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Abstract

Identifying phage–host interactions (PHIs) is a crucial step in developing phage therapy, which is the promising solution to addressing
the issue of antibiotic resistance in superbugs. However, the lifestyle of phages, which strongly depends on their host for life activities,
limits their cultivability, making the study of predicting PHIs time-consuming and labor-intensive for traditional wet lab experiments.
Although many deep learning (DL) approaches have been applied to PHIs prediction, most DL methods are predominantly based on
sequence information, failing to comprehensively model the intricate relationships within PHIs. Moreover, most existing approaches
are limited for sub-optimal performance, due to the potential risk of overfitting induced by the highly data sparsity in the task of PHIs
prediction. In this study, we propose a novel approach called MI-RGC, which introduces mutual information for feature augmentation
and employs regional graph convolution to learn meaningful representations. Specifically, MI-RGC treats the presence status of phages
in environmental samples as random variables, and derives the mutual information between these random variables as the dependency
relationships among phages. Consequently, a mutual information-based heterogeneous network is construted as feature augmentation
for sequence information of phages, which is utilized for building a sequence information-based heterogeneous network. By considering
the different contributions of neighboring nodes at varying distances, a regional graph convolutional model is designed, in which
the neighboring nodes are segmented into different regions and a regional-level attention mechanism is employed to derive node
embeddings. Finally, the embeddings learned from these two networks are aggregated through an attention mechanism, on which
the prediction of PHIs is condcuted accordingly. Experimental results on three benchmark datasets demonstrate that MI-RGC derives
superior performance over other methods on the task of PHIs prediction.

Keywords: mutual information; metagenomic data; phage–host interaction; regional graph convolutional network; regional-level
attention

Introduction
Since the discovery of penicillin by Alexander Fleming in 1928,
it has been widely used to treat various bacterial infections [1].
However, the overuse of antibiotics has led to the emergence of
resistant bacteria [2]. Today, antibiotic resistance in various bac-
teria poses a global threat to the treatment of bacterial infections
[3]. The specific ability of phages to recognize and kill bacterial
hosts offers a promising solution for treating and controlling
antibiotic-resistant bacteria. In 2016, phages were successfully
used for the first time to treat a patient infected with a multidrug-
resistant strain of Acinetobacter baumannii, leading to global
recognition of phage therapy [4]. As research on phages deep-
ens, it has been discovered that phages influence the stability
of microbial communities through their interactions with bac-
terial hosts. Phages play significant roles in the pathogenesis
of diseases such as parkinson’s disease [5], diabetes [6], and
other diseases. Understanding and elucidating phage–host inter-
actions (PHIs) is crucial for in-depth research on phages. However,
the dependence of phages on bacterial hosts for their life cycle

makes studying PHIs through traditional experimental methods
extremely challenging due to stringent culture conditions, signifi-
cantly limiting the progress of experimental approaches [7]. Addi-
tionally, only 1% of microbial cells in natural environments are
culturable, making the available bacterial hosts for culture very
limited [8].

With the development of metagenomic technology, a large
amount of genetic data from phages and their host bacteria,
as well as metagenomic data, have been clarified. Predicting
the interactions between phages and bacteria using computa-
tional methods is highly significant [9]. During the co-evolution
of phages and hosts, gene exchange may occur, or molecular
signals such as Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) may be generated during the infection and
resistance process. These pieces of information can be used to
compute PHIs, thereby greatly reducing the time and cost required
to elucidate PHIs [10]. Using computational models not only help
to clarify PHIs but also predict the host range of newly discovered
phages and provide reliable phages for new bacteria [11].
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The predictive performance of current computational models
primarily depends on feature extraction and model selection.
From the perspective of feature extraction, existing models can
be broadly classified into those based on DNA sequence homol-
ogy, nucleotide or amino acid sequence features, and protein-
based features along with their physicochemical properties [12].
Exploiting features that reflect the relationship between phages
and hosts is crucial for PHIs prediction. For instance, prediction
methods such as VHM [13], PHP [14], and DeepHost [15] utilize
k-mer frequency from DNA sequences; HostG [16] and CHERRY
[17] employ CRISPR sequences; PHIAF [18] extracts features from
both DNA sequences and various physicochemical properties of
proteins. Additionally, features like receptor-binding protein (RBP)
used by Boeckaerts [19], and HMM profiles used by RaFAH [20] and
vHULK [21], are also noteworthy examples.

From the perspective of model design, existing prediction
methods can be mainly divided into statistical models, machine
learning models, deep learning (DL) models, graph models, and
hybrid models [12]. Statistical models primarily predict hosts
by calculating the match or dissimilarity between phage and
bacterial gene sequences. For instance, VHM [13] is one of
the earliest methods that used k-mer frequency dissimilarity
for phage host range prediction, and WisH [22] utilizes the
Markov model. Machine learning models can be categorized into
supervised and unsupervised learning models. For example, the
PHIDetector [23] model trains decision trees, logistic regression,
support vector machines, Gaussian Naive Bayes, and Bernoulli
Naive Bayes models. Other machine learning models include
random forests, and gradient boosting [12]. Deep learning models
simplify the feature extraction and model design processes,
making them suitable for large-scale data and high-dimensional
features. Examples include the Convolutional Neural Network
(CNN) used by ContigNet [24] and the Generative Adversarial
Network used by PHIAF [18]. Graph models can simulate the
potential interactions between phages and their bacterial hosts,
offering greater adaptability. HostG [16] and CHERRY [17] are
examples of prediction methods that construct networks, a
strategy currently yielding the best results. Hybrid models
combine statistical models with machine learning models, such
as RaFAH [20], or statistical models with DL models, such as
HoPhage [25].

In the task of PHIs prediction, although several predictive
methods have achieved promising results, there are still some
challenges. Among the currently available types of information,
most, aside from sequence information, have very limited data
volume and are applicable only to specific datasets, such as
CRISPR [26], RBP [27], Receptor Protein [28], and Quorum Sensing
[29]. It is essential to explore more informative and broadly
applicable data. Additionally, existing methods that use graph
neural networks can lead to information loss and redundancy
during data integration, as they do not account for the varying
contributions of neighbors at different distances to the aggre-
gation of central node information, thus diminishing model
performance.

In response to these challenges, we propose a mutual
information-based augmentation module and a Regional Graph
Convolutional (RGC) module. First, considering the survival
characteristics of phages that depend on bacterial hosts for
their life activities, we aim to extract more reliable information
from the microbial environment. We utilize mutual information
from information theory to explore and evaluate the correlations
of phages in metagenomic data. By treating the expression
information of phages in various environmental samples as

random variables, we quantify the information shared between
any two variables, thereby constructing a mutual information
network for phages to enhance their features.

Secondly, to better account for the contributions of neighboring
nodes at different distances to the central node, we introduce
the RGC model. In many prediction tasks based on graph mod-
els, researchers construct heterogeneous networks using various
distance metrics, but often neglect the varying contributions
of nodes at different distances when aggregating information.
This oversight inevitably generates a large amount of redun-
dant information. In such cases, directly applying graph convo-
lution, graph attention, or other graph-based models for feature
learning is inadvisable. Some existing methods enhance features
by setting a threshold to eliminate low-similarity connections.
While this operation improves the predictive performance of the
model, it also introduces a risk of information loss to some
extent.

In this study, we propose a novel end-to-end prediction model
(MI-RGC) for PHI prediction and conduct experiments on three
datasets, with results outperforming the latest baseline models.
The contributions of this study are as follows:

• We explored dependencies among phages in metagenomic
data for the first time using the concept of mutual informa-
tion.

• Sequence features were enhanced by integrating mutual
information among phages.

• Developed a regional graph convolutional model that learns
from densely connected sequence-based heterogeneous
graphs while using regional-level attention to learn the
contribution of neighbors from different regions to the
central node.

• This paper proposes a novel end-to-end prediction model and
has conducted experiments on five datasets.

Materials and methods
Dataset
In this study, we used one metagenomic dataset and three PHI-
related datasets for experiments. The metagenomic data used
for mutual information calculations contain 370 samples from
the human gut environment and is available for download under
PRJNA422434 [30].

The three PHI datasets are the ours-dataset, CHERRY-dataset
[17], and PHD-dataset [31]. The ours-dataset is a custom dataset
we constructed, containing entities with explicit abundance and
sequence information. The CHERRY-dataset is one of the most
widely used datasets in existing methods; we used it to perform
comparative experiments to better assess the predictive perfor-
mance of our model. Additionally, to evaluate the stability of
model performance, we constructed a larger dataset compared to
the ours-dataset and CHERRY-dataset for comparative analysis.
In the experiments, all three datasets were structured as bipartite
graphs, which primarily include two types of nodes, phages and
hosts, and edge relationships constructed based on PHIs. The clas-
sification information of the bacteriophages is referenced from
the International Committee on Taxonomy of Viruses. Table 1
presents the number of PHIs across three datasets, including the
number of phages at the species level (Phage (S)), the number of
phages at the genus level (Phage (G)), the number of hosts at the
species level (Host (S)), and the number of hosts at the genus level
(Host (G)).
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Table 1. Summary statistics for all datasets

datasets PHIs Phage(S) Phage(G) Host(S) Host(G)

Our 2002 1909 414 278 128
CHERRY 1876 1876 109 207 111
PHD 4724 4724 1594 553 149

Data preparation
This section mainly introduces how we processed sequence infor-
mation and obtained the mutual information of phages.

Computation of sequence information
We downloaded the gene sequences of phages and computed
their K-mer features. Then, by calculating the cosine similarity of
K-mer (k = 3) features between phages, we obtained a similarity
network among phages.

Sij =
−→pi · −→pj

‖pi‖‖pj‖ (1)

where −→pi and −→pj represent the characteristics of phage pi and pj,
respectively. ‖ · ‖ represents the �2 norm of the vector.

We assumed the relationship network between hosts to be
discrete, setting the adjacency matrix between hosts to be an
identity matrix in network construction. This is because the pro-
portion of phage-related information in host sequences is very
small, which is not conducive to prediction. Based on the bipartite
network constructed according to associations, we obtained a
heterogeneous network based on sequence information.

Computation of mutual information
Mutual information, an important concept in information theory,
is used to quantify the correlation and dependency between two
random variables [32]. Based on the characteristic that phages
rely on host bacteria for their life activities, we hypothesize that
if two phages share a significant amount of information across
multiple environments, they are likely to have similar host pref-
erences. Under this basic assumption, we used metagenomic
analysis tools to calculate the presence status of phages in various
samples.

First, we utilized KneadData [33] to filter out low-quality
reads and adapter sequences from the metagenomic data.
Subsequently, FastQC [34] was employed to assess the quality
of the filtered data. We then used Kraken2 [35] for taxonomic
classification and annotation of the DNA sequences to identify
microbial sequences, with Bracken [36] used to enhance the
accuracy of species-level annotations. Finally, we obtained the
absolute abundance of phages and bacteria across 370 samples,
determining the presence and distribution of phages and bacteria
within each sample.

The presence of phages in various samples is dependent on the
presence of their host bacteria. When two phages exhibit a high
degree of correlation or dependency in their state information,
the primary cause of this high correlation is likely the signifi-
cant similarity or even identity of their corresponding hosts. We
consider the presence state of phages across different samples
as random variables, and calculating the association between
phages involves computing the mutual information of these cor-
responding random variables. Below are some formulas related to
the calculation of mutual information [37].

Assume there is a discrete variable X with its probability distri-
bution denoted as p(X). The information entropy H(X) is defined
as

H(X) = −
∑
x∈X

p(x)logp(x) (2)

For random variables X and Y, their entropy is denoted as H(X)

and H(Y) respectively. The conditional entropy H(Y|X) are defined
as follows:

H(Y|X) =
∑
x∈X

p(x)H(Y|X = x) (3)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x)logp(y|x) (4)

= −
∑
x∈X

∑
y∈Y

p(y, x)logp(y|x) (5)

where p(y, x) = p(x, y) represents the probability of events Y = y
and X = x occurring simultaneously. The following is the formula
for calculating mutual information I(X; Y):

I(X; Y) = H(Y) − H(Y|X) (6)

= H(X) − H(X|Y) (7)

To better assess the degree of association between random
variables, we have normalized mutual information using a
method called Normalized Mutual Information (NMI). The
normalized result falls within the range of [0, 1]. When the
result approaches 1, it indicates a stronger association between
the variables, and when it approaches 0, it indicates a weaker
association, implying that the variables are independent of each
other.

NMI = I(X; Y)√
H(X) · H(Y)

(8)

We have obtained a phage association network based on
mutual information. This network determines whether there is an
association between phages, and the strength of the association is
determined by their corresponding similarity measures. Based on
the bipartite network constructed according to associations, we
obtained a heterogeneous network based on mutual information.

We constructed two types of homogenous networks for phages,
one based on phage sequence information and the other on
mutual information between phages. Combined with the bipartite
network constructed from association data, we ultimately gener-
ated two types of heterogeneous networks representing PHIs.

Regional graph convolution
Considering the varying contributions of neighbors at different
distances to the central node, this study segments the neighbors
of the central node into distinct intervals based on distance
and introduces a Regional-Level Attention mechanism (RL-AT)
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Figure 1. The overall framework of MI-RGC consists of two main components: data preparation and Regional Graph Convolution. The data preparation
section is further divided into two subsections: Dataset and Data Preparation. The Regional Graph Convolutional section is divided into three subsections:
(A) Graph Construction; (B) Graph Embedding; and (C) Link Prediction.

to derive more meaningful node embeddings. Subsequently, an
inner product decoder is employed on the resultant embeddings
to predict PHIs. Our model is trained in an end-to-end manner,
with parameters updated through gradient descent to minimize
the loss function. The overall workflow of the model is illustrated
in Fig. 1.

Graph construction
We denote the two heterogeneous networks constructed based
on sequence information and mutual information as Gsq and Gmi,
respectively. To facilitate feature integration in the later stages,
we set the initial node representations of both networks to be the
same.

Gsq =
(

Pm Am×N

AT
m×N Hn

)
(9)

Pm denotes the adjacency matrix of phages based on similarity
measures, with m representing the number of phages. Hn is the
identity matrix, with n representing the number of hosts. Am×N

stands for the association matrix between phages and hosts,
derived from known associations. For a phage i and host j, Aij = 1
if they are associated; otherwise, Aij = 0.

To prevent redundant learning of topological information, we
set the initial node features as follows:

(
0 trainA

trainAT 0

)
(10)

trainA represents the association matrix of the training set.

Gmi =
(

P′
m Am×N

AT
m×N Hn

)
(11)

here, P′
m denotes the adjacency matrix of phages, and its values are

determined by both mutual information and similarity measures.

Graph embeding
In the graph convolution model, the local computation graph is a
fundamental concept in graph convolutional networks, focusing
on the central node and its neighbors for feature aggregation
and information propagation. Parameters and weights are shared
across all local computation graphs, and the same information
propagation method should be used within the same local com-
putation graph. As illustrated in Fig. 1, we categorize the neigh-
bors of each node in the graph into different regions based on
distance metrics. Each region, along with the central node, forms
a subgraph that can be regarded as a local computation graph.
The figure demonstrates three local computation graphs, and in
our actual experiments, we set the number of local computation
graphs to four. Next, we will present the processes for regional
representation of the graph and node embedding calculations.

For the graph G, we label the neighbors of the central node
based on distance metrics among the nodes in the network,
dividing all neighbors into different regions to obtain a multi-
region network G = {V, E,R, ε}, where V represents a set of nodes,
E represents a set of edges, R represents a set of regions parti-
tioned based on similarity, and ε represents the interval length for
region partitioning, where R = {r1, r2, ..., rm}, where each region ri

represents the set of neighbor nodes whose distances from the
central node fall within the interval [1 − (i − 1) ∗ ε, i ∗ ε]. The nodes
in each region, along with the central node, collectively form a
local computation graph. The number of regions corresponds to
the number of local computation graphs established within this
framework.The embedding process of nodes during the informa-
tion aggregation and propagation in a single-layer GCN can be
represented as follows:

Zi = f (Zi,0, Zi,1, ..., Zi,t) (12)

here, Zi,r, 0 ≤ r ≤ t, represents the hidden representation of the
node i within the computational graph of the r-th region, and f (·)
denotes the aggregation function.
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The core of the information aggregation process still utilizes
the graph convolution algorithm. The information aggregation
rule for GCN is as follows:

Z(l+1)

i = σ

⎛
⎝∑

j∈N i

W(l)Z(l)
j

⎞
⎠ (13)

where Z(l)
i represents the hidden layer embedding of node i at

layer l and W(l) denotes the parameter matrix. N i represents the
neighboring nodes and σ represents the activation function ReLU.

Each layer of the GCN will propagate and aggregate information
based on the pre-partitioned regions. The aggregation method for
a single-region GCN is as follows:

Z(l+1)

i = σ

⎛
⎝∑

r

∑
j∈N i

r

W(l)
r Z(l)

j,r

⎞
⎠ (14)

where r represents the partitioned region, 0 ≤ r ≤ R, and W(l)
r

denotes the parameter matrix. The weights are shared when
aggregating nodes within the same region. N i

r represents the
neighboring nodes within region r.

Region-level attention learns different weights for each region’s
contribution to the central node. Firstly, a linear transformation
is applied to the generated representation of each region. Then, a
tanh activation function is used to learn nonlinear features. Sub-
sequently, another linear transformation is performed, followed
by a softmax operation to obtain the final scores.

αi,r = δ[W(l)
r1

σ(W(l)
r2

Z(l)
i,r)] (15)

here, δ and σ represent the activation functions softmax and tanh,
respectively. Z(l)

i,r represents the hidden representation for the node

i in region r of the l-th hidden layer, and W(l)
r1 and W(l)

r2 are the
parameter matrices corresponding to the two linear transforma-
tions.

According to the design of region-level attention, information
aggregation is performed on various regions generated around
each central node. As shown in Equation 16.

Z(l+1)

i = σ

⎛
⎝∑

r

∑
j∈N i

r

αirW
(l)
r Z(l)

j,r

⎞
⎠ (16)

Considering that the existence of edge relationships between
phages in the MI-based heterogeneous graph depends on mutual
information calculations, we analyzed the quantity of mutual
information and found that the average degree of a viral node
does not exceed 8. This indicates that the network itself is sparse,
and further regional partitioning operations are unnecessary, as
they would only increase the risk of model overfitting. We use the
RGC model to perform feature embedding for the heterogeneous
network constructed from sequence information, while utilizing
R = 0 (i.e.GCN) to embed features for the heterogeneous network
built on mutual information. Finally, we merge the two represen-
tations, Zsq and Zmi, resulting in the final embedding, as shown in
Equation 17.

Z = att(Zsq, Zmi) (17)

Line-prediction
In this study, we use an inner product decoder to predict the
interaction between phages and hosts, while employing the

Table 2. The parameters of MI-RGC

Strycture Parameters

Optimizer Adam
Epoch 4000
Layer Amount(L):3
dimension Units(K):64
Activation function ReLu
Feature-dropout 0.3
Edge-dropout 0.5
Initial learning rate 0.01
Loss function Cross-entropy loss function

cross-entropy loss function for model training.

A′ = sigmoid(ZPW′ZT
H) (18)

Here, W′ represents the trainable parameter matrix, A′ represents
the reconstructed association matrix, and ZP and ZH represent the
embedded representations of the phage and host, respectively.

The cross-entropy loss function employed in this study is espe-
cially well-suited for classification tasks.

L = − 1
NP × NH

⎛
⎝γ ×

∑
(i,j)∈y+

logŷ(ij) +
∑

(i,j)∈y−
log(1 − ŷ(ij))

⎞
⎠ (19)

Here, y+ and y− represent the positive and negative sample sets,
respectively. γ is a hyperparameter introduced to mitigate the
impact of the imbalance between positive and negative samples
on the experiment. NP and NH denote the total numbers of phages
and hosts, respectively.

Experiments
Model basic parameter and model validation
We first conducted experiments on our own dataset to intuitively
demonstrate the impact of various basic parameters on the
experiments through grid tuning. These basic parameters
mainly include the number of layers L of graph convolution,
L : {1, 2, 3, 4, 5, 6}; the embedding dimension k of the hidden
layer, k : {32, 64, 128, 256, 512, 1, 024}; the initial learning rate
lr of the optimizer, lr : {0.1, 0.01, 0.001, 0.0001}; the number of
training epochs, epoch : {500, 1000, 2000, 3000, 4000, 5000}; and
the selection of feature-dropout and edge-dropout, dropout :
{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Table 2 shows the best setting of
the basic parameters, which is obtained by a hyper-parameter
analysis.

In existing research methods for the PHIs prediction task, we
commonly use area under the receiver operating characteristic
curve (AUC), accuracy (ACC), area under the precision-recall curve
(AUPR) and Matthews correlation coefficient (MCC) as the evalu-
ation criteria to demonstrate experimental results. At the same
time, we visualized the precision-recall (P-R) curves and receiver
operating characteristic (ROC) curves for all models across the
three datasets.

Results and analysis
In this section, we conducted comprehensive experiments to
compare our model with baseline models, evaluate mutual
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Figure 2. The visualization of the ROC curve and P-R curve for all baseline models and MI-RGC across the three datasets.

information and regional graph convolution (RGC), assess region
partitioning, examine applicability across multiple datasets,
and analyze parameter tuning. It is important to note that our
model with the optimal settings listed in Table 2 was used in
all experiments, except for those involving parameter tuning. In
the comparative experiments with baseline models, all models
used downsampling to balance positive and negative samples,
and five-fold cross-validation was conducted on the sampled
datasets. This setup ensured that all evaluation metrics were
computed under conditions where the sample size and the ratio
of positive to negative samples were completely consistent across
the datasets.

Comparison with baseline models
We selected the latest baseline models from recent years for
comparative experiments. These models are as follows:

PredPHI [38] utilizes DL for feature embedding and employs K-
means clustering to select reliable negative samples.

PHIAF [18] is the first to apply a generative adversarial network
for data enhancement in PHI (PHIs) prediction tasks.

PHP [14] utilizes a Gaussian model to predict hosts for prokary-
otic viruses based on k-mer frequency differences between viral
and host genomes.

DeepHost [15] introduces a genome encoding method and com-
bines it with a CNN model to predict PHIs.

CHERRY [17] constructs a knowledge graph using various pro-
tein and gene sequence features and performs PHI prediction
through link prediction.

GCNAT [39] leverages graph convolutional networks and
attention mechanisms to predict interactions between drugs and
metabolites.

CL4PHI [40] is the first to introduce contrastive learning to
improve prediction accuracy.

We conducted experiments with these baseline models and
our model on the three datasets: ours-data, CHERRY-data, and

PHD-data, with the results shown in Figure 2 and Table 3. As illus-
trated, our model outperforms the other models in all metrics.
Both our model and GCNAT, as well as CHERRY, employ GCN
for feature embedding. Compared to GCNAT, CHERRY’s advan-
tage lies in its use of a network built with multiple information
sources, containing richer, more accurate, and higher-confidence
edge relationships. The advantage of MI-RGC, beyond the feature
augmentation module utilizing mutual information, is that our
method effectively learns the contribution of neighbor informa-
tion while also eliminating interference caused by redundant
information. In Table 3, it is shown that among the baseline
models, CL4PHI achieves higher metrics than PHIAF, DeepHost,
PHP, and PredPHI, as CL4PHI incorporates a contrastive learning
module.

Top-K prediction accuracy
In practical applications, we aim for the predictive model to
provide precise host associations for novel viruses. Therefore,
we analyzed the Top-K prediction accuracy of GCNAT, CHERRY,
CL4PHI, and our model. We assume that for any bacteriophage, if
a validated host appears within the top-K predictions, the model’s
prediction for that bacteriophage is considered successful; other-
wise, it is deemed a failure. The proportion of successful predic-
tions among the total samples represents the Top-K accuracy. We
selected GCNAT, CHERRY, CL4PHI, and our model for this experi-
ment because these models are designed to support top-K output,
and they incorporate distance metrics in their design. Notably,
GCNAT and CHERRY utilize graph models in their framework. This
metric offers a more comprehensive evaluation of the predictive
performance of the models.

For this experiment, we randomly selected 50 bacteriophages
from the dataset. We removed the known associations of these
50 bacteriophages from the dataset’s corresponding association
matrix before training the models. After training, we obtained the
prediction results for these 50 bacteriophages from the result files,
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Table 3. The experimental results of baseline models and MI-RGC on three datasets

Dataset MODEL AUPR AUC ACC MCC

ours PHP 0.4640 0.7734 0.9189 0.3217
PHIAF 0.4744 0.7818 0.9288 0.4612
PredPHI 0.4709 0.7826 0.9292 0.4751
GCNAT 0.3334 0.7934 0.8466 0.3881
DeepHost 0.5786 0.8330 0.9345 0.5122
CHERRY 0.6392 0.9145 0.8264 0.4328
CL4PHI 0.6296 0.8848 0.9257 0.4785
MI-RGC 0.7072 0.9650 9300 0.4986

CHERRY PHP 0.5441 0.8193 0.9307 0.4804
PHIAF 0.5664 0.8252 0.9301 0.4663
PredPHI 0.5374 0.8125 0.9309 0.4767
GCNAT 0.3096 0.8799 0.8002 0.3961
DeepHost 0.5652 0.8799 0.9258 0.4153
CHERRY 0.5634 0.8993 0.8328 0.4435
CL4PHI 0.6054 0.8807 0.9311 0.4733
MI-RGC 0.6267 0.9567 0.9273 0.5163

PHD PHP 0.5278 0.8399 0.9293 0.5345
PHIAF 0.5352 0.8355 0.9299 0.5149
PredPHI 0.4829 0.8168 0.9189 0.5001
GCNAT 0.3352 0.8095 0.8331 0.3764
DeepHost 0.5570 0.8441 0.9285 0.5133
CHERRY 0.5513 0.9113 0.8870 0.4051
CL4PHI 0.6121 0.8900 0.9349 0.5353
MI-RGC 0.6381 0.9370 0.9240 0.5262

Figure 3. The experimental results of top-k prediction.

identified the Top-K predicted hosts, and calculated the accuracy
accordingly. The results are shown in Fig. 3.

Evaluation of mutual information and RGC
In this section, we designed experiments targeting mutual
information and regional graph convolution. We conducted
experiments by removing mutual information and replacing
regional graph convolution with original graph convolution. We
first used the GCN model to conduct experiments on the network
constructed based on sequence information, which is represented
as GCN in the table. Then, we added mutual information on
top of the sequence information to construct the network
and conducted experiments using the GCN model, represented
as MI-GCN. The results show that the inclusion of mutual
information improved the prediction performance of the model.

Table 4. The effect of mutual information and RGC

MI-RGC AUPR AUC ACC

GCN 0.3334 0.7934 0.8466
MI-GCN 0.4351 0.8546 0.9037
RGC 0.6495 0.9577 0.9275
MI-RGC 0.7072 0.9650 0.9300

To evaluate the performance of regional graph convolution,
we used the regional graph convolutional model for feature
learning on the network constructed from sequence information,
represented as RGC. The results indicate that the prediction
performance of the regional graph convolutional model is
significantly higher than that of the GCN model. Finally,
we considered both mutual information and regional graph
convolution, represented as MI-RGC. The results demonstrate
that the model obtained with this combination achieves the best
prediction performance.

The experimental results are shown in Table 4. The experimen-
tal results show that adding the mutual information module to
the graph convolution model significantly improved AUC and ACC
scores. After replacing graph convolution with regional graph con-
volution, the model’s AUC increased by 17%, and ACC increased
by 9%. Although adding mutual information to the regional graph
convolution also improved the experimental results, the improve-
ment was limited. Our analysis suggests that, on one hand, the
mutual information module contains a certain amount of redun-
dant information; on the other hand, the scale of the mutual
information data is also an important factor.

Evaluation of region partitioning
This section primarily conducts experiments, comparisons, and
analyses on different choices of region partitioning. Overall, the
performance of the model after region partitioning has shown
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Table 5. Results with a region length of 0.005

Region AUPR AUC ACC

R = {r1} 0.4206 0.9463 0.9771
R = {r1, r2} 0.4323 0.9518 0.9770
R = {r1, r2, r3} 0.4297 0.9523 0.9796
R = {r1, r2, r3, r4} 0.4622 0.9634 0.9877
R = {r1, r2, r3, r4, r5} 0.4266 0.9504 0.9783
R = {r1, r2, r3, r4, r5} ∪ {r!} 0.3987 0.9057 0.9676

Table 6. Results with a region length of 0.01

Region AUPR AUC ACC

R = {r1} 0.4266 0.9504 0.9783
R = {r1, r2} 0.4472 0.9620 9735
R = {r1, r2, r3} 0.4359 0.9569 0.9728
R = {r1, r2, r3, r4} 0.4317 0.9436 0.9681
R = {r1, r2, r3, r4, r5} 0.4176 0.9215 0.9522
R = {r1, r2, r3, r4, r5} ∪ {r!} 0.3967 0.8954 0.9253

significant improvement compared to the basic GCN model, as
demonstrated in Tables 5 and 6.

For the region partitioning, we selected two interval lengths:
0.005 and 0.01 for the experiments. First, the neighbors are parti-
tioned into regions based on the specified interval lengths: R =
{r1}, R = {r1, r2},..., R = {r1, r2, r3, ..., rm} ∪ {r!}. Taking 0.01 as an
example, {r1} represents the interval [1, 0.99]; {r1, r2} represents
the interval [1, 0.99)∪ [0.99, 0.98], and so on. Notably, {r!} indicates
that the remaining nodes not included in the first m regions
are uniformly assigned to this area; for example, {r1, r2} ∪ {r!}
represents [1, 0.99)∪[0.99, 0.98)∪[0.98, 0]. The experimental results
indicate that whether we choose 0.005 or 0.01, the predictive per-
formance of the model after partitioning is clearly superior to that
of the GCN model before partitioning. Moreover, after adding the
{r!} region, both partitioning scenarios showed a notable decline
in performance, suggesting that information from low-similarity
neighbors can negatively impact the contribution to the central
node. Ultimately, we chose an interval length of 0.005 with R =
{r1, r2, r3, r4} as the final output result.

The choice of region length was based on the distribution of
distances between each central node and its neighboring nodes,
which is partially shown in Table 7. In Table 7, the first five phages
infect the same host, while the last five infect another host.
According to Table 7, using 0.005 as the region length, when the

threshold is set at 0.96, the number of neighboring nodes for
each node is already quite large. Additionally, in Tables 5 and 6,
we also presented experimental results using different region
lengths. The results indicate that using 0.005 as the region length
is optimal. Moreover, as the threshold continues to decrease, the
performance of the model starts to decline.

Evaluation of parameter tuning
This section mainly discusses the settings of the basic parameters
involved in the RGC model. This section mainly discusses the
setting of basic parameters involved in the model. We adopted a
grid tuning approach to adjust and analyze the six basic param-
eters of the model. This is because grid tuning is more intuitive
compared to other tuning methods. As shown in Fig. 4. It should be
noted that we first conducted a tuning process for dimensions and
learning rate, so the maximum values shown in Fig. 4(a) are not
the optimal results. The results obtained from the tuning process
of layers and epochs are presented in Fig. 5.

Case study
Case study for mutual information
To demonstrate the reliability and effectiveness of mutual infor-
mation more clearly, in addition to the relevant experiments we
designed, we also conducted statistical analysis and case studies
on the information content of mutual information. Through
statistics, we obtained 16 052 pieces of mutual information,
among which 12 894 pieces involve shared hosts. This means
that in these 12 894 pieces of mutual information, the two phages
involved in any mutual information infect the same bacteria in
real data, which is precisely the information we need. Of course,
the remaining mutual information that does not involve shared
hosts also helps improve the performance of the experiments.
Additionally, the number of phage species involved in these
mutual information is 780. Taking the bacterium Ruminococcus
gnavus as an example, as shown in Table 8, there are six phage
species corresponding to this bacterium. Figure 6 illustrates
the mutual information among these phages, indicating a
strong association between them, which we attribute to their
shared host.

Case study for MI-RGC
To test the predictive performance of MI-RGC for new viruses
and new host bacteria, we randomly selected two bacteria,
Klebsiellapneumoniae and Escherichiacoli, as well as two phages,

Table 7. Partial presentation table of the distribution of neighboring nodes of 10 central nodes within the region

Top Phage [1, 0.995) [1, 0.99) [1, 0.985) [1, 0.98) [1, 0.975) [1, 0.97) [1, 0.965) [1, 0.96)

1 Enterobacteria phage H19J 2 4 32 69 97 131 167 196
2 EnterobacteriaphageP-EibC 1 2 13 39 69 103 145 199
3 Enterobacteria phage P-EibD 1 2 12 15 27 60 82 116
4 EnterobacteriaphageP-EibE 2 3 18 53 83 112 141 178
5 Enterobacterial phage P-EibA 1 4 22 39 97 131 169 187
6 Lactococcus phage bIL311 31 61 106 167 255 328 378 428
7 Lactococcus phage bIL285 26 64 133 174 242 337 391 436
8 Lactococcus phage bIL286 25 66 130 170 278 349 400 446
9 Lactococcus phage bIL310 30 100 144 184 216 339 449 525
10 Lactococcus phage Tuc2009 38 93 135 208 297 340 449 561
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Figure 4. Experimental results based on grid tuning.

Figure 5. Visualization of the performance by layer and epoch.

Table 8. The names and corresponding ACCESSION of the
phages infecting Ruminococcusgnavus

True-relevance ACCESSION

RuminococcusphagePHIsRg507T2-2 MT980836
Ruminococcus phage PHIsRg507T2-3 MT980837
Ruminococcus phage PHIsRM10 MT980841
Ruminococcus phage PHIsRg519T2 MT980838
Ruminococcus phage PHIsRgPS-6 MT980839
Ruminococcus phage PHIsRgIBDN1 MT980840

phage R18C and Escherichia 1720a-02. We removed all the
association information of these four entities. We conducted
experiments separately, and the results are shown in Tables 9, 10,
and 11. The experimental results indicate that MI-RGC performed
well in predicting new viruses and their corresponding new host
bacteria.

Discussion
In this study, we propose a novel prediction model (MI-RGC) for
host prediction of novel viruses. Considering the characteristic of
phages depending on host environments for survival, we leverage

Figure 6. Visualization of the mutual information among the phages
infecting Ruminococcusgnavus.

the concept of mutual information from information theory to
extract effective information between phages from metagenomic
data. Based on the extracted mutual information and existing
sequence information, we construct heterogeneous networks: one
based on mutual information and another based on sequence
information. During the network embedding learning process, to
better quantify the contributions of different neighboring nodes to
the central node and avoid overfitting, we partition the neighbor-
ing nodes into different regions and use a region-level attention
mechanism to learn the contributions of these regions. Finally, we
use graph convolutional algorithms for information aggregation.
When aggregating neighboring nodes within the same region,
the nodes in that region share weights and parameters, which
are not shared among different regions. The model then uses
an attention mechanism to aggregate the embeddings of the
two heterogeneous graphs, obtaining the final representation and
using a predictor for prediction.

Experimental results show that the MI-RGC model outperforms
state-of-the-art models in prediction performance. Additionally,
we analyze the quality of the generated mutual information,
demonstrating that the mutual information extracted from the
sample environment is effective for phage host prediction tasks.
Regarding the Region Graph Convolution (RGC) model, we also
conducted experiments on different datasets, and the results
indicate that RGC outperforms the latest model strategies in this
task.
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Table 9. The top20 results of predictions for Klebsiellapneumoniae

Top Phage PMID Top Phage PMID

1 Klebsiella phage RAD2 34431721 11 Drulisvirus minorna N/A
2 Klebsiella phage vB_KpnS-ZX4 26008965 12 Taipeivirus menlow 31023815
3 Klebsiella phage vB_1086 35985450 13 Delmidovirus copri N/A
4 Klebsiella phage ST11-VIM1PHIs8.2 31752386 14 Webervirus mezzogao 29122857
5 Klebsiella phage vB_KpnM_17-11 35865823 15 Webervirus sweeny 31558643
6 Klebsiella phage vB_KleM KB2 37330608 16 Diorhovirus copri N/A
7 Klebsiella phage vB_KpnP-Bp5 33631221 17 Webervirus sin4 31558644
8 Lastavirus sopranoga 29122857 18 Efquatrovirus SHEF4 N/A
9 Pylasvirus pylas 31727721 19 Drulisvirus altogao 29122857
10 Taipeivirus may 31072899 20 Yonseivirus seifer 31727722

Table 10. The top20 results of predictions for Escherichiacoli

Top Phage PMID Top Phage PMID

1 Escherichia phage vB_EcoM_C2 − 3 34762992 11 Enterobacteria phage-P4 7483254
2 EscherichiaphagevB_EcoM-P10 34966369 12 Tequatrovirus-T4 26081634
3 Escherichia phage vB_EcoP-ZX5 36558779 13 Traversvirus II 12813092
4 EscherichiaphagevB_EcoM-Alf5 28522702 14 Goslarvirusgoslar 31109012
5 Escherichia phage vB_EcoS-PJ16 37632591 15 Inovirus M13 5257006
6 Escherichia coli phage PHIsStx2k 38078984 16 Kuttervirus SenALZ1 N/A
7 Escherichia phage vB_EcoM-RPN242 35598209 17 Escherichia phage OSYSP 38182094
8 Escherichia phage TL-2011b 22403614 18 Kayfunavirus SH4 N/A
9 Escherichia phage Schickermooser 31109012 19 Jahgtovirus intestinalis N/A
10 Escherichia phage SRT7 30762120 20 Warwickvirus tunus 32899836

Table 11. The top5 results of predictions for phageR18C and
Escherichia1720a-02

Phage Host-predicting Evidence(PMID)

phage R18C Escherichia coli 31641840
Citrobacterrodentium 31641840
Erwinia amylovora N/A
Shigella sonnei 31641840
Citrobacter koser N/A

Escherichia
1720a-02

Citrobacter rodentium 34929548

Escherichia sp. N/A
Citrobacter freundii N/A
Escherichia coli 32761142
Citrobacter koseri N/A

Key Points

• We annotated the state information of phages in each
sample from metagenomic data, treated the state infor-
mation as random variables for mutual information
calculation, and ultimately obtained the mutual infor-
mation of phages.

• We constructed a heterogeneous network using the
mutual information of phages and known interactions,
which was used as a feature augmentation module.

• We developed a Region Graph Convolution (RGC) model,
which divides the network constructed based on dis-
tance metrics into different regions and learns the

contributions of neighbors in different regions to the
central node through a region-level attention mecha-
nism.

• The design and prediction strategy of the MI-RGC model
is significantly effective in PHIs prediction, and the end-
to-end model is more conducive to applying this model
in other fields.
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