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Abstract

The supervision of novel psychoactive substances (NPSs) is a global problem, and the regulation of NPSs was heavily relied on identifying
structural matches in established NPSs databases. However, violators could circumvent legal oversight by altering the side chain
structure of recognized NPSs and the existing methods cannot overcome the inaccuracy and lag of supervision. In this study, we
propose a scaffold and transformer-based NPS generation and Screening (STNGS) framework to systematically identify and evaluate
potential NPSs. A scaffold-based generative model and a rank function with four parts are contained by our framework. Our generative
model shows excellent performance in the design and optimization of general molecules and NPS-like molecules by chemical space
analysis and property distribution analysis. The rank function includes synthetic accessibility score and frequency score, as well as
confidence score and affinity score evaluated by a neural network, which enables the precise positioning of potential NPSs. Applied
STNGS framework with molecular docking and a G protein-coupled receptor (GPCR) activation-based sensor (GRAB), we successfully
identify three novel synthetic cannabinoids with activity. STNGS constrains the chemical space to generate NPS-like molecules database
with diversity and novelty, which assists in the ex-ante regulation of NPSs.

Keywords: deep scaffold learning; generative framework; ensemble learning; novel psychoactive substance; synthetic cannabinoids

Introduction
Novel psychoactive substances (NPSs), also known as “designer
drugs” or “laboratory drugs” [1, 2], are drug analogs that have
been chemically altered by illicit actors with the intention of
evading law enforcement targeting controlled substances. These
substances produce similar or increased levels of euphoria, hal-
lucinations, and narcotic effects when compared to controlled
drugs [3]. Regarding the documented NPSs, the majority are stim-
ulants, followed by synthetic cannabinoid receptor agonists. The
secrecy of NPSs, combined with the common practice of modify-
ing existing structures to circumvent legal restrictions [4], greatly

hinders the identification and examination of these substances by
law enforcement officials. Therefore, identifying potential NPSs
proactively and improving existing drug databases can prevent
issues and improve the effective-ness of anti-drug agencies in
detecting and addressing NPS-related offenses.

The conventional experimental synthesis approach for NPSs
is slow and inefficient [5]. Therefore, the rapid and cost-effective
acquisition of potential NPS molecules for research is a pressing
concern. The application of deep learning techniques to generate
potential NPSs and analogs has the potential to provide valuable
insights to researchers and regulators. Deep learning has achieved
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significant milestones in the domains of computer vision [6]
and natural language processing. A deep generative model is a
type of deep learning model that randomly generates samples
by capturing the probability density inherent in observable data
[7]. Skinnider et al. [8] proposed the DarkNPS methodology. This
approach employed a deep generative model to understand the
structural distributions within the HighResNPS database [9]. The
molecules generated through model sampling serve as structural
priors for elucidating the structures of other molecules. Notably,
this method effectively identified the majority of recently dis-
covered NPS molecules during validation. However, this approach
had certain limitations. Firstly, the study lacked constraints on
the conditions for sampling chemical space in the deep gener-
ative model. Moreover, the validation process entails sampling
billions of molecules, which can result in a significant number of
false positives. Zhang et al. [10] similarly proposed an approach
involving the application of deep generative models (SeqGAN
and MolGPT) to synthesize fentanyl analog molecules. The study
had expanded the fentanyl analog repository and broadened the
investigative scope within the realm of fentanyl analog regulation.
However, it exclusively relied on data related to fentanyl and
its analogs, limiting a comprehensive exploration of the chem-
ical space surrounding fentanyl. None of these studies effec-
tively address the challenge of generating true positives for NPS
molecules, leading to numerous model-generated molecules mis-
classified as NPS. This may hinder the accurate ancillary supervi-
sion of NPSs.

This study presents a new molecular generative framework
called scaffold and transformer-based NPS generate and screen-
ing (STNGS) (Fig. 1a), which acknowledges the crucial role of
molecular scaffolds in drug design and optimization. STNGS can
be employed to capture the interconnections between scaffold
components, and the incorporation of scaffold-type encoding
facilitates enhanced comprehension of the mapping relationship
between scaffolds and intact molecules. We have developed a
ranking function to assess and order the generated molecules.
The ranking function includes four components: (i) the synthetic
accessibility (SA) score [11]; (ii) the frequency score; (iii) the con-
fidence score; (iv) the affinity score. We employ a genetically
encoded endocannabinoid (eCB) sensor [12] and surface plasmon
resonance method for affnity assay. Compounds 26 and 31 exhibit
superior agonist activity compared to the known NPS JWH-018.
The results demonstrate that high true-positive potential NPS
candidates are effectively generated and screened by our frame-
work. The resulting database of potential NPS alerts will assist in
the preemptive regulation of NPSs.

Methods and materials
Training data
This study utilizes data pertaining to two discrete components:
the NPS molecular generator and the NPS discriminator. Accord-
ingly, the data employed for each of these components will be
elaborated upon individually.

HighResNPS is a global database for screening novel psychoac-
tive substances (NPS), contributed by forensic laboratories world-
wide. It compiles data on newly detected NPS from biological
samples and seizures. As the most comprehensive and up-to-
date database on NPS structures, HighResNPS is selected to train
our NPS generator, enabling the model to effectively capture the
chemical characteristics and explore the potential chemical space
of NPS molecules. In this study, data collected before April 2020
was used as the training set for the NPS molecular generation

model, while data collected after April 2020 served as the external
validation set. Additionally, the study excluded the consideration
of chiral representations of molecules; thus, all chiral specifica-
tions are removed from the SMILES. Only molecules containing
carbon, hydrogen, oxygen, nitrogen, sulfur, phosphorus, fluorine,
chlorine, bromine, and iodine atoms are retained for subsequent
analysis. Following the completion of the aforementioned data
cleansing process, a definitive NPS dataset is obtained, containing
2154 NPS molecules.

The purpose of the NPS discriminator is to classify gener-
ated molecules. Consequently, the training data for the NPS
discriminator must encompass both positive and negative
instances of NPS. Positive samples are drawn from the previously
mentioned NPS dataset comprising 2154 NPS molecules. Con-
versely, for negative samples, to ensure equilibrium within the
dataset, this inquiry handpicked 2154 compounds from the anti-
tumor dataset AID248 within the PubChem database [13]. These
compounds are incorporated as adversarial instances for training
the NPS discriminator (Supplementary Fig. S1, Supplementary Fig.
S2 and Supplementary Analyses 2).

NPS generator
NPS generator is comprised of two distinct components:
T-Scaffold and Mol-GPT (Fig. 1b). T-Scaffold is responsible for
capturing the interconnections between scaffold components,
and its output, which is represented by a maximum likelihood
objective, serves as the input for the subsequent step of Mol-
GPT. The incorporation of scaffold-type encoding in the Mol-
GPT model facilitates enhanced comprehension of the mapping
relationship between scaffolds and intact molecules. Mol-GPT
has been demonstrated to be highly effective at generating new
molecules, utilizing predetermined molecular scaffolds while
exploring the various possible structures of molecular branched
chains via different sample temperature.

The scaffold feature st
i ∈ R

v×d for the ith scaffold is first
obtained after word embedding coding and position coding:

st
i = si· WE + ps

i (1)

where si ∈ R
v×1,WE ∈ R

d×d and ps
i ∈ R

v×d. The interrel-ationship
features of the scaffold are extracted through the multi-head self-
attention (MHA) mechanism, as shown in the following equation:
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sP
i = TDecoder

(
si· ET + pi, zt
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(6)

where Wκ,t
Q , Wκ,t

K , Wκ,t
V ∈ R

d×dare learnable parameters from
linear layers; H denotes the number of attention heads; dk is
the dimension of each head, which equals d divided by H; Norm
denotes layer normalization; Concat denotes the concatenation
operation; Dropout denotes the dropout operation. The output
of the maximum likelihood estimation of the scaffold is input
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Figure 1. Framework overview. (a) STNGS: Data augment block, generative block and ranking block. (b) Architecture of generative model. The molecular
scaffold SMILES is processed by the T-scaffold self-encoder-decoder to extract the latent vector of scaffolds, which is then passed to the Mol-GPT module
for molecular generation training. (c) Architecture of NPS-discriminator. This model is used as a sub-model and trained 100 times to obtain 100 models,
which are then integrated to form the final NPS discriminator. (d) Architecture of affinity prediction model. The bond feature matrix is concatenated
with the atomic feature matrix after passing through the bond message passing layers. It is input to the regression layer with the adjacency feature
matrix, the distance feature matrix, the coulomb feature matrix and the molecular description vector to calculate the affinity score. Alt text: Overview
of the STNGS framework (a) with three blocks: Data augmentation, generation, and ranking. (b) Generative model: T-scaffold extracts scaffold latent
vectors for Mol-GPT molecular generation. (c) NPS-discriminator: 100 two-layer LSTM sub-models integrated for discrimination. (d) Affinity prediction:
Bond and atomic features combined for regression based affinity scoring.

into the GPT module of the model, along with the molecular
features. This allows the model to explore the chemical space of
the molecule, as shown in the following equation:

sG
i = GPTEncoder

(
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i

)
(7)
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(8)
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ei = Projection
(
di
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(15)

where type coding tc ∈ R
v×d is identified with “0” for scaffolds

and “1” for molecules; Wκ,g
Q , Wκ,g

K , Wκ,g
V ∈ R

d×d, Wl
mi ∈ R

d×4d and
Wl

hi ∈ R
4d×d are learnable parameters from linear layers; Gaussian

Error Linear Unit (GELU) represents a type of activation functions;
Projection denotes the projection layer. The training processing
was carefully designed. We use the cross-entropy loss as the loss
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function:

L = −∑
Yi· Logsoftmax (ei) (16)

The hyperparameters of the model are listed in the Supplemen-
tary Table S5.

NPS discriminator
To bolster the reliability of the neural network in NPS discrimina-
tion, this study employs an ensemble learning strategy.

Ensemble learning involves combining multiple neural net-
work models to create an ensemble model specifically tailored
for NPS discrimination tasks, facilitated by a voting mechanism
[14]. The deep ensemble model consists of 100 sub-models, each
incorporating a two-layer LSTM (Fig. 1c). After each LSTM layer, a
Dropout layer is introduced, followed by an output through a fully
connected layer. The model undergoes training for 100 iterations,
resulting in the development of 100 distinct models. Subsequently,
these 100 models are combined to form the ultimate NPS discrim-
inator using the ensemble methodology.

hl
t = fl

(
hl

t−1, hl−1
t

)
(17)

h0
t = xt (18)

fl represents the lth layer of the LSTM network, t is the moment,
h is the hidden layer vector, and xt represents the token at the t
moment.

output = MLP
(
hl

t

)
(19)

MLP is the fully connected layer.
The hyperparameters of the model are listed in the Supplemen-

tary Table S5.

Affinity prediction model
Hu et al. [15] introduced an atom-bond transformer-based
message-passing neural network (Fig. 1d) for predicting molecular
properties. We employ the generated molecules for affinity
prediction, represented by the affinity score.

G = (V, E) (20)

Graph G consists of the atom set V and the bond set E.

e′
vw = BMP (evw) (21)

hvw = Concat
(
xv, e′

vw

)
(22)

mv = ReLU
(
W0Concat

(
xv, �w∈Neighbor(v)hT

vw

))
(23)

BMP is the Bond Message Passing Layers. Bond feature evw ∈
R

n×Fb , atom featuresxv ∈ R
m×Fa .

hv = AtomAttention
(
mv, MAdjacency, MDistance, MCoulomb

) + mv

(24)
Three inter-atomic matrices:MAdjacency, MDistance, MCoulomb.

h = �v∈Ghv (25)

ŷ = FFN
(
Concat

(
h, hf

))
(26)

hf represents molecular descriptors.

Model evaluation
The performance of the generative model is assessed in this
study on the MOSES dataset, and a comparison is conducted
with four baseline models using the subsequent metrics: valid-
ity, uniqueness, recovery, similarity and scaffold similarity. The
computation of the similarity is grounded in the Tanimoto coef-
ficient of molecular fingerprints. In this specific investigation,
extended-connectivity fingerprints featuring a radius of 2 and a
length of 1024 bits (ECFP4 [16]) are adopted. Scaffold similarity
encompasses the average resemblance between the scaffolds
associated with the generated molecules and their corresponding
counterparts within the test molecules.

This study evaluates the performance of the ensemble NPS
discriminator model by constructing baseline models based
on machine learning and employing molecular fingerprints. A
comparison is carried out between the constructed baseline
models and the submodels within the ensemble. Utilizing a total
of 12 model combinations, the study employs three distinct
molecular descriptors (ECFP fingerprint, MACCS fingerprint
[17], and Topological fingerprint) and four machine learning
techniques (Random Forest, Support Vector Machine, k-Nearest
Neighbors, and Adaptive Boosting). Evaluation metrics for the
models include precision, recall, F1 score, and Area Under the
Curve (AUC). The models undergo training using a five-fold cross-
validation methodology, and their performance is assessed on
both the test set and an external validation set (The results are
shown in Supplementary Table S3, Supplementary Table S4 and
Supplementary Analyses 2).

This study systematically assessed the molecular properties
generated by the model, with a focus on distinct physical and
chemical attributes (SA Score, LogP, NP Score [18], BertzTC [19],
TPSA [20, 21], quantitative estimate of drug-likeness (QED) [22],
percent of carbons and the number of aromatic rings).

NPS rank function
Distinguishing potential NPS molecules from the generated
pool remains a challenging task. To address this challenge, our
research introduces a ranking function that considers two met-
rics: the composite deep ensemble network scores derived from
the NPS discrimination model and synthetic accessibility score.

In this approach, the confidence in the potential of the
molecule as a NPS is determined by the ratio of positive votes from
the NPS discriminator. The confidence is calculated as the ratio
of sub-models classified positively to the total number of models.
The confidence ranges from 0 to 1, with higher values indicating
a stronger resemblance between the molecule and those in
the training set. Consistent with chemical similarity principles,
increased confidence signifies a heightened likelihood of the
molecule being a potential NPS candidate. Moreover, to guarantee
the practicality of synthesizing the generated molecules, the
research utilizes the synthetic accessibility score (SA score) to
impose constraints. Only molecules with an SA score of 3 or below
are retained.

In the initial step, we compute the Tanimoto coefficient
between the generated compounds and the nearest neighbor
structures derived from the collection of known NPSs molecules.
Following this, we categorize the compounds based on their
sampling frequency to identify potential dissimilarities in their

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae690#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae690#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae690#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae690#supplementary-data
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resemblance to established NPS molecules across various groups.
Our study incorporates a molecular sampling frequency score
into the previously discussed ranking function.

Normalization of confidence scores and frequency scores:

MinMaxNormalisation (x) = x − xmin

xmax − xmin
(27)

Norm Confidence Score
= MinMaxNormalisation

(
Confidence Score

) (28)

Norm Frequence Score = MinMaxNormalisation
(
Frequence

)
(29)

Norm SA score = SA
10

(30)

We design three ranking functions:

Rank Funtion 1 = Norm Confidence Score − Norm SA score
(31)

Rank Funtion 2 = Norm Confidence Score − Norm SA score

+ Norm Frequence Score (32)

Rank Funtion 3 = Norm Confidence Score − Norm SA score

+ Norm Frequence Score ∗ 2 (33)

Molecular biology
To generate stable cell lines for synthetic cannabinoids efficacy
evaluation, sequences encoding GRABeCB2.5 is cloned into a vec-
tor via Gibson [23] assembly called pPacific, containing a 3′ termi-
nal repeat, IRES, the puromycin gene, and a 5′ terminal repeat. Two
mutations (S103P and S509G) are introduced into pCS7-PiggyBAC
to generate hyperactive piggyBac transposase (ViewSolid Biotech)
[24].

Cell lines
HEK293T cells are purchased from ATCC (CRL-3216) and ver-
ify based on their morphology and growth rate. Stable cell line
expressing GRABeCB2.5 is generated by co-transfecting HEK293T
cells with the pPacific plasmids encoding sensors and the pCS7-
PiggyBAC plasmid encoding the transposase. The GRAB sensor cell
line is cultured at 37◦C in 5% CO2 in DMEM (Biological Industries)
supplemented with 10% (v/v) fetal bovine serum (GIBCO) and 1%
penicillin–streptomycin (GIBCO).

Fluorescence imaging of cultured cells
Before imaging, the culture medium is replaced with Tyrode’s
solutions containing: 150 mM NaCl, 4 mM KCl, 2 mM MgCl2,
10 mM HEPES and 10 mM glucoses (pH adjusted to 7.35–7.45 with
NaOH). The cells then are imaged in an Operetta CLS high-content
screening system (PerkinElmer) with a 488-nm laser. Green fluo-
rescence is collected using 525/50-nm emission filter.

To measure GRABeCB2.5 responses induced by various
chemicals, solutions containing the indicated concentrations of
synthetic cannabinoids are administered to the cells via bath
application.

Data for 96-well plate imaging are collected and analyzed using
Harmony high-content imaging and analysis software (Perkin-
Elmer). In brief, membrane regions are selected as ROI and the
green fluorescence channel (that is, the sensor) is measured.
The �F/F0 values (F0 represents baseline fluorescence) are then
calculated using the formula �F/F0 = (F − F0)/F0.

Results
Exploring key factors for optimizing generative
model performance
Schneider’s investigation [25] demonstrates the feasibility of con-
structing a resilient chemical language model using a limited set
of modest datasets by employing data augmentation techniques.
The present study also employs data augmentation for the pur-
pose of model training.

The optimal data augmentation factor is determined by con-
ducting a comparative analysis of data augmentation multiples
(Fig. 2a). The scaffold ratio represents the proportion of molecular
scaffolds in the generated molecules that align with the provided
molecular scaffolds, while validity indicates the adherence to the
SMILES syntax in the generated molecules. At a data enhance-
ment factor of 200, the validity value is 0.9853, and the scaffold
ratio is 0.9340. This investigation is focusing on two prevalent
molecular scaffolds: the generic scaffold and the Bemis-Murcko
(BM) scaffold [26] (Fig. 2b). Training procedures are conducted
independently on established MOSES datasets [27] using the BM
molecular scaffolds. The results (Fig. 2c) show that the model
on the BM scaffold has a higher molecular uniqueness, which is
favorable for our task of discovering potential NPSs. Therefore, BM
scaffold is selected for NPSs discovery and design.

During the molecular sampling process using the model, we
have observed a tendency for sampled molecules to repeat, lead-
ing to a decrease in molecular distinctiveness. To address this
issue, we conduct molecular sampling at different temperatures
using the model and calculate validity, uniqueness, and nov-
elty metrics at each temperature (Fig. 2d). Uniqueness increases
as the sampling temperature rises, while validity decreases but
remains within acceptable limits. Four distinct scaffolds, based
on different levels of complexity, are selected to randomly sample
a single molecule for all scaffolds at each of the five desig-
nated sampling temperatures. This procedure results in a total
of 20 unique molecules. We visualize the molecular structures of
these 20 entities (Fig. 2e). The chemical diversity of the sampled
molecules is markedly enhanced by the presence of alkyne, nitrile,
sulfonyl, and even sulfonamide groups as the sampling temper-
ature increases, expanding its coverage of chemical space. At a
sampling temperature of 1.5, the sampled molecules contain var-
ious functional groups, including phenylacetylene and methylx-
anthamides. The findings indicate that utilizing a higher sampling
temperature results in the generation of a more expansive range
of molecules.

Evaluate the ability of the model to generate
molecules
To assess the performance of the STNGS architecture in
generating general molecules, we train the model on the MOSES
dataset and compare its results with those of recently published
models with similar objectives: (CharVAE [28], FragLinker [29],
MoFlow and Sc2Mol [30]). The evaluation includes assessing the
ability of the model to generate molecules, considering criteria
such as validity, uniqueness, novelty, scaffold similarity (see
Supplementary Tables S1 and S2; Supplementary Analyses 1),

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae690#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae690#supplementary-data
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Figure 2. Effect of data augmentation multiplier, scaffold type and sampling temperature on model performance. (a) Association of Data Enhancement
Multiples with validity and scaffold ratio. (b) Two compounds and their corresponding two scaffolds. (c) Impact of two scaffolds on validity, uniqueness
and novelty. (d) Impact of sampling temperature on validity, uniqueness, and novelty. (e) Molecules generated by four scaffolds at different sampling
temperatures. Alt text: Impact of data augmentation, scaffold type, and sampling temperature on model performance. (a) Data enhancement multiples
affect validity and scaffold ratio. (b) Two compounds and their scaffolds. (c) BM scaffold improves uniqueness. (d) Sampling temperature influences
validity, uniqueness, and novelty. (e) Molecules generated by four scaffolds at different temperatures.

chemical space and property distribution. The model-generated
molecules effectively cover the chemical space of the entire
MOSES dataset (Fig. 3a). We select nine physicochemical indi-
cators to assess the similarity between the properties of the
generated molecules and those of the training set. Specifically,
NP score, BertzTC, QED, the fraction of sp3 carbons, molecular
weight, and the number of aromatic rings are primarily used
to assess the structural similarity between generated molecules

and those in the training set. LogP and TPSA evaluate molecular
lipophilicity and cell membrane permeability, while the SA score
reflects synthetic feasibility. At the sampling temperature of 1.0
the model-generated molecules closely resemble those in the
MOSES dataset across all nine property distributions (Fig. 3b).

To assess the performance of the STNGS architecture in gen-
erating NPS molecules, we train the model on the HighResNPS
dataset. We demonstrate the superiority of the STNGS framework
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Figure 3. Chemical space and property distribution of generated molecules. (a) UMAP visualization of 5000 randomly selected molecules form MOSES
dataset and 5000 randomly selected molecules from the trained generative model. (b) Properties distribution of 30 000 randomly selected molecules
form MOSES dataset and 30 000 randomly selected molecules from the trained generative model. (c) UMAP visualization of 2154 molecules form NPS
dataset, and all generated NPS-like molecules from the trained generative model. (d) Properties distribution of 2154 molecules form NPS dataset and all
generated NPS-like molecules from the trained generative model. Alt text: Chemical space and property distribution of generated molecules. (a) UMAP
of 5000 MOSES and 5000 model-generated molecules. (b) Property distributions of 30 000 MOSES and model-generated molecules. (c) UMAP of 2154 NPS
dataset molecules and generated NPS-like molecules. (d) Property distributions of NPS dataset molecules and generated NPS-like molecules.

in predicting the potential of emerging NPS molecules through
comparative and ablation experiments (with DarkNPS [8], Multi-
step Decorator [31] and results in Table 1). We analyze the chemi-
cal space and physicochemical property distributions of potential
NPS molecules generated by the model. The generated potential
NPS molecules exhibite significant overlap with the chemical
space of NPS molecules in the HighResNPS dataset (Fig. 3c). This
indicates that the model effectively explores the chemical space
of potential NPSs. As shown in Fig. 3d, the distribution of physico-
chemical properties of potential NPS molecules generated by the
model closely aligns with those of NPS molecules in the HighRes
NPS dataset. This consistency demonstrates the model’s ability
to capture the physicochemical characteristics of NPS molecules.
While the similarity between the properties of the generated
molecules in Fig. 3d and the training set is lower compared to
those in Fig. 3b, this difference arises from setting the sampling
temperature to 1.5 to prioritize the generation of more novel
potential NPS molecules. Fig. 3 demonstrates the exceptional per-
formance of the STING architecture in generating both general

molecules and potential NPS candidates. By leveraging a sampling
temperature strategy, the model effectively captures molecular
features and thoroughly explores chemical space.

Constructing ranking functions to screening
potential NPSs
To achieve a wide range of molecular structures while ensuring
the accuracy of the sampled SMILES, the sampling temperature
is set to 1.5 for each scaffold and the results of each scaffold are
resampled 1000 times to generate the data set for screening. After
removing any illegitimate SMILES and NPSs that appeared in the
training set, we are left with a total of 127 739 unique molecules.

This study presents a ranking function designed to identify
potential NPSs from a large number of generated NPS-like com-
pounds. The ranking function consists of two key components:
an evaluated NPS discriminator model (details in the NPS dis-
criminator section of the Methods) and a synthetic accessibil-
ity (SA) score assigned to the molecules. The provided ranking
function (See methods NPS rank function section for details) is
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Table 1. Performance of each model on NPS molecule generation

Model Validity Uniqueness Novelty Number of NPS hits

DarkNPS 0.9268 0.7089 0.9497 58
Multi-step Decorator 0.9103 0.7117 0.9913 69
STNGS (without T-Scaffold) 0.9102 0.7664 0.9665 71
STNGS (without Type-Encoding) 0.9064 0.7595 0.9805 69
STNGS (without T-Scaffold and Type-Encoding) 0.8843 0.7117 0.9515 57
STNGS 0.9426 0.7995 0.9814 75

Figure 4. Effect of sampling frequency on the rank function. (a) Relationship between sampling frequency and number of molecules. (b) Nearest-neighbor
Tanimoto coefficients to known NPS for all molecules in different sampling frequency groups. (c) Number of emerging NPS molecules hit by different
scoring functions. Alt text: Effect of sampling frequency on rank function. (a) Sampling frequency versus number of molecules. (b) Nearest-neighbor
Tanimoto coefficients for molecules in different sampling frequency groups. (c) Number of emerging NPS molecules identified by different scoring
functions.

used to evaluate and rank a collection of >120 000 generated
molecules.

After processing the model-generated molecules, we conduct a
thorough investigation into the recurrence of specific molecules
in the final outcomes. We then perform a statistical analysis
to evaluate the frequency of occurrence of the model-generated
molecules (Fig. 4a). It is worth noting that a significant number
of molecules are sampled either individually or infrequently, in
contrast to a smaller subset of molecules that are subjected
to repetitive sampling, with frequencies reaching thousands of
instances. The highest sampling frequency observed is 786, while
the lowest is only once.

Our hypothesis suggests that molecules with higher sampling
frequencies may be due to the model assigning greater weights
to certain tokens, resulting in their more frequent generation. In
other words, molecules with higher sampling frequencies may
indicate a greater likelihood of being potential NPS entities.

The results (Fig. 4b) show that the higher the sampling fre-
quency, the more similar the molecules are to the NPS molecules.
Based on this pattern, we propose to refine the screening of
potential NPSs by increasing the frequency score.

The 146 new NPS entries added to the HighResNPS database
are employed as the test set. The efficacy of different ranking
functions is evaluated by comparing the number of molecules
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Figure 5. Experimental validation of the generated molecular activity. (a) The binding poses and interaction modes of the target CB1 with three
compounds. The dashed line represents the π-π stacking interaction. (b) Expression and fluorescence change in response to three compounds in cells.
(c) Effectiveness curves for JWH-018 and three compounds. The effectiveness on cells is shown as the fluorescence expression intensity. (d) Affinity assay
and KD values of JWH-018 and three compounds. Alt text: Experimental validation of generated molecular activity. (a) Binding poses and interactions
with CB1 receptor. (b) Fluorescence response in cells. (c) Effectiveness curves for JWH-018 and three compounds. (d) Affinity assay results and KD values.

from the top 0.5%, top 1%, and top 5% of the screened and sorted
set that hit the test set. The results (Fig. 4c) show that the ranking
function 1 based solely on discriminator votes and SA scores hits
the fewest molecules in the test set, with only one newly emerged
NPS molecule hit in both the top 0.5% and top 1%. In contrast, the
scoring function incorporating frequency scores (ranking function
2) hit 12, 18, and 43 newly emerged NPS molecules in the top 0.5%,
top 1%, and top 5%, respectively. Moreover, the ranking function 3,
which assigns a higher weight to frequency scores, demonstrates
an increased number of newly emerged NPS molecules in the
top 0.5%, top 1%, and top 5% compared to the other functions.
These findings support our hypothesis that including sampling

frequency scores is more effective in identifying potential NPSs
than without.

Experimental verification of the activity of the
generated molecules
To evaluate the screening effectiveness of the STNGS framework
for potential NPSs, the activity of the generated molecules is
detected. In order to increase the binding activity of the molecules
with real receptors, the affinity scores predicted by the affinity
prediction model are integrated into the ranking function. For syn-
thetic cannabinoids in NPSs, we select three top-ranked synthetic
cannabinoid-like molecules, CPU-026, CPU-031, and CPU-032 (see
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Supplementary Figs. S3–S5 and Supplementary Fig. S7), from the
generated molecular libraries. A search of the PubChem and Zinc
databases using the canonical SMILES of these molecules reveals
that all three are unknown compounds. The binding conforma-
tions of these three molecules to cannabinoid receptor 1 (CB1) are
then analyzed. It is found that all three molecules interact with
the CB1 in a similar manner to NPS JWH-018 [32, 33] (Fig. 5a),
forming a π-π stacking interaction with active site residues
PHE-102 and PHE-268. Additionally, the three compounds form
a π-π stacking interaction with active site residues PHE-
170 or PHE-379, further enhancing the binding strength. We
also use molecular docking to validate other NPSs (results in
Supplementary Fig. S6). The STNGS model is considered effective
in learning the interaction patterns between binding sites and
molecules.

To demonstrate the ability of the ranking function to screen
for potentially active NPS, the GRABeCB2.5 sensor are used to
determine the binding affinity of the three compounds to the
CB1 receptor. All three compounds effectively stimulated the
GRABeCB2.5 (Fig. 5b). The EC50 value is calculated from the flu-
orescence intensity (Fig. 4c). Although the EC50 values of com-
pounds CPU-26 (3.66 μM) and CPU-31 (3.07 μM) are higher than
that of NPS JWH-018, they remain within an acceptable range.
Compound CPU-032 exhibits a comparable affinity to JWH-018.
In the Surface Plasmon Resonance (SPR) affinity assay (Fig. 4d),
CPU-026 demonstrates the lowest KD value, while the KD values
of CPU-31 and CPU-032 are similar to those of JWH-018. This
result suggests that the ranking function, which considers affinity
scores, can effectively screen potential NPSs and construct a
database of potential NPSs with high true positive rates.

Discussion
In this work, we propose a novel molecular generation model
based on Transformer and molecular scaffolds. This model is
capable of generating complete molecules from a given molecular
scaffold, focusing on the identification of potential NPSs. The
chemical space of these substances is comprehensively explored
using a dataset of over 2000 known NPSs. Through temperature
sampling, our generative model produces numerous distinctive
potential NPSs.We develop a ranking function for NPS screening
based on a neural network classifier, synthetic accessibility score,
and sampling frequency score. From the over 120 000 unique
molecules generated, we select the top 0.5%, top 1%, and top 5%
to form three final virtual libraries of NPSs. These libraries yielded
hits for 16, 25, and 46 emerging NPS molecules, respectively.To
further refine the results, we incorporated affinity scores into
the ranking function and re-evaluated the generated molecules.
The top three ranked synthetic cannabinoid-like molecules were
selected for experimental validation. Our analysis demonstrates
that all three exhibit significant affinity for the CB1 receptor.

In real-world scenarios, violators often evade legal controls
by making subtle modifications to the structures of known
NPSs, creating new variants. This strategy significantly hinders
anti-narcotics efforts in identifying and studying these sub-
stances. Our generative model mimics this behavior by preserving
the molecular scaffold while systematically exploring the chem-
ical space of NPSs. We developed a self-encoding and decoding
scaffold learning module that effectively captures the chemical
information of molecular scaffolds and identifies modification-
prone sites using an attention mechanism. Unlike the standard
Transformer model, which transfers encoder information to the
decoder as hidden vectors, our approach integrates molecular

scaffold information with inputs from the molecular processor
after joint encoding by the scaffold processor. This method
mitigates information loss from hidden vector inputs and ensures
adequate attention to scaffolds.

The STNGS architecture offers significant advantages over
existing NPS generative models and scaffold-based molecular
generative models retrained with NPS datasets. Our model
identifies the highest number of emerging NPS molecules beyond
the training set. It effectively generates and screens high true-
positive potential NPS candidates. The resulting database of
potential NPS alerts will support proactive regulation efforts.
This capability has important implications for NPS research and
broader initiatives to combat drug-related crime.

Key Points

• This study first integrates deep scaffold learning and
molecular generative language model to develop a novel
computational approach STNGS for exploring potential
NPS molecules.

• With a well-designed multi-angle ensemble learning
scoring function, STNGS can efficiently and accurately
screen NPS molecules, substantially accelerating the
construction of a database of potential NPS molecules.

• To accurately determine alterations in activity for the
generated molecules with the CB1 receptor, we elabo-
rate an affinity assay based on a genetically encoded
Endocannabinoid (eCB) sensor known as GRABeCB2.5
and surface plasmon resonance.
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