue structure, which can
facilitate a better differentiation of performance among deconvo-
lution methods (Fig. 3A).

We evaluated the performance of STCGAN in predicting
the spatial distribution of cell types within slice 151673 of
the DLPFC dataset. Spatial scatterpie plots demonstrated that
STCGAN accurately captured the laminar cortical structure,
outperforming other methods (Fig. 3B and S3). In contrast,
SpatialDecon, SPOTlight, and Tangram exhibited limitations in
distinguishing the laminar tissue structure, likely because their
mapping approaches overlook subtle spatial organization in
the cortex. While Cell2location was effective in some tissue, it
struggled to distinguish layers 2 to 6 clearly due to its modeling

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae670#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae670#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae670#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae670#supplementary-data
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Figure 2. The performance of STCGAN on simulated datasets. (A) Visualization of the ground truth and predicted proportions of inhibitory neurons
for 8 methods with the seqFISH+ datasets and 10,000 genes per spot. (B) The proportions of inhibitory neurons deconvolved by STCGAN for seqFISH+
datasets with three different gene richness (10,000, 6000, and 3000 genes per spot). (C) Spider plots showing the RMSE of the deconvolution results for
the 8 methods across 6 cell types from the MERFISH at three different spot resolutions (100, 50, and 20 μm per spot).

approach, which may not capture subtle spatial differences as
effectively as STCGAN. Similarly, GraphST blurred the boundaries
between layers 2 and 3, as well as between layers 5 and 6,
indicating a lack of clear signals between different layers.
This may be due to its focus on graph-based connections
while overlooking fine-grained layer-specific spatial features.
Furthermore, reference-free methods SpiceMix and STdeconvolve
failed to effectively distinguish the laminar tissue structure,
underscoring the importance of scRNA-seq references in cellular
deconvolution. The spatial deconvolution results of STCGAN
revealed a unique layer-specific distribution of cell types in DLPFC,
showing its advanced capability to reflect cortical physiology and
anatomy accurately (Fig. 3C). For instance, STCGAN successfully
mapped cell types such as Ex_10_L2_4, Ex_7_L4_6, Ex_1_L5_6,
Ex_8_L5_6, and Ex_4_L6 to specific cortical layers, demonstrating
the accuracy of the method. Notably, the Oligos_1 cell type was
accurately mapped to the white matter (WM) layer, aligning
with the high oligodendrocyte concentration in this region. The
exceptional performance of STCGAN in the DLPFC slice can be

attributed to its novel CGAN framework, which enhances the
accuracy of capturing complex tissue structures.

STCGAN enables horizontal Integration of mouse
brain samples
The previous discussion has primarily focused on analysing indi-
vidual tissue samples, but integrating multiple samples can yield
deeper insights [30]. Here, we conducted an integrated analysis of
horizontal samples from the mouse brain anterior and posterior
[27, 31]. We first aligned their spatial coordinates to construct
a joint adjacency graph of the two samples. Subsequently, we
utilized it along with their concatenated gene expression for
cellular deconvolution.

We evaluated the performance of STCGAN across the ante-
rior and posterior mouse brain samples (Fig. 4A, S4–S5). Spa-
tial scatterpie plots indicated that STCGAN effectively captured
distinct cell-type patterns, and achieved highly consistent cell-
type abundance estimates between adjacent tissue samples. This
result suggests the effectiveness of spatial-aware regularization in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae670#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae670#supplementary-data
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Figure 3. STCGAN predicts spatial distributions of cell types in the slice 151673 of DLPFC. (A) Manual annotation of the slice 151673 in DLPFC. (B) The
spatial scatter pie plots of Cell2location, GraphST, SPOTlight, Tangram, and STCGAN on slice 151673. (C) The visualization of the spatial distribution of
cell types Ex_10_L2_4, Ex_7_L4_6, Ex_1_L5_6, Ex_8_L5_6, Ex_4_L_6, and Oligos_1 deconvolved by STCGAN on slice 151673.

capturing cellular distribution across different samples. Moreover,
the resulting cell-type maps are closely aligned with anatomical
locations reported in previous literature (Fig. 4B). In contrast,
Cell2location failed to distinguish cortical regions and lacked
clear signals across different layers, while GraphST struggled
to discern the hippocampus and produced blurred results. Spa-
tialDecon and SPOTlight performed poorly, showing minimal abil-
ity to distinguish any tissue structures, while the result of Tan-
gram was heavily affected by noise, further limiting its effective-
ness in accurately capturing spatial patterns.

We further analysed the abundances of six cell types
(hippocampus: CA1-ProS, CA3, DG, and cortical regions: L2/3
IT CTX, L4/5 IT CTX, L6b CTX) (Fig. 4C). STCGAN accurately
depicted the anatomical structures of the cortex and hip-
pocampus, outperforming the other methods. The primary
cell types identified by STCGAN at each location were con-
sistent with expectations, affirming its accuracy in spatial
mapping. However, Cell2location, SpatialDecon, SpiceMix, and
STdeconvolve captured the hippocampus well but encountered
a disruption between L4/5 IT CTX and L6b CTX across the
two samples. GraphST, SPOTlight, and Tangram performed
well in detecting the cortex but struggled with hippocampal
structures.

Overall, the integrated analysis using STCGAN showed its supe-
rior performance in capturing spatial tissue and accurate cell-
type mapping across multiple tissue samples. This provides a

deeper understanding of the complex anatomy and heterogeneity
of the brain.

STCGAN can decipher the cellular landscape of
human breast cancer
In the final analysis, we mapped cell types from the scRNA-Seq
breast tissue atlas [32] onto the human breast cancer [26] dataset
(Fig. 5A and S6–S12).

We observed that fibroblasts, perivascular cells, lymphatic
endothelial cells, and vascular endothelial cells were pre-
dominantly mapped to the healthy and tumor edge domains,
while myoepithelial cells were mainly localized to the tumor
edges. Luminal and luminal progenitor cells were primarily
localized within IDC and DCIS/LCIS domains. In comparison,
while GraphST, SpiceMix, and STdeconvolve demonstrated the
ability to broadly map major cell types, STCGAN’s fine-grained
spatial resolution provided a more precise delineation of cell-type
heterogeneity and spatial interactions. This distinction highlights
the superiority of STCGAN in resolving tissue complexity.

Focusing on immune cells, we found diverse immune subsets
in the IDC domains(IDC 5, 6, 7, and 8), including T cells and
macrophages/DC/monocytes (myeloid cells). The visualizations
in the heatmap and UMAP (Fig. 5B, C) showed correspondence
between single cells and their mapped domains. In the DCIS/LCIS
domains, only macrophages/DC/monocytes were found in IDC 4
and 5, while no immune cells were mapped to IDC 1 and 2. B cells

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae670#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae670#supplementary-data
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Figure 4. STCGAN horizontally integrates cell types from the mouse brain anterior and posterior. (A) Annotated brain section image from Allen Mouse
Brain Atlas for reference (top), and H&E image of mouse brain anterior and posterior (bottom). (B) The spatial scatter pie plots of Cell2location, GraphST,
and STCGAN on mouse brain anterior and posterior. (C) The estimated cell abundances (color intensity) of hippocampal and cortical layers cell types.

were mainly localized to IDC 3 and a subset of tumor edge 3, while
a small number of plasma cells were found in various tumor edge
regions.

The presence of macrophages in tumor tissue has clinical
significance, as it is associated with tumor progression by promot-
ing angiogenesis, suppressing immune responses, and facilitating
metastasis. High macrophage infiltration frequently correlates
with poor patient outcomes, such as reduced overall survival and
increased tumor aggressiveness. In contrast, B cells contribute to
targeting cancer cells, and their reduced presence in the tumor
microenvironment can indicate an impaired immune response
against the tumor.

In conclusion, this case study highlights the ability of STCGAN
to achieve fine-grained cellular analysis, contributing to a better
understanding of cell-type heterogeneity, spatial distribution, and
interactions within tissues. STCGAN provides researchers with an
advanced tool to explore tissue heterogeneity beyond histological
analysis alone, revealing critical insights into cell composition and
interactions within tissues.

Ablation study
To further investigate the working mechanism of STCGAN, we
conducted a series of ablation experiments on the seqFISH+
and MERFISH datasets. Specifically, we systematically removed
the cycle-consistent constraint, domain discriminator, and
spatial-aware regularization to evaluate their contributions to
model performance.

• STCGAN-w/o-Lcyc: it omits the cycle-consistent generative
adversarial network during the pre-training stage but a sim-
ple variational graph autoencoder.

• STCGAN-w/o-Ld: it does not utilize the trained domain
discriminator in the cell-type deconvolution stage, i.e. Ld is
excluded from the Lmap loss.

• STCGAN-w/o-Lreg: it lacks spatial-aware regularization, so Lreg

is not included in the overall loss function.

As shown in Table S2, STCGAN consistently outperforms
its variants. Specifically, STCGAN demonstrates excellent per-
formance in terms of RMSE score compared to STCGAN-w/o-
Lcyc. The cycle-consistent constraint effectively models the
spatial expression estimation of spatial transcriptomic data,
improving the accuracy of cell-type deconvolution. Additionally,
we observe that STCGAN-w/o-Ld has lower RMSE scores but
exhibits significant RMSE score variations under different
spot resolutions and gene richness. This indicates that the
domain discriminator positively contributes to mapping the
underlying data distribution, and its removal could lead to
unstable performance. Finally, STCGAN-w/o-Lreg yields mediocre
results across various datasets. The spatial-aware regularization
effectively preserves the tissue structure in spatial transcriptomic
data, thus improving the accuracy and robustness of cell-type
deconvolution. Without spatial-aware regularization, STCGAN
faces challenges in effectively integrating spatial structure and
gene expression.

Overall, the ablation experiments underscore the importance
of integrating the cycle-consistent constraint, domain discrimi-
nator, and spatial-aware regularization into STCGAN. The integra-
tion of these components enables better cell-type deconvolution,
enhancing the model’s performance and stability.

Discussion and conclusion
In this paper, we propose STCGAN, a cellular deconvolution
method based on a cycle-consistent generative adversarial
network. We first employ a cycle-consistent adversarial network
to capture the complex spatial gene expression patterns, ensuring
that the model can accurately depict the spatial structure. Next,
we introduce a novel cellular deconvolution strategy that learns a

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae670#supplementary-data
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Figure 5. STCGAN deciphers the cellular landscape of human breast cancer. (A) Manual annotation and spatial distribution of major cell types mapped
by STCGAN, including B cell, luminal cell, T cell, fibroblast, lymphatic endothelial cell, NK cell, plasma cell, myoepithelial cell, pDC, luminal progenitor,
macrophage/DC/monocyte, perivascular cell, and vascular endothelial cell. (B) Heatmap of the spatial distribution of cell types. (C) The visualization of
scRNA-seq data and spatial localization of cell types using UMAP, generated from the output cell representations of STCGAN.

trainable cell-to-spot mapping matrix, effectively transferring
cell annotation information from scRNA-seq data to capture
spatial spots by projecting the scRNA-seq data into the ST space.
Furthermore, we incorporate spatial-aware regularization to
enhance the accuracy and robustness of cellular deconvolution.

We conduct experiments on multiple simulated and real ST
datasets. The results demonstrate that STCGAN outperforms
state-of-the-art methods in cellular deconvolution in spatial
transcriptomics analysis. Experiments on simulated datasets
show the robustness and effectiveness of STCGAN across diverse
gene richness and resolutions. The results of experiments
conducted on the DLPFC dataset demonstrate that STCGAN
can accurately capture the laminar tissue of the cortex. This
can be attributed to STCGAN’s ability to explore subtle spatial
tissues through the CGAN framework, providing a more detailed
understanding of tissue heterogeneity. In horizontal integration
experiments, it is observed that STCGAN captures diverse cellular

patterns and ensures seamless cell-type abundance estimates
across adjacent tissue samples. This is attributed to the spatial-
aware regularization in STCGAN, which facilitates the capture
of cellular distributions across diverse samples, yielding more
accurate cellular deconvolution. Finally, a case study on a
human breast cancer dataset demonstrates that STCGAN enables
fine-grained cellular analysis, revealing cell-type heterogeneity,
understanding the cell type distribution and interactions within
tissues, and offering valuable insights for cancer research and
treatment.

Despite the successes achieved by STCGAN in cellular decon-
volution, it relies on predefined cellular reference information
for deconvolution. This dependency limits STCGAN’s applicability
and scope when facing unknown or unrepresented cell annota-
tions in reference datasets. In future work, we aim to address
this limitation by leveraging cross-dataset training and transfer
learning.
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Key Points

• In this study, we propose STCGAN, a cycle-consistent
generative adversarial network for spatial transcrip-
tomics cellular deconvolution.

• STCGAN employs a cycle-consistent adversarial net-
work to capture the complex spatial gene expression
patterns and align scRNA-seq data with the ST space
through a trainable cell-to-spot mapping matrix, accu-
rately estimating the cellular composition in each cap-
ture spot.

• We evaluated STCGAN on 5 simulated and real datasets
from different tissues. Experimental results demon-
strate that STCGAN outperforms seven state-of-the-art
methods in cellular deconvolution performance, thereby
proving its superiority in the field of ST analysis.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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