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Objective. The high prevalence of osteoporosis in rheumatoid arthritis (RA) is due to inflammation that stimulates
differentiation of osteoclasts, a process involving circulating monocytes and T cell–derived factors. The aim of this
study was to evaluate relations between circulating monocytes, T cell subsets, and changes in bone characteristics
before and after treatment with biological disease-modifying antirheumatic drugs (bDMARDs) in RA.

Methods. Thirty patients with untreated early RA whomet the American College of Rheumatology/EULAR 2010 cri-
teria were included. Data were collected before and 48 weeks after treatment with methotrexate (MTX) together with
one of three bDMARDs (abatacept, tocilizumab, or certolizumab pegol). Disease activity was measured using the Clin-
ical Disease Activity Index, swollen or tender joint counts, C-reactive protein levels, and erythrocyte sedimentation
rates. Proportions of monocyte and CD4+ T cell subsets in blood samples were analyzed by flow cytometry. Bone den-
sitometry was performed using high-resolution peripheral quantitative computed tomography (HR-pQCT).

Results. HR-pQCT revealed an overall decrease in cortical (P = 0.009) and trabecular (P = 0.034) bone mineral den-
sity, although a subset of patients showed no bone loss after 48 weeks of treatment. The overall bone loss was not
associated with age, body mass index, sex, intraarticular glucocorticoid injections, or baseline disease activity. Loss
of trabecular bone volume fraction correlated with high proportions of circulating CXCR3+Th2 cells (r = −0.38,
P = 0.04) and CXCR3+Th17 cells (r = −0.36, P = 0.05) at baseline. Similarly, no loss of trabecular bone volume fraction
correlated with high proportions of regulatory T cells (r = 0.4, P = 0.03) at baseline. However, the associations were not
significant when corrected for confounders and multiple testing.

Conclusion. MTX together with bDMARDs efficiently reduce disease activity but only prevent bone loss in a subset
of patients with RA after 48 weeks of treatment. The correlations of circulating baseline T helper cell and regulatory
T cell populations with trabecular bone changes suggest a potential novel role for these cells in systemic bone homeo-
stasis during early RA.

INTRODUCTION

Rheumatoid arthritis (RA) is an autoimmune disease

manifested by inflammation in the synovium and risk of

subsequent development of erosions of the bone adjacent to the

joint.1 RA is also associated with generalized bone loss, in which

physical inactivity and systemic inflammation shift the balance

from bone formation toward bone resorption.2–5 Bone loss
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detected by dual-energy x-ray absorptiometry (DXA) has been

reported to be more pronounced during the first years after RA

diagnosis,6,7 whereas studies in patients with early RA treated

with biological disease-modifying antirheumatic drugs

(bDMARDs) show no decrease or a slower decrease of bone min-

eral density (BMD).8,9 However, analysis of bone using DXA only

provides a two-dimensional BMD, whereas high-resolution

peripheral quantitative computed tomography (HR-pQCT) is a

sensitive imaging technology that allows a three-dimensional

assessment of the microstructure for both cortical and trabecular

bones.10 A few longitudinal HR-pQCT studies have investigated

bone microstructure of periarticular sites in patients with early

RA. They identified early changes in bone microstructure, lack of

sustained Clinical Disease Activity Index (CDAI) remission, and

high rheumatoid factor (RF) titers as predictors for periarticular

bone erosion.11,12 Still, there is a need for additional studies using

sensitive imaging technology, such as HR-pQCT, to determine

the impact of effective antirheumatic treatment modalities on gen-

eralized bone loss in sites other than periarticular sites.
Bone loss is the result of a shift toward increased bone

resorption, with osteoclasts as the main contributing cell type. In
RA, an enhanced monocyte-to-osteoclast transition was shown
to increase osteoclastogenesis and subsequent bone erosion.13

Blood monocytes are divided into three major populations based
on the surface expression of CD14 and CD16: classical mono-
cytes, intermediate monocytes, and nonclassical monocytes.14

The intermediate monocyte subset is expanded in patients with
established RA15–18 and has been implicated to play an important
role as osteoclast progenitors in inflammatory conditions.19

Dysregulation of self-tolerance plays a vital role in the onset of
RA, and abnormal immunosuppressive function and numbers
of regulatory T (Treg) cells can contribute to its progression and
severity.20,21 In early RA, as well as in highly active RA, a reduced
proportion of circulating Treg cells has been observed compared
to healthy controls, resulting in an imbalance of the Treg cell–to–
T effector cell ratio.22,23 T helper (Th) cells are known to be

involved in RA by inducing joint inflammation, which, if kept
untreated, can lead to joint destruction and periarticular bone
loss.24 Interferon-γ (IFNγ)–secreting Th1 cells in synovial fluid and
blood are predominant in established RA, whereas in early RA,
the profile of synovial fluid cytokines has a Th2 and Th17 bias.25,26

This is confirmed by the dominance of Th2 and Th17 cells in the
blood of patients with untreated early (ue) RA and points toward
a pathogenic role for these cells in early stages of the disease.27

Interleukin-17 (IL-17)–secreting Th17 cells are a population of
proinflammatory CD4+ T cells with the capacity to induce osteo-
clastogenesis by producing receptor activator of nuclear factor
kappa beta ligand and tumor necrosis factor (TNF).28 Conversely,
Th2 cells and their cytokines IL-4 and IL-13 are generally
regarded to exert bone protecting effects by inhibiting osteoclast
differentiation.29–31 The increased presence of both cytokines in
the synovial fluid of early RA, but not in established RA, implicates
that they are part of an early regulatory response that is lost as
patients progress to fully established disease.25 However, there
is conflicting data showing a connection between bone loss
and32,33 IL-4, as Lewis et al32 reported that overproduction of
IL-4 in a transgenic mouse strain resulted in osteoporosis. Thus,
the association between Th2 cells and bone loss in RA needs to
be further clarified.

In recent years, CXCR3+Th2 and Th17 cells have caught
attention in RA research.27,34 CXCR3 is a receptor expressed on
certain B and T cell populations and allows the migration toward
its ligands CXCL9, CXCL10, and CXCL11. In RA, increased con-
centrations of these ligands have been found in synovial fluid, and
subsequent infiltration of CXCR3+ T helper and B cells has been
observed.34–36

We showed previously in a well-defined population of
patients with ue RA that a subgroup of patients had elevated
levels of intermediate monocytes at baseline compared to healthy
controls.37 In that study, the frequency of intermediate monocytes
was not associated with bone density but correlated positively
with CXCR3+Th17 cells at baseline.37
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Thus, the aim of this prospective longitudinal study in early
RA was to investigate changes in bone microstructure after
48 weeks of treatment with methotrexate (MTX) in combination
with one of the three following bDMARDs: CTLA-4 immunoglobu-
lin fusion protein (CTLA-4Ig) (abatacept), anti–IL-6R (tocilizumab),
or anti-TNF (certolizumab pegol). Moreover, we assessed con-
nections between changes in bone characteristics after 48 weeks
of treatment and subsets of monocytes and T cells at baseline.

PATIENTS AND METHODS

Patients. The patients in this study include a subgroup from
three of the four randomized treatment arms in the NORD-STAR trial,
a phase 4 investigator-initiated randomized observer-masked clinical
trial.38,39 The patients were all recruited at the rheumatology clinic at
Sahlgrenska University Hospital in Gothenburg and were asked to
participate in bone analyses with HR-pQCT. Thirty of the patients
completed the analyses both at baseline and at 48 weeks after inclu-
sion. The baseline characteristics of these patients are shown in
Table 1.

All patients were treatment naïve at inclusion and fulfilled the
American College of Rheumatology/EULAR criteria for RA. The
inclusion criteria were the following: aged ≥18 years old; two or
more swollen joints and two or more tender joints; RF positive, or
anti–citrullinated protein antibody (ACPA) positive, or C-reactive
protein (CRP) levels ≥10mg/mL; having at least moderate disease

activity (>3.2) measured by composite index Disease Activity
Score in 28 joints (DAS28)–CRP; symptom duration <24 months
(retrospective patient-reported pain in the joints); and no treat-
ment with glucocorticoids or DMARDs. Disease activity in patients
was assessed by swollen joint count of 66 joints (SJC66), tender
joint count in 68 joints (TJC68), swollen joint count in 28 joints
(SJC28), tender joint count in 28 joints (TJC28), CRP, erythrocyte
sedimentation rate (ESR), CDAI, DAS28-CRP, and DAS28-ESR.
ACPA positivity was determined by multiplexed anticyclic citrulli-
nated peptide (anti-CCP) test (BioPlex from BioRad), and RF pos-
itivity was determined by nephelometry (Beckman Coulter).
Patients with >3 IU/mL anti-CCP antibodies or >20 IU/mL RF in
serum were considered ACPA positive or RF positive, respec-
tively, according to the current cutoff levels in the clinical immunol-
ogy laboratories. All patients signed an informed consent form.
The study was conducted in compliance with the Helsinki
123 Declaration and was approved by the regional ethic commit-
tee of Gothenburg (Dnr. 691–12 and amendment T270-13).

Study design. A detailed description of the treatment pro-
tocol of the full NORD-STAR cohort has previously been pub-
lished.40 Briefly, patients who fulfilled the inclusion criteria were
randomly assigned into four different treatment arms. Because
the focus of this study was to analyze the effect of targeted treat-
ments on bone parameters in early RA, only patients treated with
one of the three bDMARDs were included. All patients received

Table 1. Clinical characteristics of patients with early rheumatoid arthritis at baseline and after 48 weeks of
treatment*

Characteristics (N = 30) Baseline 48 weeks P value

Age, median (range), y 56 (21–78) – –

Female, n (%) 20 (66.7) – –

BMI, median (range) 25.3 (19–32.5) – –

Smoker, n (%)a 3 (10) – –

Self-reported symptom duration, median (range), mo 6 (2–22) – –

ACPA+, n (%) 26 (86.7) – –

RF+, n (%) 17 (56.7) – –

ACPA+ and RF+, n (%) 16 (53.3) – –

ACPA− and RF−, n (%) 3 (10) – –

MTX+anti-TNF, n (%) 13 (43.3) – –

MTX+anti-CTLA4-Ig, n (%) 10 (33.3) – –

MTX+anti-IL6R, n (%) 7 (23.3) – –

CRP, median (range), mg/L 7 (1–180) 1 (1–9) <0.001
ESR, median (range), mm/hr 23 (7–98) 6.5 (1–44) <0.001
SJC66, median (range) 8 (3–28) 0 (0–3) <0.001
TJC68, median (range) 10 (2–35) 0 (0–29) 0.003
SJC28, median (range) 7 (2–24) 0 (0–3) <0.001
TJC28, median (range) 4.5 (0–27) 0 (0–16) <0.001
DAS28-CRP, median (range) 4.89 (2.7–8.3) 1.6 (1–5) 0.003
DAS28-ESR, median (range) 5.18 (2.6–8.7) 1.7 (0–5) <0.001
CDAI, median (range) 25.9 (10.1–68.7) 2 (0–24) <0.001

*ACPA, anticitrullinated protein antibody; BMI, body mass index; CDAI, Clinical Disease Activity Index; CRP,
C-reactive protein; DAS28, Disease Activity Score in 28 joints; ESR, erythrocyte sedimentation rate; MTX, methotrex-
ate; RF, rheumatoid factor; SJC28, swollen joint count in 28 joints; SJC66, swollen joint count in 66 joints; TJC28, ten-
der joint count in 28 joints; TJC68, tender joint count in 68 joints. The Wilcoxon’s matched-paired signed rank test
was used for comparison.
aCurrent daily smoker.

T CELL SUBSETS AND BONE LOSS IN EARLY RA 3 of 12



MTX, escalating within four weeks to 25 mg/wk together with folic
acid supplementation.

The patients also received one of the following treatments:

• CTLA-4Ig (abatacept; Bristol Myers Squibb) at 125 mg
every week subcutaneously

• anti-IL-6R (tocilizumab; Hoffmann-La Roche) at 8 mg/kg
every four weeks intravenously or 162 mg every week
subcutaneously

• anti-TNF (certolizumab pegol; Union Chimique Belge) at
200 mg every other week subcutaneously (loading dose
of 400 mg at weeks 0, 2, and 4)

Intraarticular glucocorticoid injections were allowed if needed
up to week 12. Thereafter, up to 40 mg were allowed every
12 weeks. In all treatment arms, intraarticular glucocorticoid
was prohibited in weeks 20 to 24 and 44 to 48 to minimize
its influence on week 24 and week 48 outcomes. Thirty per-
cent of the patients received intraarticular glucocorticoid
injections, as shown in Supp. Table 1. No oral glucocorticoids
were given. The patients were included in the study from 2013
to 2018, and blood samples were taken within 1 to 2 weeks
after RA diagnosis and then after 4, 12, 24, and 48 to
52 weeks of treatment.

Bone densitometry. All patients recruited at the rheuma-
tology clinic in Gothenburg were asked to participate in DXA and
HR-pQCT measurements at baseline (n = 46) and at the one-year
follow-up. Thirty of the patients with RA completed the analysis
both at baseline and at 48 weeks after inclusion to the study.

Areal BMD (aBMD) was measured at baseline and 48 weeks
after treatment at the total hip, femoral neck, and lumbar spine
(L1–L4) using the Hologic Discovery A (S/N 86491) device. The
coefficient of variation (CV) for these measurements were 0.8%
(total hip), 1.3% (femoral neck), and 0.7% (spine). One patient
was not measured for total hip and femoral neck, which is why
these data are missing.

Volumetric BMD (vBMD) and bone microarchitecture were
measured at the lower leg (tibia) on the same side as the nondom-
inant arm using a high-resolution 3D HR-pQCT device
(XtremeCT; Scanco Medical AG), according to a previously
described protocol.41,42 In short, the tibia was measured at the
standard measuring site recommended by the manufacturer
(ultradistal). The first image was acquired at 22.5 mm from the ref-
erence line (ie, a line placed at the articular plateau by the opera-
tor). A total of 110 cross-sectional images were obtained with an
isotropic resolution of 82 μm, resulting in a three-dimensional
model of the bone. Each three-dimensional model (110 images)
took three minutes of scan time to obtain, and the effective dose
was 3 μSv. Quality assessments of the images was performed
and graded from 1 to 5, according to the recommendation pro-
vided by the manufacturer (Scanco Medical AG), in which 1 to
3 were regarded as acceptable quality and 4 to 5 were regarded

as unacceptable quality. Only images with quality 1 to 3 were pro-
cessed further. Each site was analyzed according to the standard
HR-pQCT protocol, yielding the following parameters: the trabec-
ular bone volume–to–total volume ratio (BV/TV) was derived from
the BMD of the trabecular volume of interest and the assumption
that compact bone has a matrix mineral density of 1,200 mg
hydroxyapatite (HA)/cm3 (whereas the marrow background is
equivalent to 0 mg HA/cm3), trabecular number (TbN) (mm, TbN
− 1; inverse of the mean spacing of the mid-axes), trabecular
thickness (TbTh) (mm, [BV/TV]/TbN), cortical volumetric BMD
(mg/cm3), cortical area (mm2), and total vBMD (mg/cm3). The
CVs for measurement of trabecular parameters were 0.8% to
2.6%, and the CVs for measurements of cortical parameters were
0.1% to 0.9%.

Flow cytometry. Peripheral blood samples were analyzed
by flow cytometry. Peripheral blood mononuclear cells (PBMCs)
were separated from whole blood with Lymphoprep
(Axis-Shield), and the cells were blocked with mouse serum and
human serum from bloodtype AB. To define the intermediate
monocyte subset, the cell surface of PBMCs was stained with
fluorochrome-conjugated monoclonal antibodies: allophycocya-
nin (APC)-conjugated anti-CD14 (clone M5E2; BD Biosciences)
and fluorescein isothiocyanate (FITC)–conjugated anti-CD16
(clone NKP15; BD Biosciences). The gating strategy of the mono-
cyte subsets has been shown in a previous publication.37 In brief,
monocytes were initially gated according to their forward scatter
(FSC) area and side scatter area characteristics. Doublet discrim-
ination was done using FSC-area and FSC-height. The monocyte
population was then subdivided based on their expression of
CD14 and CD16. Three monocyte subsets were distinguished:
classical monocytes (CD14++CD16−), intermediate monocytes
(CD14++CD16+), and nonclassical monocytes (CD14+CD16++),
as previously described.14 CD4+ T cells were stained and defined,
as previously described.27 In brief, for surface staining, the follow-
ing antibodies were used: FITC-conjugated anti-CD45RA (clone
L48; BD Biosciences) and anti-CD127 (clone HIL-7R-M21; BD
Biosciences); APC-H7-conjugated anti-CD4 (clone SK3; BD Bio-
sciences); APC/AF647-conjugated anti-CD127 (clone HIL-7R-
M21; BD Biosciences), anti-CXCR5 (clone RF8B2; BD Biosci-
ences), and anti-CD25 (clone 2A3; BD Biosciences); Brilliant Vio-
let 421–conjugated anti-CD25 (clone BC96; Biolegend) and anti-
CXCR3 (clone G025H7; Biolegend); and PE-Cy7-conjugated
anti-CCR4 (clone TG6/CCR4; Biolegend).

After surface staining, the cells were fixed and permeabilized
with a FoxP3/transcription factor staining buffer set (eBioscience),
and intracellular staining for FoxP3 was performed using phycoer-
ythrin (PE)–conjugated anti-FoxP3 (clone PCH101, eBioscience)
with PE-conjugated streptavidin (BD Biosciences) antibodies.
The T cell subsets were gated according to the gating strategy
presented in Supp. Fig. 1. The phenotypes of defined T cell sub-
sets were confirmed by lineage specifying transcription factor
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expression analysis by real-time quantitative polymerase chain
reaction and cytokine secretion analysis by Cytometric Bead
Array (BD Biosciences), as previously shown.27 Stained samples
were analyzed using a FACSCanto II equipped with FACS Diva
software (BD Biosciences), and the resulting data were analyzed
with FlowJo software (Tree Star).

Statistical analysis. Statistical analyses were performed
using GraphPad Prism 9, SPSS (version 25; SPSS, Inc), and
SIMCA 16 software (Umetrics). Wilcoxon’s signed rank test was
used for comparison between two dependent groups with
non-Gaussian distributions, and a two-tailed Mann-Whitney
U-test was used for comparisons between two independent
groups with non-Gaussian distributions. Multivariate factor
analysis by principal component analysis (PCA) and orthogonal
partial least-squares (OPLS) analysis was used to analyze the
associations between proportions of baseline immune cells
and percentage change in bone parameters from baseline to
48 weeks of treatment. For SIMCA, log transformation was
applied to normalize data. All data were scaled to unit variance
by dividing each variable by 1/SD so that all the variables were
given equal weight regardless of their absolute value. The qual-
ity of the OPLS models was assessed based on the parame-
ters R2 (ie, how well the variation of the variables is explained
by the model) and Q2 (ie, how well a variable can be predicted
by the model). Additionally, the cross-validated analysis of var-
iance (CV-ANOVA) P value was calculated as a measure of sig-
nificance for the observed group separation. Only the variables
that contributed most to the OPLS models were further ana-
lyzed by univariate analysis. Univariate correlations were per-
formed using two-tailed Spearman’s rank-order correlation.
Linear regression models were performed and presented with
unstandardized β values. There, all nonnormally distributed
variables were log-transformed for inclusion in these linear
regressions, and the models were adjusted for confounders,
as described in the legends. To account for multiple testing,
Bonferroni correction was applied, and associations with
P values smaller than Pcorrected were defined as significant.
The nine T cell subsets shown in Supp. Fig. 1 and the interme-
diate monocyte population were used in the PCA, OPLS, and
linear regression analysis.

RESULTS

Clinical characteristics of patients with early RA. To
investigate changes in bone characteristics, we analyzed data
from 30 patients with RA at baseline and after 48 weeks of treat-
ment (Table 1). At baseline, all patients were treatment naïve and
newly diagnosed with RA. The patients were randomly assigned
to treatment with MTX in combination with either anti-TNF (n =
13), anti-CTLA4-Ig (n = 10), or anti-IL-6R (n = 7). However, in this
study, the patients were not analyzed separately by treatment
because the subgroups were too small. The inflammation
markers CRP and ESR, the disease activity composite scores
DAS28 and CDAI, as well as TJC and SJC, were significantly
reduced in the patients after 48 weeks of treatment resulting in
CDAI remission in 57% of the patients (Table 1, Figure 1A–C).

Overall loss in bone density and microstructure
after 48 weeks of treatment in early RA. HR-pQCT was
used to investigate changes in vBMD and bone microstructure.
An overall bone loss was observed for total vBMD (−0.84%,
P = 0.004), cortical vBMD (−0.66%, P = 0.009), and trabecular
bone volume fraction (−0.60%, P = 0.03) (Table 2). Changes in
bone parameters were not associate with age, body mass index
(BMI), sex, ACPA positivity, intraarticular glucocorticoid injections
(Supp. Table 2), or disease parameters (Supp. Table 3) at base-
line. However, after 48 weeks of treatment, negative associations
were found for the changes in total and cortical vBMD with CDAI,
SJC28, and SJC66, but after correction for multiple testing, the
associations for total vBMD were no longer significant (Supp.
Table 3). Furthermore, a wide distribution of bone changes was
observed among the patients (Figure 2A). The majority of patients
had bone loss after 48 weeks of treatment with respect to total
vBMD (60%) and cortical vBMD (63.33%), but not to trabecular
bone volume fraction (50%) (Figure 2B). Clinical characteristics
at baseline of patients losing bone in comparison to patients not
losing bone for total vBMD, cortical vBMD, and trabecular bone
volume fractions are shown in Supp. Table 4. No major differ-
ences between patients losing bone and not losing bone were
observed for any of the bone parameters.

Additionally, all patients underwent bone analysis by DXA to
measure aBMD of the spine and femoral neck at baseline and

Table 2. Changes in cortical and trabecular bone parameters assessed by high-resolution peripheral quantitative
computed tomography*

Parameter (N = 30) Baseline 48 weeks P value Percentage change

Total vBMD, mean (SD), mg/cm3 272.4 (50.56) 268.7 (49.67) 0.004 −0.84
Cortical vBMD, mean (SD), mg/cm3 836.2 (63.1) 830.5 (63.1) 0.009 −0.66
Cortical area, mean (SD), mm2 116.3 (31.4) 114.9 (30.5) 0.056 −0.95
Trabecular bone volume fraction, mean (SD), % 0.130 (0.026) 0.129 (0.026) 0.034 −0.60
Trabecular number, mean (SD), 1/mm 1.87 (0.30) 1.86 (0.34) 0.68 −0.69
Trabecular thickness, mean (SD), mm 0.070 (0.012) 0.071 (0.013) 0.67 0.83

*The Wilcoxon matched-paired signed rank test was used for comparison. Significant P values are shown in
bold. Percentage change between baseline and after 48 weeks of treatment. vBMD, volumetric bone mineral density.
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after 48 weeks of treatment. Spine aBMD was significantly
reduced (−0.97%, P = 0.01) after 48 weeks of treatment. The T
score for spine was reduced (P = 0.02), and an increase in patients
with osteopenia was observed. The Z score for spine was not
changed after treatment. For the femoral neck aBMD, T score and
Z score did not change during follow-up (Supp. Table 5).

Connections between baseline immune cells and
overall bone change. To assess whether baseline levels of cir-
culating immune cells (nine T cell populations [Supp. Fig. 1] and
the intermediate monocyte population) were associated with
overall change of bone characteristics after 48 weeks of treat-
ment, we performed a cluster analysis by PCA. The bone
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parameters were projected in three different quadrants, whereas
the immune cell populations were spread over all four quadrants
(Figure 3A). Next, we performed multivariate OPLS analysis to
investigate associations between changes in individual bone
parameters after 48 weeks of treatment with the baseline propor-
tions of CD4+ T cell subtypes and intermediate monocytes (nine
T cell populations [Supp. Fig. 1] and the intermediate monocyte
population). We found associations with several CD4+ T cell
populations for all bone parameters (Figure 3B–D). However,
the low Q2 values for total vBMD (Figure 3B; Q2 = 0.09,
P [CV-ANOVA] = 0.27) and cortical vBMD (Figure 3C; Q2 = 0.09,
P [CV-ANOVA] = 0.27) indicate poor predictive power of the
model, which was also confirmed by the nonsignificant P values
for the CV-ANOVA. For trabecular bone volume fraction, the Q2

value was higher, indicating a better predictive power, as
shown by the significant P value for the CV-ANOVA (Figure 3D;
Q2 = 0.28, P [CV-ANOVA] = 0.01).

The two most relevant positive and negative associations for
each bone parameter were further analyzed by correlation tests.
The change in total vBMD did not correlate with Th1Th17,
CXCR3+Th17, or Th2 cells at baseline (Supp. Fig. 2A–C), but a
significant negative correlation with Th0 cells was observed
(Figure 3E; r = −0.38, P = 0.04). Similarly, the change in cortical
vBMD did not correlate with CXCR3+ Th17, Th1Th17, or Th2 cells
(Supp. Fig. 2D–F), but a significant negative correlation with Th0
cells at baseline was found (Figure 3F; r = −0.43, P = 0.02). The
change in trabecular bone volume fraction did not correlate with
Th0 cells at baseline (Supp. Fig. 2G), but a significant positive cor-
relation with Treg cells of CD4 (Figure 3G; r = 0.4, P = 0.03), as
well as significant negative correlations with CXCR3+Th2
cells (Figure 3H; r = −0.38, P = 0.04) and CXCR3+Th17
cells (Figure 3I; r = −0.36, P = 0.05) at baseline, were observed.
OPLS analysis showed no associations between baseline

intermediate monocytes and change in bone parameters after
48 weeks of treatment, although the proportion of intermediate
monocytes was reduced after treatment compared to baseline
(Supp. Fig. 3).

To identify additional possible confounders for the
change in bone parameters, we performed Spearman correla-
tion analysis between the baseline immune cell populations
and baseline disease parameters. Correlations were found
between CRP, CDAI, SJC28, and SJC66 for various immune
cells (Supp. Table 6), and the subsequent analysis was also
corrected for these parameters. To further validate our find-
ings, we performed linear regression analysis between
change in bone parameters after 48 weeks of treatment and
baseline immune cell subpopulations (nine T cell populations
[Supp. Fig. 1] and the intermediate monocyte population).
The analysis was corrected for age, sex, glucocorticoid
injections, CRP baseline score, CDAI baseline score, and
SJC28 and SJC66 baseline scores. As shown in Table 3,
baseline proportions of Treg cells associate positively
with change in trabecular bone volume fraction (β = 0.4,
P = 0.04). Furthermore, Th0 associated negatively with
changes in total vBMD (β = −0.06, P = 0.03) and cortical
vBMD (β = −0.07, P = 0.01). Changes in trabecular bone vol-
ume fraction were negatively associated with CXCR3+Th2
cells (β = −0.15, P = 0.04) and CXCR3+Th17 cells (β = −0.16,
P = 0.04) at baseline. However, after correction for multiple
testing (Pcorrected = 0.005), the associations were no longer
significant.

Taken together, high baseline proportions of CXCR3+Th2
cells and CXCR3+Th17 correlated with trabecular bone loss,
whereas high baseline proportions of regulatory T cells correlated
with no trabecular bone loss in patients with early RA after
48 weeks of treatment. The correlations were confirmed as

Table 3. Linear regression between percentage change of bone parameters and immune cells at baseline*

Parameter (N = 30)

Percentage change,
total vBMD

Percentage change,
cortical vBMD

Percentage change, trabecular
bone volume fraction

β P value β P value β P value

Intermediate monocytes
(baseline)

0.367 0.724 0.992 0.336 −1.322 0.255

Th0 (baseline) −0.059 0.033 −0.068 0.013 0.036 0.286
Th1 (baseline) 0.106 0.141 0.020 0.784 0.114 0.163
Th1Th17 (baseline) 0.088 0.374 −0.001 0.988 0.204 0.059
Th2 (baseline) −0.084 0.258 0.000 0.999 −0.102 0.233
CXCR3+Th2 (baseline) 0.029 0.672 0.109 0.109 −0.154 0.041
Th17 (baseline) −0.003 0.959 0.023 0.652 −0.060 0.286
CXCR3+Th17 (baseline) 0.007 0.924 0.088 0.213 −0.161 0.038
Tfh (baseline) 0.111 0.123 0.052 0.481 0.116 0.167
Treg of CD4 (baseline) 0.170 0.331 −0.113 0.520 0.398 0.039

*Linear regression analysis with percentage change of bone parameters from baseline (dependent variable) and
proportions of intermediatemonocytes, Th0, Th1, Th1Th17, Th2, CXCR3+Th2, Th17, CXCR3+Th17, Tfh, and Treg cells
of CD4 at baseline (independent variables). β values are unstandardized coefficients. Adjusted for age, sex, baseline
C-reactive protein level, baseline Clinical Disease Activity Index score, baseline swollen joint count of 28 joints score
and baseline swollen joint count of 66 joints score, and glucocorticoid injections. Significant P values after linear
regression are shown in bold (P <0.05). Significant P value after Bonferroni correction for multiple testing: Pcorrected=
0.005. Tfh, follicular helper T; Treg, regulatory T; vBMD, volumetric bone mineral density.
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significant associations after correction for confounding factors.
However, the associations were no longer significant when cor-
rected for multiple testing.

DISCUSSION

The immune system has major effects on bone homeostasis
and RA is associated with the development of both periarticular
and generalized bone loss. The effect of treatment with bDMARDs
on generalized bone loss and associations between bone density,
microstructure, and immune cells in patients with early RA has not
been determined before. In this study, we used HR-pQCT to inves-
tigate such changes in patients with ue RA after 48 weeks of treat-
ment with bDMARDs and explored relations between bone
characteristics, intermediate monocytes, and CD4+ T cell subsets.

The results reveal an overall total bone loss from baseline to
48 weeks of treatment, including reduction of cortical vBMD and
trabecular bone volume fraction, which was independent of age,
sex, BMI, ACPA positivity, and glucocorticoid injections. How-
ever, it needs to be noted that the study population has a mean
age of 58 years, indicating a high proportion of postmenopausal
women in the group, in whom bone loss to a similar extent is
expected.43–46 Still, a direct comparison between the previous
publications and the results from this study have several limita-
tions. First, the previous studies were performed in cohorts of
healthy women with mean ages spanning from premenopausal
to postmenopausal. Second, except for the study by Johannes-
dottir et al,46 in which HR-pQCT of the tibia was also performed,
other methods to analyze BMD were applied. Finally, the time
span between the bone measurements varied in the studies.
Together, this makes it difficult to conclude whether the general-
ized bone loss measured in the tibia in this study is a result of
menopause, age, and/or RA.

In comparison to the highly sensitive method HR-pQCT, we
also performed the commonly used DXA measurement of spine
and femoral neck at baseline and after 48 weeks of treatment.
The DXA confirmed bone loss in spine, but not in the femoral neck.
Previous studies of patients with early RA treated with bDMARDs
also showed no or a slower decrease of BMD when measured by
DXA.8,9 Together, this indicates the need to use a more sensitive
method to detect generalized bone loss in early RA.

Osteoporosis development in patients with RA has previ-
ously been shown to be related to increased disease activity.47,48

Not all patients included in this study had reached remission after
48 weeks of treatment with bDMARDs, as was also the case in
the whole NORD-STAR trial.39 In this substudy, the group of
patients with bone loss after 48 weeks of treatment did not have
higher disease activity at baseline compared to the group that
had no bone loss. However, after 48 weeks of treatment, the
patients who had an overall and cortical bone loss received higher
scores for CDAI, SJC28, and SCJ66 at that time point. Even
though this was not observed for the trabecular bone, these

associations confirm a link between disease activity and general-
ized bone loss in our study.

Although it has been shown earlier that the presence of
ACPA is associated with bone loss in patients with RA,49 we
could not find an association between ACPA positivity and bone
loss. The contrasting result could be due to the small study popu-
lation (N = 30) in this study. Even though we found that 86.7% of
the patients were ACPA positive, it needs to be mentioned that
we used a commercial CCP assay, which was shown to be less
sensitive than a custom array based on citrullinated peptides
and proteins detected in RA synovial tissue samples.50

Osteoporosis in RA has been associated with higher num-
bers of circulating osteoclast precursors originating from the mono-
cytic lineage.51 Specifically, the intermediate monocytes are
expanded in patients with RA and are suspected to negatively reg-
ulate BMD.16,19,52 However, we have previously shown that inter-
mediate monocytes are not expanded and are not associated
with bone characteristics in patients with ue RA.37 In the present
study, the population of circulating intermediate monocytes was
significantly reduced after 48 weeks of treatment compared to
baseline, but there was no association between baseline propor-
tions of intermediate monocytes and bone change after treatment.

RA is defined as a prototypic CD4+ T cell disease,53 but rela-
tions between baseline proportions of circulating CD4+ T cell sub-
sets and changes in bone microstructure after 48 weeks of
treatment have not been studied previously. A positive correlation
between the proportion of Treg cells at baseline and changes in
trabecular bone was found. However, after correction for con-
founding factors and multiple testing, the association could not
be confirmed. An imbalance between proinflammatory Th17 cells
and Treg cells, with increased Th17 cells and decreased Treg
cells, has been identified in RA, and this dysregulation of self-
tolerance could be causal for disease onset and progression.21

Treg cells can inhibit osteoclast differentiation and by that bone
resorption. This indicates that the reduced numbers or functions
of Treg cells observed in RA could result in bone loss.21 This is in
line with data from this study, in which high proportions of circulat-
ing Treg cells at baseline correlated with no loss of trabecular
bone after 48 weeks of treatment.

Negative correlations between proportions of baseline
CXCR3+Th2 and CXCR3+Th17 cells and trabecular bone loss
were found. However, after correction for confounding factors
and multiple testing, the associations could not be confirmed.
CXCR3+Th2 and CXCR3+Th17 cells are found in the circulation
of patients with established RA, but their levels are increased in
synovial fluid compared to blood. The accumulation of CXCR3+

cells in the joints might be explained by the high levels of CXCR3
ligands found in the synovial fluid.34

CXCR3+Th17 cells secrete IL-17 and IFNγ and both
cytokines are increased in the plasma of patients with early
RA.54 IL-17 is a known driver of osteoclastogenesis and anti-
IL17A therapy was shown to have a positive effect on bone and
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cartilage damage in inflammatory arthritis.55 The role of IFNγ for
bone homeostasis in RA is more controversial because it can
exhibit anti- as well as pro-osteoclastogenic functions. However,
studies have shown a shift toward pro-osteoclastogenic effects
under conditions of estrogen deficiency and inflammation, which
are factors that also influence RA.56 We previously described a
positive correlation of intermediate monocytes with CXCR3+Th17
cells in patients with ue RA. It is tempting to speculate that the
possible pro-osteoclastogenic effect of CXCR3+Th17 cells in
early RA could be reflected by its correlation with elevated levels
of intermediate monocytes, cells that are suspected to be directly
linked to osteoclastogenesis.37

Although Th2 cytokines are generally thought to exhibit anti-
inflammatory functions, IL-4 and IL-13 can induce the secretion
of proinflammatory cytokines (eg, IL-6 in RA fibroblast-like syno-
viocyte cultures), indicating the pathogenic potential for RA.34

Serum IL-6 is a major predictor of bone loss in women, particu-
larly during the first decade after menopause.57 IL-6 is also critical
for inflammatory bone loss in RA.58 Furthermore, because of the
ability of IL-4 to induce osteoporosis,32 speculation about a
potential osteopenic function of CXCR3+Th2 cells during bone
loss in RA is tempting.

The limitations of this study include the low number of patients,
which made it impossible to investigate whether bDMARDs with
different targets have differential effects on bone development and
joint erosions. Further, the expected average yearly bone loss in
postmenopausal women is similar to that found in this study. This
makes it hard to conclude whether the bone loss is induced by hor-
monal changes or RA. Additionally, one year is a short time frame
for the evaluation of generalized bone loss. Thus, a longer follow-
up time would have been informative. Although significant correla-
tions were observed between baseline CD4+ T cell populations
and bone loss, significant associations could not be confirmed after
sensitivity testing. Thus, the associations found are suggestive,
possibly because of the low number of patients.

To the best of our knowledge, this is the first study using HR-
pQCT–based bone characterization in patients with early RA
before and after 48 weeks of bDMARD treatment to evaluate the
development of generalized bone loss and alterations in bone
microstructure. We found that age, sex, and baseline disease
activity were independent of bone loss in patients with early RA
after 48 weeks of treatment with MTX combined with bDMARDs.
However, higher disease activity at 48 weeks associated with
bone loss. Correlation analysis between circulating immune cells
at baseline and changes in bone after treatment suggest
CXCR3+Th2 and CXCR3+Th17 cells as negative regulators and
Treg cells as positive regulators of trabecular bone in RA.
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