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Abstract

Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts
to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically
approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In
this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11 576
compounds extracted from the DrugBank database were screened against Mtb. Our screening method produced satisfactory predictions
on three data-splitting settings, with the top predicted bioactive compounds all known antibacterial or anti-TB drugs. To further
identify and evaluate drugs with repurposing potential in TB therapy, 15 screened potential compounds were selected for subsequent
computational and experimental evaluations, out of which aldoxorubicin and quarfloxin showed potent inhibition of Mtb strain H37Rv,
with minimal inhibitory concentrations of 4.16 and 20.67 μM/mL, respectively. More inspiringly, these two compounds also showed
antibacterial activity against multidrug-resistant TB isolates and exhibited strong antimicrobial activity against Mtb. Furthermore,
molecular docking, molecular dynamics simulation, and the surface plasmon resonance experiments validated the direct binding of
the two compounds to Mtb DNA gyrase. In summary, our effective comprehensive virtual screening workflow successfully repurposed
two novel drugs (aldoxorubicin and quarfloxin) as promising anti-Mtb candidates. The verification results provide useful information
for the further development and clinical verification of anti-TB drugs.
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Introduction
Tuberculosis (TB) is a severe infectious disease with global health
concern caused by the bacterium Mycobacterium tuberculosis (Mtb).
TB is the leading cause of infectious disease worldwide, with an
estimated 1.3 million deaths per year [1]. Although the exten-
sive use of anti-Mtb drugs such as rifampicin (RIF), isoniazid
(INH), and pyrazinamide has reduced the development of TB,
the emergence of multidrug-resistant tuberculosis (MDR-TB) and
extensively drug-resistant tuberculosis (XDR-TB) in recent years
has rendered existing antibiotics ineffective and brought new
threats to tuberculosis control [2]. Drug resistance is responsi-
ble for a quarter of Mtb deaths and has become a significant
challenge to the effective treatment and control of TB. Recently,
the newly approved antitubercular agents, such as bedaquinoline,
pretomanid, and delamanid, or their combined use with linezolid
have shown the potential to enhance the treatment of drug-
resistant tuberculosis. Still, <20% of persons are likely to benefit
from such treatment due to the high medical cost, low accessibil-
ity, and insufficient validation of efficacy [3, 4]. In addition, clinical
resistance to these new drugs has already been observed [5]. Thus,
there is still an urgent need to develop new drugs or repurpose
currently approved drugs faster and more efficiently to combat
TB [6].

Existing or under development anti-Mtb drugs target various
structures and pathways of the bacterium to combat tuberculosis,

especially the enzymes involved in cell wall synthesis, metabolic
pathways, DNA replication, etc. For example, the biosynthesis
of cell wall components such as Rv3806c, DprE1, and the Emb
proteins have become attractive targets for potent anti-Mtb drug
research and development [7–9]. Moreover, DNA gyrase is also
a validated target for antitubercular drug discovery [10]. The
current research landscape in anti-drug compound development
is diverse and rapidly evolving, and computational methods have
revolutionized the process by enabling faster and more efficient
identification of drug candidates [11, 12]. Among them, ligand-
based virtual screening (LBVS) is a widespread computational
screening method that compares a library of compounds with
a known active ligand and predicts the bioactivities of new
molecules based on known bioactivities of other molecules
[13, 14]. LBVS offers accessibility and convenience to rapidly
screen potentially bioactive molecules from large compound
libraries in the early stage of drug discovery with low costs
[15]. Several previous studies have demonstrated the value of
LBVS methods in the discovery of anti-Mtb drugs. For instance,
Naz et al. discovered an α-tryptophan synthase inhibitor with
anti-Mtb bioactivity by pharmacophore model–based LBVS,
molecular docking, and molecular dynamics simulation methods
[16]. Zhu et al. proposed an LBVS workflow with three rounds
consisting of 3D shape and pharmacophore matching and a
topological shape and pharmacophore fingerprint algorithm to
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discover anti-Mtb hits targeting the microbial enzyme 1-deoxy-
d-xylulose-5-phosphate synthase [17]. Hassam et al. trained
multiple machine learning (ML)–based LBVS models for anti-
Mtb drug discovery targeting pantothenate synthetase [18].
Lane et al. organized an Mtb bioactivity prediction dataset and
validated the superior performances of ML-based LBVS models
on binary anti-Mtb bioactivity prediction tasks [19]. Ngidi et al.
used virtual screening methods to identify Accolate as the best
potential drug against the fatty acid degradation protein D32
(FadD32) in Mtb [20]. Overall, the implementation of ML in
LBVS methods is regarded as an advanced approach, showing
improved and competitive prediction performance in both
bioactivity regression and classification prediction tasks [19, 21].
However, most of the current research lacks sufficient subsequent
experimental evidence to prove the validity of the screened
candidates. Moreover, an integrated multistep screening workflow
combining advanced ML-based LBVS, classical structure-based
virtual screening (e.g. molecular docking and molecular dynamics
simulation), and wet laboratory experimental assessments would
contribute significantly to improving anti-Mtb drug discovery.

In this study, we integrated multiple machine learning and
deep learning models to establish LBVS to repurpose existing
drugs for Mtb inhibition. Specifically, public anti-Mtb bioassay
data were collected from ChEMBL [22] to construct anti-Mtb bioac-
tivity prediction models, and a set of approved or investigational
drugs obtained from DrugBank [23] were screened against Mtb.
Then, the top-ranked screening hits resulted from a multistep
filtering process were selected. Extensive in vitro bioassay exper-
iments revealed that aldoxorubicin and quarfloxin clearly inhib-
ited the growth of both the Mycobacterium tuberculosis H37Rv strain
[with minimal inhibitory concentration (MIC) values of 4.16 and
20.67 μM/mL, respectively], and other drug-resistant strains (with
MIC values of 4.16–41.34 μM/mL). Finally, molecular docking,
molecular dynamics simulation analysis and surface plasmon
resonance (SPR) were initiated to predict and validate the binding
modes of the repurposed drugs.

Materials and methods
The overall workflow of this study is shown in Fig. 1. Specifically,
anti-Mtb bioactivity data were collected from public databases,
preprocessed, and integrated. Then, a set of ML models including
XGBoost and graph neural networks (GNNs) were used to pre-
dict the MICs of known bioactive/inactive ligands using multi-
ple chemical descriptors (molecular fingerprints and molecular
graphs), followed by both internal and external validation. Overall,
11 576 compounds obtained from DrugBank were screened using
these LBVS methods and sequentially filtered by drug category
and bioassessments. Finally, aldoxorubicin and quarfloxin were
selected and validated for their anti-Mtb bioactivity and drug-
target binding relationships.

Data preparation
In this study, we first collected publicly available anti-Mtb
bioassay data from the ChEMBL database, including ChEMBL360
(n = 168 749), ChEMBL2111188 (n = 23 554), and ChEMBL2366634
(n = 2022). Then, we followed our previous preprocessing strategies
[24] to assemble these raw anti-Mtb bioassay data into an
integrated dataset consisting of compounds with Mtb bioactivity
annotations for subsequent virtual screening model training. (1)
The “Standard Relation” is “=” (n = 176 256); (2) the “Standard
Type” is “MIC” (n = 30 982); (3) the “Standard Units” are {“μM”,
“μmol/L”, “μM/L”, “μMl−1”, “10−6 mol/L”} and {“μg/ml”} (n = 30 308);

(4) the bioactivities of those bioassay data with “Standard Units”
of “μg/ml” were converted to “μM” by dividing by their molecular
weights and then multiplying by 1000; (5) all bioactivities were
converted to “−log10M”; (6) the molecular simplified molecular
input line entry specification structures were normalized with
MolVS [25]; (7) the duplicate molecules were removed (n = 16 412).

We also introduced the anti-Mtb bioassay dataset (n = 258) from
Lane et al. [26] as the external validation set to evaluate the screen-
ing performance of the developed computational models for vir-
tual screening compared to the random strategy. In addition, to
construct a drug repurposing library, we collected 11 576 drugs as
well as their chemical structures from DrugBank. The molecules
in these datasets were preprocessed in the same manner as those
in the ChEMBL dataset.

Molecular feature extraction
Specifically, to construct the XGBoost model for LBVS, we
extracted two of the most widely used fingerprint-based
descriptors, Extended Connectivity FingerPrint (ECFP4) [27] and
the Molecular ACCess System (MACCS) fingerprint [28]. ECFP4
is a Morgan fingerprint with a radius of 2, and molecules are
decomposed into substructures with the radius distance for
each atom. As the radius expands, ECFP includes all identifiers
found in both the previous and current iterations. All identifiers
corresponding to different unique substructures were encoded
by 2048 bits via one-hot encoding to represent the molecular
features. MACCS predefines 166 unique substructures, the
features of which were also encoded using a one-hot encoding
scheme.

To design models based on GNNs for virtual screening, we used
the DGL-lifesci package [29] to calculate the molecular atom and
bond features and then construct molecular graphs. The atom
features include the atomic elements, atomic degrees, number of
implicit hydrogens, formal charges, number of radical electrons,
atom hybridization, aromatics, and total hydrogens. All atom
features were encoded with a one-hot encoding schema. The bond
features entail bond type, conjugation, rings, and stereo configu-
ration, in which the bond types and the stereo configuration were
also encoded with a one-hot encoding schema.

Construction of ML models for LBVS
In detail, we first split the integrated anti-Mtb bioassay data from
ChEMBL into a training dataset and an internal validation dataset
with a splitting ratio of 8:2 based on three splitting strategies
(random splitting, scaffold splitting, activity cliff splitting). Then,
all ChEMBL data were integrated as the training set for model
development, and the anti-Mtb bioassay dataset from Lane et al.
[26] was used for external validation.

We used the Scikit-learn package [30] to construct an XGBoost
model (XGB) for LBVS, which predicts the antitubercular bioac-
tivities for the given query molecules based on their ECFP4 or
MACCS features. We also proposed GNNs, including the graph
convolutional network (GCN) [31], graph attention network (GAT)
[32], message passing neural network (MPNN) [33], and Atten-
tiveFP [34], for LBVS with the molecular graphs and their atom
and bond features as inputs and antitubercular bioactivities as
outputs. Moreover, for GNN model training, we used a curriculum
learning strategy (CurrMG) [35] based on our previous studies to
enhance model convergence and filter the noise. The DGL-lifesci
package was used for GNN model construction. The optimization
and training details of the above ML models are shown in Addi-
tional file 1.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
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Figure 1. The overall workflow of this study.

Finally, we aggregated the prediction results of the LBVS models
with a soft voting averaging strategy. Here, a leave-one-model-out
strategy was employed to exclude the poorest performing model,
and the remaining LBVS models were then combined to form an
ensemble for final predictions and output generation.

Model evaluation
Both internal and external validations were used to evaluate the
performance of the constructed LBVS models. As antitubercular
bioactivity prediction is a regression task, we used the coefficient
of determination (R2), mean square error (MSE), and mean abso-
lute error (MAE) [36] to assess the prediction performance of our
LBVS models, which can be formulated as

R2 = 1 −
∑

i

(
yi − ŷi

)2

∑
i

(
yi − yi

)2 (1)

MSE = 1
N

N∑
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where N denotes the sample size and yi, ŷi, and yi are the true label,
predicted label, and overall average label, respectively. Meanwhile,
the MSEcliff was adopted as the activity cliff splitting metric to
determine the performance of LBVS model in predicting bioac-
tivities for sensitive molecules, which is formulated as

MSE = 1
Nc

Nc∑

i=1

(
yi − ŷi

)2 (4)

where Nc represents the number of activity cliff molecules in the
test set. Moreover, taking 6-log10M as the threshold to differentiate
bioactive/inactive molecules [13, 37], we also adopted the enrich-
ment factor (EF@N) and hit rate (HR@N) to evaluate the efficiency
of our LBVS models in discovering bioactive molecules among top
N predictions. Taking N = 300 as an example, EF@300 and HR@300
can be formulated as

EF@300 = TP300/300
TP/N

(5)

HR@300 = 100% × TP300

300
(6)

where TP300 and TP denote the number of true positive bioactive
molecules among the top 300 predictions and all predictions,
respectively.

Reference strain and clinical isolates
The M. tuberculosis reference strain H37Rv ATCC27294 was
obtained from the American Type Culture Collection. Clinical
MDR-TB isolates stored in the Biobank in Beijing Chest Hospital
(Beijing, China) were tested to investigate their susceptibility
in vitro. The isolates were first used on Löwenstein–Jensen (LJ)
medium and tested with MPT64 antigen to confirm the presence
of the M. tuberculosis complex (Hangzhou Genesis Biodetection
and Biocontrol Co., Ltd., China).

Determination of the minimum inhibitory
concentration of selected compounds
Quarfloxin, pibrentasvir, sonidegib, batefenterol, glecaprevir,
sitravatinib, oglemilast, losmapimod, nirogacestat, velsecorat,
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sapitinib, sunitinib, and lenacapavir were purchased from
TargetMol, USA. Aldoxorubicin and elexacaftor were purchased
from MedChemExpress, USA. In addition, aldoxorubicin acted as a
prodrug of doxorubicin, and thus, the MIC of doxorubicin was also
determined. All inhibitors were dissolved in dimethyl sulfoxide
(DMSO) to generate stock solutions with a concentration of 5
or 10 mg/mL. The broth microdilution method was performed
according to the guidelines of the Clinical and Laboratory
Standards Institute. Middlebrook 7H9 broth (Becton, Dickinson)
containing 10% oleic acid–albumin–dextrose–catalase (OADC)
was used to determine the MICs of M. tuberculosis and the MDR-
TB isolates. The inoculum was prepared with fresh cultures
grown on LJ medium. The tested drug concentrations ranged
from 0.049 to 100 μg/mL. Briefly, M. tuberculosis and the MDR-
TB isolates were scraped from LJ medium, homogenized, and
adjusted to 1 McFarland standard. Then, the suspensions were
diluted and inoculated into a 96-well microtiter plate to achieve
a final bacterial load of 105 colony-forming units (CFUs) per well.
The plates were then incubated at 37 ◦C for 7 days, after which
30 μL of resazurin (0.02%, wt/vol) was added to each well, and the
plates were reincubated for an additional 24 h at 37 ◦C [38, 39].
A change from blue to pink or purple indicated bacterial growth.
The MIC was defined as the lowest concentration of antibiotic
that prevented a color change. In order to facilitate comparison
of different drugs’ efficiency, we also changed the nanograms
per milliliter to micromolar per milliliter for the determined MIC
value.

Time–kill curves
Individual Eppendorf tubes with 100 μL of Middlebrook 7H9 plus
OADC growth supplement (BD Bioscience) and 0.05% Tween 80
containing six 2-fold increasing concentrations of each antibiotic
(from 1×, 2×, 4×, 8×, to 16× MIC) were cultured with the inoculum
(density ∼105–106 CFU/mL) at 37 ◦C. An additional tube without
a drug was included as a growth control, and evaluation of INH
was used as positive control. The Eppendorf tubes were inoculated
with 100 μL of the previously prepared inoculum at a starting
concentration of 5 × 105 CFU/mL and incubated for 7 days at 37 ◦C.
At predetermined time points (0, 1, 2, 3, and 6 days), 30 μL was
taken from each tube, and dilutions (ranging from 10−1 to 10−6)
were prepared. Then, 10 μL of each dilution was plated directly
on Middlebrook 7H10 supplemented with OADC agar for CFU
counting. Agar plates were incubated at 37 ◦C, and the number
of CFUs was determined 3 weeks later.

Intracellular killing and concentration–kill assays
THP-1 cells were seeded at 5 × 105 cells/well in a 24-well plate and
induced to differentiate into macrophages with phorbol myristate
acetate (100 ng/mL) for 48 h. The cells were infected at a mul-
tiplicity of infection of 5:1 with Mtb H37Rv (ATCC27294). After
4 h of infection at 37 ◦C under 5% CO2, the cells were gently
washed three times with prewarmed 1× PBS to remove the extra-
cellular bacteria. For the intracellular killing assay, RPMI complete
medium containing quinfloxin or aldoxorubicin at concentrations
of 1× MIC, 2× MIC, and 4× MIC was used. A culture medium
containing DMSO was used as a negative control, and RPMI 1640
medium with INH [3 μg/mL (21.88 μM/mL)] was used as a positive
control. At 24 and 72 h postinfection, the macrophages were
extensively washed with PBS and lysed with 0.1% Triton X-100.
The number of CFUs was determined by plating serial dilutions
of the lysates on 7H10 agar plates. The bacterial survival rate
was calculated using the following formula: viability = (CFUs of

bacteria treated with quinfloxin, aldoxorubicin, or INH/CFUs of
the bacteria treated with DMSO) × 100%.

Molecular docking
To further investigate the potential protein–ligand interactions of
the predicted bioactive candidates in Mtb, Autodock Vina [40] was
used to optimize the molecular binding conformers and predict
the binding modes. The docking coordinates (67.98, 38.72, 34.61)
were adopted from a reference crystal structure (PDB ID: 7UGW).
The docking grid box, the exhaustiveness, and the number of
sampled poses were set as 20, 64, and 20, respectively. After the
docking procedure finished, vina scores (kcal/mol) of the top 10
poses were reported to evaluate the binding free energies. To
explore the binding modes of protein–ligand pairs, we adopted
LigPlot+ [41] to visualize the interactions (hydrogen bonds and
hydrophobic contacts) between proteins and ligands on 2D and
3D structures.

Molecular dynamics simulation
Molecular dynamics simulation was performed by Amber [42].
The initial configurations for protein–ligand complex were gener-
ated by CHARMM-GUI [43] with a general Amber force field [44]. A
unit cell with water as solvent was defined (box size 15 Å), and the
complex was neutralized by ions (Na+ and Cl−). Then, an energy
minimization was executed to relax the structure and guarantee
appropriate geometry in the system. The NVT and NPT ensemble
equilibrations were successively conducted with the 300-K fixed
temperature and 200-ps running. After that, a 200-ns molecular
dynamic simulation was produced to simulate the trajectories of
complex and protein–ligand binding interactions.

Surface plasmon resonance analysis
The surface plasmon resonance assay was used to examine the
interaction between the DNA gyrase and two selected compounds.
As shown in previous studies, DNA gyrase is composed of two
subunits, GyrA and GyrB [45]. Here, the recombinant GyrA and
GyrB subunits of M. tuberculosis DNA gyrase was purchased from
TargetMol, USA. All SPR experiments were performed on a BIAcore
T200 biosensor system (GE Healthcare Life Sciences, Piscataway,
NJ, USA) at 25 ◦C using a CM5 chip (Lot: 10343798). The bindings
of gyreA and gyreB at different concentrations of aldoxorubicin
and quarfloxin were performed in 1× PBS-P (including 5% DMSO)
(GE Healthcare Life Sciences) with a contact time of 100 s. The
dissociation time was 100 s after each binding reaction. Afterward,
aldoxorubicin was regenerated with pH 2.5 glycine for 60 s and
quarfloxin in water for 10 s. All data were analyzed by the kinetic
model in the Biacore T200 Evaluation Software 2.0 (GE Healthcare,
US), and Kd was applied to evaluate the binding affinity.

Results
Molecular property distribution analysis
The integrated bioassay data from ChEMBL contained 16 412
records of compounds that inhibited Mtb along with their MIC
values. According to the Quantitative Estimate of Drug-likeness
(QED) rules, the distributions of eight physiochemical and struc-
tural properties were calculated, and their correlations with anti-
tubercular activity were determined (Fig. 2). As shown in Fig. 2,
there were certain proportions of molecules from the ChEMBL
dataset that did not meet the requirements of drug-likeness
mentioned in the QED rules, especially for molecular properties
such as AlogP (26.88%), HBA (52.02%), and ALERTS (43.89%). It
is also clear from Fig. 2 that the molecular properties such as
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Figure 2. QED property distributions of the compounds from the ChEMBL dataset and their correlations with MIC. (A) Molecular weight (MW), (B) AlogP,
(C) number of hydrogen bond acceptors (HBA), (D) number of hydrogen bond donors (HBD), (E) polar surface area (PSA), (F) number of rotatable bonds
(ROTB), (G) number of aromatic rings (AROM), and (H) number of alert structures (ALERTS).

MW (Pearson’s r = 0.21), HBA (0.19), and PSA (0.16) have a weak
correlation with antitubercular bioactivity. These findings sug-
gested that taking simple molecular properties as descriptors
cannot accurately identify molecules with antitubercular activity.
We also evaluated the consistency of the molecular property
distributions between the integrated ChEMBL training dataset and
DrugBank repurposing library (Additional file 2: Fig. S1). Similar
distributions of molecular properties, such as HBA, PSA, and ROTB,
were observed, while the molecular property distributions for the
DrugBank dataset showed a left bias for MW, AlogP, AROM, and
ALERTS. The overall distributions between the ordinary molecular
descriptor distributions of the collected ChEMBL dataset and the
DrugBank repurposing library were consistent.

We further explored key molecular substructures and scaffolds
among the anti-Mtb bioactive molecules by fingerprint-based
molecular clustering and grouping. Here, pairwise bulk Tanimoto
similarities for each two bioactive molecules (−log10M > 6) in the
ChEMBL dataset were calculated using ECFP4 molecular finger-
prints, and Butina clustering (cutoff = 0.4) was used for molecu-
lar clustering. The common molecular scaffolds of the top five
clusters (number of molecules >30) are shown in Fig. 3A. Fur-
thermore, the t-SNE method was used to visualize the chemical
space distances and groups of bioactive or bioinactive molecules
(Fig. 3B). From Fig. 3B, we can see that the bioinactive molecules
evenly fill all chemical space, and three observable groups of
bioactive molecules presenting substructures similar to those of
the common molecular scaffolds shown in Fig. 3A were observed.
Furthermore, we also compared the chemical spatial distributions

of molecules from DrugBank with those from ChEMBL. As shown
in Fig. 3C, the molecules from the DrugBank dataset covered
most of the chemical space that the molecules from the ChEMBL
dataset filled, including the spaces of bioactive groups.

Construction and validation of ML models for
LBVS
ML models and a soft averaging ensemble approach (ENSEM)
were used for LBVS, and their anti-Mtb bioactivity prediction
performance was evaluated on the internal validation dataset
(ChEMBL) with three data-splitting strategies and the external val-
idation dataset (Lane et al.) with all ChEMBL data as training set.
The results in Table 1 show that the developed models achieved
acceptable performance on the internal validation dataset. Com-
paratively, deep learning methods such as GCN_TS, GAT_MCE, and
MPNN_AB outperform AttentiveFP_MCE and traditional machine
learning methods like XGBoost in terms of the R2, MAE, and MSE
metrics, with GCN_TS showing the best predictive performance.
During external validation, all models exhibited a significant drop
in performance, among which AttentiveFP_MCE had the worst
performance on the internal validation dataset but the best per-
formance on the external validation dataset, and machine learn-
ing methods exhibit better predictive performance than GCN_TS,
GAT_MCE, and MPNN_AB [Table 1, Table 2, Additional file 3 (Table
S3, Table S4)]. One possible reason for this result might be the
low structural similarities between the bioactive molecules in
the ChEMBL dataset and those in the Lane et al. dataset. While
deep learning can capture complex patterns and perform well

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
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Figure 3. Chemical structure space analysis. (A) Representative molecular scaffolds in the top 5 bioactive molecular clusters. (B) T-SNE plot data and
common chemical substructures in three representative bioactive molecular clusters in the ChEMBL dataset (red dots: bioactive molecules; blue dots:
bioinactive molecules). (C) T-SNE plot data from the ChEMBL and DrugBank datasets.

Table 1. Evaluation of the performance of six machine learning models and the ensemble approach for LBVS on the ChEMBL internal
validation dataset with random splitting

Model R2 MAE MSE EF@300 Hit@300

XGB_ECFP 0.336 0.636 0.641 3.431 61.667
XGB_MACCS 0.301 0.669 0.655 3.116 56.000
GCN_TS 0.520 0.460 0.521 3.672 66.000
GAT_MCE 0.490 0.489 0.543 3.765 67.667
MPNN_AB 0.467 0.511 0.548 3.413 61.333
AttentiveFP_MCE 0.238 0.730 0.677 2.838 51.000
ENSEM 0.610 0.475 0.376 3.913 70.333

on training data, its performance may degrade significantly when
faced with new data that differs from the training set. In contrast,
machine learning models tend to generalize better under such
conditions, as they are less reliant on large datasets and have
fewer parameters.

We implemented a leave-one-model-out strategy to select
ensemble of LBVS models, as shown in Additional file 3 (Table S1,
Table S2), excluding GAT_MCE that slightly enhanced ENSEM’s
performance across all validation sets. Thus, the remaining
LBVS models (XGB_ECFP4, XGB_MACCS, GCN_TS, MPNN_AB, and
AttentiveFP_MCE) were then combined to form an ensemble for
final predictions. Generally, the ensemble approach achieved the
highest performance in terms of R2, MAE, and MSE (Table 1,
Table 2). We further showed the scatter plots of the predicted
anti-Mtb MIC values of the ensemble model and the true anti-
Mtb MIC values of the compounds in the internal/external
validation datasets (Fig. 4A, Fig. 4B). The scatter plots for other ML
models for LBVS are shown in Additional file 2 (Fig. S2, Fig. S3).
Moreover, the performance results for two more challenging data-
splitting approaches (scaffold split, activity cliff split) revealed
the solidarity and robustness of these LBVS models on unknown
and structural sensitive samples. For instance, the results
presented in Additional file 3 (Table S3) revealed that all developed
models experienced significant performance degradation under
the scaffold splitting setting. However, the ensemble approach
consistently demonstrated the highest performance in terms
of R2, MAE, and MSE. Additional file 3 (Table S4) showed the
performance outcomes for activity cliff splitting, highlighting

that while all LBVS models exhibited moderate performance, the
ensemble model outperformed others by achieving the lowest
prediction errors between ordinary molecules and activity cliff
molecules (by comparing MSE and MSEcliff). This suggests that
the ensemble approach is particularly effective at distinguishing
sensitive samples characterized by minor structural differences
yet significant bioactivity discrepancies. Consequently, the
ensemble approach was used for the following anti-Mtb drug
virtual screening.

To further measure the efficiency of these constructed ML
models in practical virtual screening scenarios, we calculated
four metrics (EF@300 and Hit@300 for the internal validation
dataset and EF@30 and Hit@30 for the external validation dataset)
for each model, which are listed in Table 1, Table 2, and Addi-
tional file 3 (Table S3, Table S4). The results indicated that the
constructed models could enrich bioactive molecules among the
top predictions with desirable enrichment efficiencies on both the
internal validation dataset and the external validation dataset,
and the hit rates were also acceptable. We also plotted the aver-
age MIC values of the overall, top 300 predicted, bottom 300
predicted, top 30 predicted, and bottom 30 predicted molecules
to determine the bioactivity distribution differences among the
screened, excluded, and overall subsets (as shown in Fig. 4D,
Fig. 4E). The results showed that the anti-Mtb bioactivities of the
top predicted molecules are significantly higher than those of
the overall molecules and bottom predicted molecules, indicating
notable ranking performance for the proposed virtual screening
models.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
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Table 2. Evaluation of the performance of six machine learning models and the ensemble approach for LBVS on the Lane et al. external
validation dataset

Model R2 MAE MSE EF@30 Hit@30

XGB_ECFP 0.141 0.571 0.607 2.736 70.000
XGB_MACCS 0.063 0.623 0.624 2.345 60.000
GCN_TS 0.059 0.626 0.623 2.867 73.333
GAT_MCE −0.531 1.018 0.782 2.606 66.667
MPNN_AB −0.073 0.713 0.669 2.606 66.667
AttentiveFP_MCE 0.173 0.550 0.600 2.606 66.667
ENSEM 0.165 0.584 0.555 2.736 70.000

Figure 4. (A) Scatter plot showing the prediction results of the ENSEM on the ChEMBL internal validation dataset with random splitting (x-axis: actual MIC
values; y-axis: EnSEM predicted MIC values). (B) Scatter plot showing the prediction results of the ensemble model on the Lane et al. external validation
dataset (x-axis: actual MIC values; y-axis: EnSEM predicted MIC values). (C) Rank-ordered predicted bioactivities for DrugBank molecules. (D) Average
bioactivities of the overall, top 300 ranked, and bottom 300 ranked molecules in the ChEMBL internal validation dataset. (E) Average bioactivities of the
overall, top 30 ranked, and bottom 30 ranked molecules in the Lane et al. external validation dataset. (F) Average predicted bioactivities of the overall,
top 300 ranked, and bottom 300 ranked molecules in the DrugBank repurposing dataset.

Screening of anti-Mtb compounds in the
DrugBank database
We further retrained the ML models for LBVS on the whole
ChEMBL dataset and then used the ensemble approach to com-
bine the predictions of the retrained models to screen anti-Mtb
molecules in the DrugBank database. The predicted rank-ordered
bioactivities are shown in Fig. 4C. We first adopted −6 log10M
as the threshold to identify bioactive molecules, and Table 3
shows the 15 top-ranked bioactive candidates for anti-Mtb drugs.
As expected, the majority of them were anti-Mtb or antibacte-
rial drugs. For instance, rifampicin (RIF), delamanid, pretomanid,
rifamycins (rifabutin and rifapentine), and macozinone are all
major hits active against Mtb, which also proved the effectiveness
of our constructed LBVS methods for anti-Mtb drug repurposing
[46, 47] (Table 3).

To get the tractable number of hits remaining for our filtering
steps and analysis, we then expanded the screening range with
relatively looser bioactivity restrictions (top 200 screened hits) to
identify more novel potential anti-Mtb drugs (Additional file 3:
Table S5). While a small portion of the ranked bioactive candidates

already exist in the ChEMBL dataset (Additional file 2: Fig. S4), our
LBVS method successfully identified known anti-Mtb drugs that
were not previously seen by model, such as rifapentine, rifalazil,
and isoniazid (Additional file 3: Table S5). This demonstrates the
feasibility of our approach in identifying novel anti-Mtb drug can-
didates. The overall distribution of the predicted bioactivities and
the differences between the top predictions and overall/bottom
predictions are shown in Fig. 4C and Fig. 4F. To further reduce the
size of the screened candidate pool, we conducted drug category
filtering to exclude antibiotics or those drugs with the indications
of antibacterial infection and anti-tuberculosis infection, as we
intended to find novel potential anti-Mtb indications for existing
drugs. Finally, considering the availability of the compounds, 15
candidates were selected for further in vitro anti-Mtb assessment
(Table 4).

MIC values of the selected candidates against
Mtb reference strain H37Rv and MDR-TB isolates
To evaluate the accuracy of prediction results, we tested the
MICs of the 15 selected candidates against the Mtb reference

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
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Table 3. The 15 top-ranked bioactive anti-Mtb candidates screened from the DrugBank database

DrugBank Name CAS Predicted bioactivity
(−log10M)

Drug categories in DrugBank

DB14821 Macozinone 1377239-83-2 6.986 Antibacterial; anti-infective; treatment of
tuberculosis

DB11753 Rifamycin 6998-60-3 6.967 Antibacterial; anti-infective; antimycobacterials
DB00615 Rifabutin 72559-06-9 6.937 Antibacterial; anti-infective; antimycobacterials;

antibiotics, antitubercular
DB11637 Delamanid 681492-22-8 6.861 Antimycobacterials
DB01201 Rifapentine 61379-65-5 6.804 Antibacterial; anti-infective; antibiotics,

antitubercular; antimycobacterials
DB16312 TNP-2092 922717-97-3 6.673 Lactams, macrocyclic; quinolines
DB01045 Rifampicin 13292-46-1 6.668 Antibacterial; anti-infective; antibiotics,

antitubercular; antimycobacterials
DB05154 Pretomanid 187235-37-6 6.400 Antimycobacterials
DB04934 Rifalazil 129791-92-0 6.332 Antibacterial; anti-infective; antibiotics,

antitubercular
DB01220 Rifaximin 80621-81-4 6.274 Antibacterial; anti-infective
DB08903 Bedaquiline 843663-66-1 6.193 Antibacterial; anti-infective; antimycobacterials
DB15213 25-Desacetylrifapentine 79039-56-8 6.175 Antibacterial; lactams, macrocyclic; rifamycins
DB00845 Clofazimine 2030-63-9 6.172 Antibacterial; anti-infective; antimycobacterials
DB04220 CGP 4832 113303-81-4 6.057 Lactams, macrocyclic
DB00218 Moxifloxacin 151096-09-2 6.010 Antibacterial; anti-infective

Table 4. The 15 selected anti-Mtb candidates and their MICs against Mtb reference strain H37Rv

DrugBank Name CAS Predicted
bioactivity
(−log10M)

Drug categories in DrugBank MIC (μg/mL) MIC
(μM/mL)

DB06638 Quarfloxin 865311-47-3 5.660 Oxazines; quinolines 12 500 20.67
DB13878 Pibrentasvir 1353900-92-1 5.582 Anti-infectives for systemic use; antivirals

for systemic use
>100 >89.83

DB09143 Sonidegib 956697-53-3 5.554 Antineoplastic; benzene derivatives >100 >205.97
DB15444 Elexacaftor 2216712-66-0 5.534 Cystic fibrosis transmembrane

conductance regulator correctors
25 000 41.83

DB12526 Batefenterol 743461-65-6 5.530 Anticholinergic; muscarinic antagonists;
quinolines

25 000 33.77

DB13879 Glecaprevir 1365970-03-1 5.516 Anti-infectives for systemic use; antivirals
for systemic use

100 000 119.21

DB15036 Sitravatinib 1123837-84-2 5.514 Aniline compounds 100 000 158.81
DB12375 Oglemilast 778576-62-8 5.506 – 100 000 193.69
DB12270 Losmapimod 585543-15-3 5.505 Cycloparaffins; p38 mitogen-activated

protein kinases
>100 >260.78

DB06013 Aldoxorubicin 1361644-26-9 5.504 Anthracyclines; antineoplastic 3.125 4.16
DB12005 Nirogacestat 1290543-63-3 5.471 Gamma secretase inhibitors and

modulators
100 000 204.23

DB16347 Velsecorat 1196509-60-0 5.438 Dioxins and dioxin-like compounds;
pyrazoles

>100 >164.85

DB12183 Sapitinib 848942-61-0 5.416 Heterocyclic compounds, fused-ring >100 >211.00
DB01268 Sunitinib 557795-19-4 5.382 Antineoplastic; antineoplastic agents 50 000 125.48
DB15673 Lenacapavir 2189684-44-2 5.331 Anti-HIV; anti-infectives for systemic use;

antivirals for systemic use
100 000 103.28

strain H37Rv. As shown in Table 4, among these, aldoxorubicin
showed the highest antibacterial activity against H37Rv with
MIC = 4.16 μM/mL. Considering aldoxorubicin is a prodrug of dox-
orubicin (CAS: 23214-92-8) bound to a peptide that binds albu-
min when entering the bloodstream, we also tested the MIC
value of doxorubicin (MIC = 10.78 μM/mL). Besides, quarfloxin,
elexacaftor, and batefenterol also showed relatively moderate
antibacterial activity with MICs ≤50 μM/mL (or MICs ≤ 25 μg/mL)
[48], while the remaining 11 inhibitors showed no activity against

growth of H37Rv (Table 4). Next, the top 4 inhibitors (aldoxoru-
bicin, quarfloxin, elexacaftor, and batefenterol) were chosen to
test their antibacterial activity against MDR isolates (the drug
resistance susceptibility of the MDR-TB strains are shown in
Additional file 3: Table S6). Ultimately, aldoxorubicin exhibited
potent activity against MDR isolates with MICs ranging from 4.16
to 16.65 μM/mL, while quarfloxin showed moderate antibacterial
activity against MDR isolates with MICs ranging from 10.34 to
41.34 μM/mL (Table 5).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
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Table 5. MICs of aldoxorubicin, quarfloxin, batefenterol, and elexacaftor against MDR-TB isolates

Name MIC (μM/mL) in clinical multidrug-resistant Mtb

MDR-TB MDR-TB MDR-TB MDR-TB MDR-TB
34 789 34 832 34 796 34 816 34 786

Quarfloxin 10.34 41.34 20.67 41.34 20.67
Elexacaftor 83.66 83.66 83.66 83.66 83.66
Batefenterol 33.77 67.55 67.55 67.55 135.09
Aldoxorubicin 4.16 8.33 8.33 8.33 16.65

Figure 5. Time–kill curves of aldoxorubicin (A), quarfloxin (B), and INH (C) against Mtb H37Rv. Antibiotic concentrations are presented as different
symbols. The INH was used as a positive control.

Time–kill curve assessments
We further evaluated the antimicrobial activity of aldoxorubicin
and quarfloxin by time–kill curve analysis. In general, the patterns
of H37Rv growth and killing by aldoxorubicin and quarfloxin
were moderate with apparent concentration-dependent features.
Killing effects were observed at all the tested concentrations in the
first day for both aldoxorubicin and quarfloxin. Compared with
the growth control, the time–kill curves of aldoxorubicin showed
that the bacteria counts could decrease by ∼1 log10 CFU/mL at a
concentration of ≥2× MIC on day 1 (Fig. 5A). From approximately
day 2 to day 6, exposure to ≥1× MIC of aldoxorubicin effectively
decreased the bacterial density. On day 1, compared with the
growth control, quarfloxin acquired about 0.5 log10 CFU/mL at
1× MIC (Fig. 5B). Quarfloxin exhibited strong antibacterial activity,
especially at concentrations ≥16× MIC, and the CFUs of Mtb were
all under the limit of detection on day 3. In contrast, INH demon-
strated sustained antimycobacterial activity, and the bacterial
counts can decrease by 1 log10 CFU mL−1at a drug concentration
of 4× MICs on day 1 (Fig. 5C), which was comparable with aldox-
orubicin at the concentration of 2× MICs on day 1.

Intracellular bacterial effect of aldoxorubicin and
quarfloxin
As shown in Fig. 6, after 24 h of incubation with aldoxorubicin,
there was no significant change in bacterial viability. At 72 h, the
bacterial survival rates decreased compared with the negative
control. At a concentration of 1× MIC, aldoxorubicin acquired
a mean 0.88 log10 CFU mL−1 decrease (Fig. 6A). Comparatively,
quarfloxin exhibited effective inhibition at a concentration of
4× MIC at 24 h posttreatment (Fig. 6B). After 72 h posttreat-
ment, quarfloxin showed a comparable antimycobacterial effect
to INH at a concentration of 1× MIC. Briefly, quarfloxin at the
concentration of 1× MIC made a 1.92 log10 CFU mL−1 decrease
of Mtb, whereas INH had a 2.07 log10 CFU mL−1 decrease. At a
concentration of 4× MIC, the CFUs were below the detection limit
(Fig. 6B).

Protein–ligand binding analysis
We performed molecular docking to study the potential anti-Mtb
mechanisms of aldoxorubicin and quarfloxin and their protein–
ligand binding modes. Based on the previously reported targets
of aldoxorubicin and quarfloxin in other species [49, 50], DNA
gyrase in M. tuberculosis (PDB ID: 7UGW) [10] was selected as
the potential target, and the protein structure was downloaded
from the PDB database. Molecular docking was performed
with AutoDock Vina to discover the binding modes of the two
candidates. The Vina score docking results for aldoxorubicin and
quarfloxin are listed in Table 6 and Table 7, respectively, with
a more negative value indicating a higher affinity. The results
demonstrated that aldoxorubicin and quarfloxin exhibited
relatively higher molecular docking scores with DNA gyrase,
ranging from −6.499 to −7.494 kcal/mol, compared to the
reference compound evybactin, a known DNA gyrase inhibitor
that binds to a site overlapping with synthetic thiophene poisons
[10]. Evybactin showed a lower docking score of −5.834 kcal/mol
(Additional file 3: Table S7). Moreover, protein–ligand interaction
analysis was conducted with LigPlot+. The 3D structure of DNA
gyrase, along with the binding poses and interaction profiles of
the two candidate compounds and the reference compound with
DNA gyrase, are shown in Fig. 7. The binding poses revealed that
aldoxorubicin and quarfloxin docked into the same hydrophobic
binding pocket as evybactin (Fig. 7A and 7B). Aldoxorubicin
formed hydrogen bonds with residues PRO353(A) and ARG354(A),
while quarfloxin formed a single hydrogen bond with PRO353(A).
In contrast, the crystal structure of Mtb DNA gyrase bound to
evybactin revealed hydrogen bonds with ASP350(A), ARG354(A),
and TYR364(A). Notably, the shared binding pocket and residues
(PRO353 and ARG354) involved in interactions with aldoxorubicin,
quarfloxin, and evybactin are also targeted by azaindole or
chlorophenyl groups in thiophenes—a synthetic class of gyrase
poisons that act via an allosteric mechanism [10, 51]. Therefore,
aldoxorubicin and quarfloxin may bind to the same allosteric site
targeted by thiophenes in Mtb DNA gyrase, suggesting a possible
structural basis for their anti-Mtb bioactivities.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
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Figure 6. The intracellular survival rate of Mtb H37Rv after aldoxorubicin and quarfloxin exposure. (A) Aldoxorubicin group: infected macrophages
treated with aldoxorubicin at 1× MIC, 2× MIC, and 4× MIC. (B) Quarfloxin group: infected macrophages treated with quarfloxin at 1× MIC, 2× MIC, and
4× MIC. The INH group served as the positive control. ∗∗∗P < .001.

Table 6. Molecular docking results of aldoxorubicin (DrugBank
ID: DB06013) to Mtb DNA gyrase (PDB ID: 7UGW)

Docking
pose

Vina score
(kcal/mol)

RMSD l.b. RMSD u.b.

1 −6.499 0.000 0.000
2 −6.291 2.748 10.370
3 −6.255 1.298 1.613
4 −6.169 1.475 2.589
5 −6.163 2.217 2.880
6 −6.118 2.993 11.030
7 −6.054 2.527 3.571
8 −5.896 1.968 2.292
9 −5.860 2.578 3.797
10 −5.838 2.653 11.700

Table 7. Molecular docking results of quarfloxin (DrugBank ID:
DB06638) to Mtb DNA gyrase (PDB ID: 7UGW)

Docking
pose

Vina score
(kcal/mol)

RMSD l.b. RMSD u.b.

1 −7.494 0.000 0.000
2 −7.462 2.805 5.662
3 −7.458 2.783 5.973
4 −7.432 1.930 1.965
5 −7.387 2.067 5.069
6 −7.277 3.578 7.178
7 −7.052 2.137 5.381
8 −7.017 3.320 10.340
9 −6.860 2.371 2.830
10 −6.838 3.254 10.620

Analysis of the molecular dynamics simulation
Molecular dynamics (MD) simulations were performed to further
assess the stability of the docked protein–ligand complex and
their interactions throughout the entire simulation trajectories.
The system properties during equilibration (Additional file 2:
Fig. S5) indicate that all simulated structures were optimized
and equilibrated. Following the MD production phase, root mean
square deviation (RMSD) analysis was performed to assess the
overall trajectory fluctuations and conformational stability of

the Mtb DNA gyrase monomer and the three protein–ligand
complexes: Mtb DNA gyrase–aldoxorubicin, –quarfloxin, and –
evybactin. The time evolution of RMSD values (Fig. 8A) showed
that the motions of all complexes converged after 100 ns. Notably,
aldoxorubicin and quarfloxin complexes exhibited lower RMSD
values compared to the reference ligand (evybactin) and the DNA
gyrase monomer, indicating greater stability and fewer structural
changes throughout the simulation period.

Then, we calculated root mean square fluctuation (RMSF)
to evaluate residue flexibility across the four MD simulations
(Fig. 8B). The Mtb DNA gyrase monomer exhibited higher
fluctuations, while the Mtb DNA gyrase–aldoxorubicin and
Mtb DNA gyrase–evybactin complexes significantly stabilized
the protein structure, particularly around key residues ASP350,
PRO353, ARG354, and TYR364, which form hydrogen bonds with
evybactin. In contrast, the Mtb DNA gyrase–quarfloxin complex
showed similar fluctuations to the monomer, indicating that
quarfloxin provided only moderate stabilization of protein’s
residue flexibility.

Hydrogen bonds play a crucial role in mediating the binding
interactions between ligands and proteins within protein–ligand
complexes. The time evolution analysis of hydrogen bonds
formed between the candidate ligands and Mtb DNA gyrase
revealed that aldoxorubicin consistently formed between 0 and 3
hydrogen bonds throughout the MD production, while evybactin
generally formed 0 to 2 hydrogen bonds, and quarfloxin typically
maintained a single hydrogen bond. This comparison underscores
potential differences in binding affinity, with aldoxorubicin
demonstrating the strongest affinity for Mtb DNA gyrase, followed
by evybactin and quarfloxin.

The overall MD simulation results confirm the thermodynamic
stability and intramolecular interactions of the DNA gyrase–
aldoxorubicin and DNA gyrase–quarfloxin complexes [52].
These findings are consistent with the molecular docking and
experimental results, where aldoxorubicin demonstrated a higher
Vina score and greater efficacy compared to quarfloxin.

Assessment of binding capacity by surface
plasmon resonance
Subsequently, through surface plasmon resonance, the two
selected compounds were evaluated for their binding ability to
DNA gyrase. As depicted in Fig. 9A and Fig. 9B, it displayed the
concentration-dependent binding of aldoxorubicin with GyrA

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae696#supplementary-data
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Figure 7. The protein–ligand binding modes of two identified ligands (aldoxorubicin and quarfloxin) and reference ligand (evybactin). (A) The global
protein–ligand complexes of Mtb DNA gyrase (PDB ID: 7UGW) and ligands. (B) The local protein–ligand complexes and binding modes of Mtb DNA gyrase
and three ligands, with protein hydrophobic surface and binding residues shown. (C) The ligand-centered binding mode profiles for three ligands.
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Figure 8. The MD simulation analysis results for Mtb DNA gyrase monomer and three protein–ligand complexes (Mtb DNA gyrase–aldoxorubicin, –
quarfloxin, and –evybactin). (A) Time evolution of RMSD during MD production; (B) RMSF for each residues in Mtb DNA gyrase during MD production.
The 1–46 numbered residues representing DNA molecule were removed. (C) Time evolution of hydrogen bonds formed between aldoxorubicin and
protein. (D) Time evolution of hydrogen bonds formed between quarfloxin and protein. (E) Time evolution of hydrogen bonds formed between evybactin
and protein.

and GryB with Kd value of 0.3997 and 0.3242 μM, respectively,
while Fig. 9C and Fig. 9D displayed the concentration-dependent
binding of quarfloxin with GyrA and GryB with Kd value of 2.891
and 30.1 μM, respectively. These results verified the direct strong
binding between aldoxorubicin and the DNA gyrase, as well as
between quarfloxin and the DNA gyrase.

Conclusion and discussion
In conclusion, our comprehensive virtual screening study
brings insights into ML-led LBVS workflow design and provides
experimental evidence of the anti-Mtb bioactivities of two
predicted novel compounds, aldoxorubicin and quarfloxin. The
overall results could benefit recent studies on computational
flow construction and optimization of LBVS for anti-Mtb drug
discovery. The initial antimycobacterial bioactivity dataset was
organized from the ChEMBL database. Six ML models for anti-
Mtb bioactivity prediction were trained and validated, followed
with an ensemble approach to integrate the established machine
learning techniques. For anti-Mtb drug repurposing, molecules
in the DrugBank database were screened and the majority of
known anti-Mtb drugs could be predicted with high precision.
Then, further drug category filtering and experimental validation
resulted two candidates (aldoxorubicin and quarfloxin) with anti-
Mtb potentials, and their drug-target binding modes were further
verified by molecular dynamics simulation and SPR experiments.

Among the predicted two candidates, aldoxorubicin exhibited
high antimicrobial activity against Mtb both in vitro and in cell
lines. As a prodrug of doxorubicin, aldoxorubicin has been suc-
cessfully tested against glioblastoma and soft-tissue sarcoma
[53, 54]. Moreover, in our study, doxorubicin, the active form of

aldoxorubicin, also exhibited an MIC (10.78 μM/mL) comparable
to that of aldoxorubicin (4.16 μM/mL). Doxorubicin, which has
been in clinical use for >2 decades, has a very wide antitumor
application spectrum; it has been used against cancers such as
breast and ovarian carcinoma, sarcoma, and many other solid
tumors [55]. Previous studies have shown that the Cmax of dox-
orubicin ranged from 14.66 to 303.46 μM/mL (corresponding to
dosages of 20 to 340 mg/m2), which corresponds to 1.4- to 28-
fold the MIC of Mtb H37Rv [56]. Generally, Cmax/MIC is consid-
ered an index for the efficacy of drugs in vivo. Thus, the Cmax
plus the low MIC values obtained in this study also implies the
potential efficacy of doxorubicin in the treatment of tuberculo-
sis. Meanwhile, compared to the known Mtb DNA gyrase binder
evybactin, our newly discovered aldoxorubicin demonstrated a
competitive binding affinity (Kd = 0.3997 μM vs. IC50 = 1 μM) for a
similar protein pocket, previously identified as an allosteric site
on the gyrase protein [10]. However, despite its potential role as
an allosteric inhibitor, aldoxorubicin showed relatively lower anti-
Mtb bioactivity compared to evybactin [MIC value: 3.125 μg/mL
(4.16 μM/mL) vs. 0.25 μg/mL] [10]. Given these preliminary find-
ings, it is important to experimentally compare aldoxorubicin
with evybactin to further explore aldoxorubicin’s therapeutic
potential and underlying mechanisms of action. Quarfloxin is
an investigational drug for different malignant tumors; it was
originally derived from the fluoroquinolone class of compounds
to target G-quadruplex within ribosomal DNA [57, 58]. Recent
studies showed that some stable G-quadruplexes in the genome
of M. tuberculosis were in the promoter region of genes belonging
to definite functional categories [59]. Previous studies showed that
the stable G-quadruplex structure could be transformed into its
duplex conformation by reverse gyrase; the potential interactions
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Figure 9. SPR analysis of aldoxorubicin and quarfloxin with DNA gyrase. (A) Evaluation of interaction between aldoxorubicin and GyrA. (B) Evaluation of
interaction between aldoxorubicin and GyrB. (C) Evaluation of interaction between quarfloxin and GyrA. (D) Evaluation of interaction between quarfloxin
and GyrB.

of quarfloxin with DNA gyrase found in this study may help to
further explain the anti-Mtb mechanism of this compound.

Besides, there are certain limitations in this study. First,
although the performances in terms of the enrichment factor
and hit rate are moderate, the R2, MAE, and MSE values of the
LBVS methods on the external validation dataset are weak.
These results implied that our trained LBVS models may have
a relatively limited adaptive domain and chemical structural
preference, this be alleviated by introducing the data from
more bioactive anti-Mtb compounds. Second, the repurposing
dataset can be further expanded to discover more candidates.
Considering sample accessibility and cost, this study focused on
only anti-Mtb drug repurposing with approved or investigational
drugs. Considering that most of the top predicted compounds
in DrugBank were known anti-Mtb drugs, therefore it would be
promising to screen more investigational drugs to expand the
range of compounds for repurposing. To address this issue, we
also used our LBVS methods to predict the anti-Mtb bioactivities
of molecules in the Drug Repurposing Hub [60] to promote the
identification of more potential anti-Mtb drugs and enhance the
application and precision of machine learning–led anti-Mtb drug
virtual screening. Third, further studies are needed to explore
and validate potential additional Mtb targets for the identified
compounds. This will help deepen our understanding of the
pharmacological mechanisms of action for both compounds.

Key Points

• We have created and validated an effective machine
learning–enabled virtual screening workflow to repur-
pose existing drugs with anti-Mtb efficiency.

• We virtual screened the DrugBank dataset against Mtb
and successfully identified two novel drugs (aldox-
orubicin and quarfloxin) with significant antibacterial
activity against M. tuberculosis H37Rv strain and other
multidrug-resistant TB isolates.

• In our study, molecular docking analysis indicated the
direct binding of the two promising compounds with Mtb
DNA gyrase, which were then validated by molecular
dynamics analysis and the surface plasmon resonance
experiments.
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online.
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