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Abstract

Accurate prediction of RNA modifications holds profound implications for elucidating RNA function and mechanism, with potential
applications in drug development. Here, the RNA-ModX presents a highly precise predictive model designed to forecast post-
transcriptional RNA modifications, complemented by a user-friendly web application tailored for seamless utilization by future
researchers. To achieve exceptional accuracy, the RNA-ModX systematically explored a range of machine learning models, including
Long Short-Term Memory (LSTM), Gated Recurrent Unit, and Transformer-based architectures. The model underwent rigorous testing
using a dataset comprising RNA sequences containing the four fundamental nucleotides (A, C, G, U) and spanning 12 prevalent
modification classes (m6A, m1A, m5C, m5U, m6Am, m7G, �, I, Am, Cm, Gm, and Um), with sequences of length 1001 nucleotides. Notably,
the LSTM model, augmented with 3-mer encoding, demonstrated the highest level of model accuracy. Furthermore, Local Interpretable
Model-Agnostic Explanations were employed to facilitate result interpretation, enhancing the transparency and interpretability of
the model’s predictions. In conjunction with the model development, a user-friendly web application was meticulously crafted,
featuring an intuitive interface for researchers to effortlessly upload RNA sequences. Upon submission, the model executes in the
backend, generating predictions which are seamlessly presented to the user in a coherent manner. This integration of cutting-edge
predictive modeling with a user-centric interface signifies a significant step forward in facilitating the exploration and utilization of
RNA modification prediction technologies by the broader research community.

Keywords: RNA modification prediction; machine learning models; post-transcriptional modifications; LSTM model; web application
interface; RNA sequence analysis

Introduction
RNA modification prediction is a burgeoning field of research,
propelled by recent advancements in machine learning (ML) [1].
The RNA molecule, a cornerstone of biological processes, under-
goes structural and functional mutations during or after pro-
tein synthesis, posing potential risks to internal stability. These
modifications are prevalent in both coding and noncoding RNA,
impacting fundamental cellular functions. RNA modifications
could be found in both coding and noncoding RNA with potential
harms of altering the internal stability [2].

One of the most well-known RNA modifications is N6-
methyladenosine (m6A), which is involved in regulating RNA
metabolism, including splicing, export, localization, translation,
and decay [3]. Dysregulation of m6A modification has been linked
to several diseases, including cancer, neurological disorders, and
cardiovascular diseases. Other significant modifications include
pseudouridine (�), 5-methylcytosine (m5C), and inosine (I), each
contributing uniquely to RNA function and stability [4]. For

instance, pseudouridine enhances the stability of transfer RNA
and ribosomal RNA, while inosine plays a critical role in RNA
editing and can affect codon recognition during translation [5].

Sequencing technologies have enabled the representation of
RNA as sequences of characters, opening avenues for predictive
analytics. Techniques such as recurrent neural networks (RNNs)
and Transformers, originally developed for natural language pro-
cessing, are now applied to healthcare research, facilitating the
analysis of RNA sequences [6]. These techniques, adapted from
natural language processing, enable more precise interpretations
of RNA sequences and their functional impacts, facilitating efforts
to detect modifications efficiently [1, 6–12].

In the realm of bioinformatics, a profound understanding of
DNA replication for protein synthesis is imperative. Genetic infor-
mation transcribed from DNA regulates gene expression, cru-
cial for immune system function. RNA modifications, occurring
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synthesis and potentially triggering immune-related disorders
[13]. Technological advancements have enabled the detection of
such modifications, with the recent surge in artificial intelligence
bolstering accuracy and efficiency [1, 6, 8].

Before the advent of deep neural networks, classical ML
models laid the groundwork for healthcare studies, offering
effective means of feature extraction from RNA sequences
[14–17]. The transition from textual to numerical representation
through statistical analysis is pivotal for model training, with the
efficacy of feature engineering techniques driving reliable results
[1, 18–20]. This study strategically evaluates various feature
extraction methods, selecting the most suitable approach for
training the RNA-ModX model [1].

Advancements in technology have enabled the processing and
analysis of vast bioinformatics datasets, furnishing researchers
with semantic insights gleaned from publicly available databases.
A robust data lifecycle and an intuitive platform for predic-
tive modeling streamline the analytical process, enhancing user
experience and productivity [8, 21–23]. ML has revolutionized
the exploration of complex RNA structures and their associated
modifications, alleviating the arduous task of manual analysis
[22, 23]. Concurrently, analytical architectures have evolved to
address previous limitations, with both single-type binary clas-
sification and multiclass prediction approaches garnering recog-
nition [8, 24–26].

This study builds upon the groundwork laid by the MultiRM,
focusing on predicting prevalent RNA modification classes [8].
Leveraging datasets curated by the MultiRM ensures consistency
and minimizes bias. Performance metrics are benchmarked
against diverse research groups’ findings, contributing to the
project’s overall success. By adopting a multitasking prediction
architecture, this study aims to capitalize on learning opportuni-
ties and develop a comprehensive framework for predicting RNA
modification sites, addressing limitations inherent in previous
predictive modeling approaches.

Materials and methods
Datasets
The dataset utilized in this study comprises RNA sequences
composed of the 4 basic nucleotides (adenine, cytosine, guanine,
and uracil) and encompasses 12 distinct modification classes.
This dataset was initially curated by the MultiRM study [8] for
bioinformatics analysis and serves as the foundation for our
model development and validation. Presently, the dataset is
publicly available, with each sequence record comprising 1001
characters.

Notably, the dataset is structured such that the modified
nucleotide is consistently positioned at the center (500th position)
of each sequence. This positioning is pivotal for predicting the
final RNA modification class, as it allows for precise identification
of the modified nucleotide. Given the fundamental role of
nucleotides as the basic building blocks of RNA molecules,
accurately identifying modified positions is indispensable for
bioinformatics analysis.

In the context of RNA modification, specific modification
classes are associated with particular nucleotides (Fig. 1). For
instance:

• Adenine (A): Encompasses modification classes such as m6A,
m1A, Am, I, and m6Am.

• Cytosine (C): Encompasses modification classes such as m5C
and Cm.

Table 1. Modification classes with sample count

Modification class Number of samples

m6A 64 978
m1A 16 146
m5C 3007
m5U 3496
m6Am 2247
m7G 836
� 52 418
I 2937
Am 1319
Cm 1678
Gm 1271
Tm/Um 2053

• Guanine (G): Encompasses modification classes such as m7G
and Gm.

• Uracil (U): Encompasses modification classes such as m5U, �,
and Um.

This categorical association facilitates the classification of RNA
sequences based on their modification status, aiding in the explo-
ration and understanding of RNA modification dynamics.

The dataset used in this study, while comprehensive, exhibits
class imbalance across the 12 RNA modification classes. As
detailed in Table 1, certain modification classes have significantly
fewer samples compared to others, which could introduce bias
during model training and affect the model’s ability to generalize.

To address this imbalance, we applied data balancing tech-
niques during model training for modification class prediction
with respect to the identified genome type. Specifically, we uti-
lized random oversampling for underrepresented classes, thereby
creating a more balanced dataset. This approach helps mitigate
biases arising from class imbalance and enhances the model’s
ability to learn from all modification classes effectively.

RNA sequencing preprocessing
Performing statistical analysis on the entire RNA sequence incurs
significant computational costs and introduces data noise, par-
ticularly with increasing sequence length. This noise can mask
true modified RNA motifs, complicating detection amidst non-
modified signals present throughout the sequence. To mitigate
these technical challenges, we undertook an additional step to
identify the statistically optimal length of the RNA sequence. We
systematically compared window sizes of 51 and 101, ensuring
that the middle position of each window aligned with the cor-
responding position in the original RNA sequence. Six datasets
were generated by applying k-mer techniques, ranging from 1-
mer to 3-mer, followed by trimming the sequences to lengths
of 51 and 101. To expedite evaluation, we meticulously assessed
the performance of a logistic regression model on all prepared
datasets.

Our findings (as shown in Fig. 2) revealed that, on average,
window sizes of 51 exhibited a competitive advantage in
computational time, with training times ∼50% shorter compared
to sequences of length 101. This efficiency stemmed from the
reduced training dimensionality of shorter sequences. However,
shorter training sequences demonstrated a tradeoff in terms of
model performance.

Ultimately, we standardized our model training process by
selecting a length of 101 for RNA sequences, aligning with the
project’s primary objective of achieving higher model accuracy.
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Figure 1. RNA modification included in this study.

Figure 2. Model performance metrics evaluation for sequence 51 versus sequence 101 on various k-mer approaches.

Future efforts will focus on leveraging deep neural networks
to optimize computational efficiency, thereby enhancing our
ability to pursue medical breakthroughs with robust computing
resources.

Feature engineering and embeddings
Given the intricate nature of RNA sequence data, the strategic
selection of embedding methods and adept feature engineering
are paramount for achieving successful modeling outcomes. Ini-
tially, in our binary model development, we employed one-hot
encoding for binary vector representation, yielding a surprising
accuracy of 63% in the initial iteration, even without employing
data balancing techniques.

Building upon this foundation, we explored established feature
descriptors tailored for RNA sequence-based data [21], including
the following:

• K-mer: This method involves converting RNA sequences into
sliding windows of length “k.”

• Nucleic Acid Combinations: Calculating the frequency of
specific nucleotide groups within RNA sequences.

• Complex Network: Utilizing graph theory to extract relation-
ships between nodes in RNA sequences.

• Word2Vec: Employing the Gensim package to transform
nucleotide groups into numerical vectors.

While Nucleic Acid Combinations and Complex Network
methods excel in capturing nucleotide interactions, they may
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Figure 3. RNA-ModX solution—a multilayer model architecture.

pose computational challenges, particularly with large sequences.
Word2Vec, though adept at capturing semantic relationships, may
sacrifice some local sequence information and entail significant
computational overhead for model training. In contrast, the
K-mer method offers simplicity and computational efficiency,
preserving local sequence information and effectively capturing
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Table 2. Hyperparameter settings of three different models

Architecture LSTM model GRU model Transformer model

Input sequence length (time steps) 101 101 101
Input dimension 96 1118 96
Hidden state dimension 256 7 16
Number of LSTM/GRU layers 3 3 3
Batch size 1000 32 32
Output dimension 1 1 1
Output activation function Sigmoid Sigmoid Sigmoid

(2) GRU network: another variant of RNN architecture, which
addresses the vanishing gradient problem by incorporat-
ing update and reset gates to regulate information flow.
Characterized by a simpler structure compared to LSTMs,
GRU models offer efficiency without compromising perfor-
mance. Hence, the RNA-ModX ventured into exploring GRU
models as an alternative architecture for RNA modification
prediction.

(3) Transformer model: renowned for its self-attention mecha-
nism, it presents a novel approach to sequence modeling.
By capitalizing on self-attention, Transformers excel at
capturing both local and global dependencies within RNA
sequences, crucial for discerning nuanced relationships
between nucleotide positions and modifications. Unlike
RNNs, Transformers process RNA data in parallel, enhanc-
ing computational efficiency, particularly for large-scale
genomics datasets. The key components of a Transformer
include (1) Self-Attention Mechanism, (2) Encoder and
Decoder Stacks, (3) Residual Connections and Layer Nor-
malization, and (4) Masking.

For all three models, training parameters such as the number
of epochs were carefully configured to strike a balance between
computational efficiency and convergence to optimal solutions.
The LSTM and GRU models were trained over 10 epochs, while the
Transformer model underwent 100 epochs of training, acknowl-
edging the tradeoff between training time and solution optimiza-
tion. The main dimensions configured for the above three models
are shown in Table 2.

In addition to neural architectures, tree-based models such
as Random Forest and XGBoost were incorporated for model
training. These models offer simplicity and interpretability, aug-
mented by bagging to mitigate overfitting and boosting to rebal-
ance weightage. This holistic approach facilitates a comprehen-
sive exploration of diverse modeling techniques while ensuring
interpretability and ease of solution architecture.

Model performance and evaluation
To comprehensively evaluate the various models, metrics such
as accuracy, precision, recall, and F1 score were employed to
compare within models and gain insight into their performance
and limitations.

Additionally, visual representations in the form of accuracy
versus epoch plots and loss plots were utilized to monitor model
performance throughout training (Supplementary Data). These
plots depict how model accuracy and loss evolve over training
epochs, aiding in the detection of overfitting or underfitting and
guiding decisions regarding model convergence and hyperparam-
eter adjustments.

Overall binary classification
The RNA-ModX initiated the modeling endeavor with a binary
classification approach aimed at identifying the presence or
absence of RNA sequence modification. Employing tree-based
models such as XGBoost and Random Forest, we conducted
exhaustive hyperparameter tuning to optimize performance.
Results (as shown in Table 3) indicate that, with meticulous
configuration, XGBoost achieved superior accuracy, reaching 76%,
compared to the default configuration’s accuracy of 73%.

Individual binary classification
Following the overall binary classification, the study proceeded
to individual-level binary classification, focusing on specific
nucleotide modifications (Table 4). This phase involved parti-
tioning the dataset into 12 distinct subsets, each representing
non-modified and modified forms of a particular nucleotide.
Various feature encoding techniques were applied to each
subset, accompanied by specific model architectures. Notably,
the LSTM model with 3-mer encoding demonstrated the best
performance, achieving optimal average accuracy across all
binary classes (AUCb). Encouragingly, while presenting in one-
to-one comparison, models consistently performed best when
utilizing 3-mer encoding, underscoring its biological significance
in RNA sequence prediction. Result table below elicits the
comparison between various training architecture adopted by the
team as well as predictive model shared by MultiRM (indicated in
the first row).

Multiclass classification
Building upon individual binary classification, the RNA-ModX
advanced to multiclass classification (Table 5). Leveraging the
predetermined position of modifications within RNA sequences,
specific multiclass models were selected for prediction based
on the middle position of each sequence. Precision and recall
metrics were computed for each class, revealing varying degrees
of confidence in class differentiation. Notably, Transformer
models exhibited promising performance in distinguishing
between different subclassifications, particularly for class G.
However, challenges were encountered with class A due to
data imbalance, resulting in lower accuracy. Moreover, during
model evaluation, additional plots including accuracy versus
epoch and loss comparison plots were generated, depicting
model convergence and providing insights into gradient descent
dynamics.

In summary, the evaluation process not only validated the
efficacy of diverse modeling techniques but also highlighted the
importance of feature encoding methods and model selection in
optimizing RNA modification prediction performance.
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Table 3. RNA-ModX overall binary classification performance

Model Train Test Valid

Acc Recall Precision F1 Acc Recall Precision F1 Acc Recall Precision F1

XGB 0.879 0.868 0.887 0.878 0.629 0.686 0.616 0.649 0.761 0.755 0.764 0.759
RFC 0.999 0.999 0.999 0.999 0.678 0.67 0.682 0.676 0.7 0.753 0.598 0.667
LSTM 0.701 0.551 0.786 0.648 0.687 0.54 0.765 0.633 0.714 0.523 0.846 0.648

Table 4. RNA-ModX individual binary classification performance

Model Encoding Am Cm Gm Tm m1A m5C m5U m6A m6Am m7G hPsi
(�)

Atol
(I)

Average
AUCb

LSTM MultiRM 0.79 0.86 0.93 0.88 0.78 0.91 0.95 0.86 0.89 0.68 0.85 0.67 0.84
LSTM One-hot encoding 0.87 0.85 0.85 0.77 0.89 0.85 0.77 0.93 0.91 0.84 0.77 0.65 0.83
LSTM Wor2Vector

embeddings
0.73 0.87 0.89 0.87 0.71 0.92 0.84 0.81 0.96 0.94 0.90 0.71 0.85

LSTM 3-mer Encoding 1.00 1.00 1.00 0.99 0.99 0.99 1.00 0.93 0.98 1.00 1.00 0.91 0.98
GRU One-hot encoding 0.69 0.60 0.65 0.63 0.65 0.52
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Figure 4. A LIME interpretation of RNA-ModX. (A) Non-modified sequence; (B) modified sequence.

customized to address nucleotide modifications, where the LSTM
model with 3-mer encoding showcased exceptional accuracy,
reaching 98%. For multiclass classification, four models targeting
different nucleotides unveiled varying accuracies, with the
G-class achieving 68% accuracy and the A-class lagging at 33%,
primarily attributed to data imbalance.

Plotted analyses of model performance highlighted trends such
as loss stabilization and accuracy fluctuations during training,
providing valuable insights into model convergence dynamics and
guiding optimization strategies.

User application
The culmination of our efforts is manifested in a user-friendly
application designed to showcase the results of both the
individual binary classification LSTM model and the multiclass
classification targeted nucleotide Transformer final model. The
application presents result in a tabular format, ensuring ease of
interpretation and accessibility for scientists.

During the testing phase, the application was hosted utiliz-
ing the Streamlit sharing platform, facilitating seamless access
and interaction for users. To utilize the application, users can
follow the instructions outlined in the provided link: https://
github.com/shashivish/RNA-ModX/blob/main/README.md. This
comprehensive guide facilitates seamless execution and explo-
ration of the application’s functionalities.

Temporarily, the application was hosted at https://rna-modx.
streamlit.app/ which was available for everyone for a short period
of time. Due to resource constraint, we were unable to scale the
solution and allow the application to be readily available for wide
range of users. We have included our plan for future work in the
next section.

Discussion
Our RNA-ModX framework addresses a critical challenge in RNA
modification prediction by effectively handling class imbalance

within the raw dataset. By employing techniques such as ran-
dom oversampling for underrepresented classes, we ensured a
more balanced dataset, which significantly enhanced model con-
sistency and reliability. The use of various performance met-
rics allowed us to evaluate both binary and multiclass predic-
tions, leading to a comprehensive framework that mitigates some
of the observed shortcomings in traditional predictive modeling
approaches.

Despite these advancements, there is concern regarding the
interpolation issue associated with using a single, curated dataset.
The rigorous 5-fold cross-validation strategy we employed, while
valuable in reducing overfitting and improving generalization,
cannot fully replicate the complexity of real-world data vari-
ability. The absence of independent dataset validation remains
a limitation in the current study. To address this, future itera-
tions of RNA-ModX will prioritize testing on independent and
publicly available RNA sequence datasets that were not part of
the original training set. This step is crucial to demonstrate RNA-
ModX’s robustness and applicability in practical research settings.
In addition to cross-validation, expanding our comparisons with
existing prediction tools will be essential for a more comprehen-
sive evaluation. Although we benchmarked RNA-ModX against
accessible tools, direct comparisons with some state-of-the-art
approaches were limited due to access constraints. As we con-
tinue to refine RNA-ModX, we plan to incorporate additional
benchmarking once access is secured to those tools. This will
provide a clearer understanding of RNA-ModX’s relative perfor-
mance and its potential advantages in terms of accuracy and
interpretability.

Furthermore, our exploration of diverse methodologies was
guided by existing research. For instance, while the methodologies
outlined by El Allali [1] and Kierzek [27] offered valuable insights
into specific RNA modifications and secondary structure predic-
tions, they were not directly applicable to our generalized dataset.
Our primary focus was on developing a scalable and versatile
solution capable of predicting multiple modification types with

https://github.com/shashivish/RNA-ModX/blob/main/README.md
https://github.com/shashivish/RNA-ModX/blob/main/README.md
https://github.com/shashivish/RNA-ModX/blob/main/README.md
https://github.com/shashivish/RNA-ModX/blob/main/README.md
https://github.com/shashivish/RNA-ModX/blob/main/README.md
https://github.com/shashivish/RNA-ModX/blob/main/README.md
https://github.com/shashivish/RNA-ModX/blob/main/README.md
https://github.com/shashivish/RNA-ModX/blob/main/README.md
https://github.com/shashivish/RNA-ModX/blob/main/README.md
https://github.com/shashivish/RNA-ModX/blob/main/README.md
https://rna-modx.streamlit.app/
https://rna-modx.streamlit.app/
https://rna-modx.streamlit.app/
https://rna-modx.streamlit.app/
https://rna-modx.streamlit.app/


8 | Yuge et al.

high accuracy, rather than optimizing for a single, highly specific
modification class.

Currently, RNA-ModX operates as a black box; however, we
have taken steps to enhance transparency by integrating LIME.
This tool provided insights into the model’s decision-making pro-
cess, which is crucial for increasing user confidence. Nonetheless,
we recognize that further interpretation by domain experts is
necessary to fully understand the biological implications of our
predictions [28, 29].

To improve the model’s generalization capability across differ-
ent species and experimental conditions, future work will focus
on expanding the dataset to include RNA sequences from various
organisms. This will help capture species-specific modification
patterns, enhancing the model’s robustness and ensuring that
RNA-ModX is broadly applicable across diverse biological con-
texts.

Given the high computational cost of deep learning model
training, we are exploring methods to optimize RNA-ModX for
efficiency. Potential strategies include the following:

1) Model Pruning: Removing redundant neurons and connec-
tions to reduce model size.

2) Quantization: Using lower-precision arithmetic to decrease
computational load.

3) Efficient Architectures: Exploring lightweight models like
MobileNets or using convolutional neural networks that
require fewer resources.

4) Knowledge Distillation: Transferring knowledge from a
larger “teacher” model to a smaller “student” model.

These techniques can significantly reduce training and infer-
ence times, making RNA-ModX more accessible to researchers
with limited computational resources.

The current model architecture relies on the modification
site being centered within the input sequence, a constraint
inherited from the MultiRM dataset. This simplifies the mod-
eling process but limits the practical applicability of RNA-
ModX in cases where the modification site is unknown or
variable. To address this, our future research will focus on the
following:

1) Developing Position-Independent Models: Creating models
that can handle sequences of varying lengths and detect
modifications at any position.

2) Implementing Attention Mechanisms: Utilizing attention-
based models like Transformers to allow the model to learn
which parts of the sequence are most relevant for predicting
modifications.

3) Sliding Window Approach: Applying the model to overlap-
ping subsequences of larger RNA sequences to scan for
potential modification sites.

These enhancements will improve the model’s flexibility, mak-
ing it more suitable for real-world research scenarios.

Currently, the RNA-ModX application is locally hosted, limiting
its accessibility. To facilitate broader access and real-time vali-
dation by the research community, we propose deploying RNA-
ModX on a cloud-based platform, such as AWS. This deployment
will utilize scalable architecture, including load balancers and
REST endpoints integrated with Amazon SageMaker, to handle
predictions efficiently. By enabling researchers to upload their
RNA sequences for analysis, we aim to validate RNA-ModX’s
performance on independent datasets, thereby addressing the
interpolation concerns raised.

Conclusion
In summary, leveraging domain knowledge from subject matter
experts, we swiftly developed a binary model for modification
type prediction, followed by associative type classification for
identified RNA sequences potentially containing modified sites.
Our approach integrates binary and multiclass predictions within
a unified framework, prioritizing sensitivity and consistency in
model predictions. This architecture effectively addresses model-
ing biases inherent in single-model approaches, marking a signif-
icant advancement in RNA modification prediction methodolo-
gies.

Key Points

• RNA-ModX predicts 12 prevalent RNA modification
classes with high precision.

• LSTM model with 3-mer encoding achieves the highest
accuracy in predictions.

• User-friendly web app for seamless RNA modification
predictions.

• LIME enhances transparency and interpretability of pre-
dictions.

• Extensively tested with a robust dataset from the previ-
ous study.

Supplementary Data
Supplementary data is available at Briefings in Bioinformatics
online.
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