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Abstract

Network-based methods utilize protein–protein interaction information to identify significantly perturbed subnetworks in cancer and
to propose key molecular pathways. Numerous methods have been developed, but to date, a rigorous benchmark analysis to compare
the performance of existing approaches is lacking. In this paper, we proposed a novel benchmarking framework using synthetic data
and conducted a comprehensive analysis to investigate the ability of existing methods to detect target genes and subnetworks and to
control false positives, and how they perform in the presence of topological biases at both gene and subnetwork levels. Our analysis
revealed insights into algorithmic performance that were previously unattainable. Based on the results of the benchmark study, we
presented a practical guide for users on how to select appropriate detection methods and protein–protein interaction networks for
cancer pathway identification, and provided suggestions for future algorithm development.
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Introduction
The development of cancer within an individual is an evolution-
ary process driven by the accumulation of gene mutations that
confer selective growth advantages to malignant cells, often by
perturbing normal cellular processes [1]. Consequently, the identi-
fication of cancer driver genes and impacted molecular pathways
is key to the elucidation of the mechanisms underlying cancer
development. Extensive efforts to compile genomic data from
large-scale tumor tissue studies, notably by The Cancer Genome
Atlas (TCGA) and the International Cancer Genome Consortium
(ICGC) [2, 3], have greatly facilitated this goal. These initiatives
have enabled us to identify genes that are mutated at frequencies
significantly higher than those expected by random chance [4],
providing insights into tumor biology that have supported numer-
ous research endeavors [5].

Network-based approaches extend frequency-based methods
by integrating frequency data with a protein–protein interaction
(PPI) network [6, 7]. Since interacting proteins are often function-
ally related or work together, network-based approaches enable
the identification of low-frequency genes that may still play
significant roles in cancer. Additionally, they facilitate the detec-
tion of clustering patterns that reveal molecular pathways con-
tributing to cancer progression. This analytical strategy has thus
become a standard component in large-scale cancer studies [6, 8].

A dozen network-based methods have been previously devel-
oped [6, 7, 9–14]. However, to our knowledge, no benchmark study
has yet been performed to comparatively evaluate the perfor-
mance of these approaches. Lazareva et al. [15] conducted a
benchmark study for a related problem, active module identifi-
cation, where network-based approaches were utilized in gene
expression analysis to identify modules of genes that display
changes in expression levels under disease conditions. The study
was designed to assess whether modules identified using a PPI
network are biologically more meaningful than those identified
using a randomly generated network. The study provided several
insights, establishing that while DOMINO [9] was able to yield
statistically significant results with real PPI networks, other meth-
ods identified disease-related modules based primarily on node
degrees rather than the topological structures of node interac-
tions. However, the findings of this study are not applicable to the
cancer subnetwork identification problem due to the fundamen-
tal differences between gene expression and mutation data. For
gene expression data, changes in gene expression levels are not
necessarily directly associated with a disease due to the cascad-
ing effect [15]. Therefore, algorithms designed for active module
identification tend to exclude genes that are highly differen-
tially expressed but falsely associated with a disease. In contrast,
for mutation data, there are only a few highly mutated driver
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genes, and less prevalent potential drivers cannot be detected by
frequency-based methods. Consequently, algorithms for cancer
subnetwork identification prioritize the identification of cancer
driver genes that are not highly mutated but close to highly
mutated drivers in a PPI network. Another limitation of the bench-
mark study is that it assessed only the impact of node degrees on
algorithm performance, but overlooked other critical topological
attributes of PPI networks, likely due to the difficulty of generating
synthetic networks with specific topological features using per-
mutation and sampling approaches. Moreover, the study focused
on active module identification, and certain methods, partic-
ularly those tailored for cancer research, were not thoroughly
investigated.

In this study, we performed an in-depth benchmark analysis
to evaluate and compare a set of recently developed algorithms
for the identification of cancer pathways. Specifically, we gen-
erated synthetic target subnetworks, used as ground truths, by
selecting gene lists from established protein complex or pathway
databases. Subsequently, we simulated synthetic P-values and
applied various computational methods to these values, evaluat-
ing their effectiveness in accurately recovering synthetic targets.
The use of synthetic targets in our study enables a comprehensive
comparison of different algorithms, revealing potential biases
toward certain topological features of genes and subnetworks.
Our analysis provides insights into algorithmic performance that
were previously unattainable and presents findings that chal-
lenge established views. Firstly, contrary to the findings in a
previous comparative study [15], DOMINO did not perform well
in our analysis. Secondly, we found that some methods, although
designed to counteract degree bias by penalizing high-degree
nodes, tend to do so excessively. This over-penalization may lead
to the rejection of those genes, regardless of their association with
cancer. Thirdly, our analysis on eigenvector centrality revealed a
shortfall in current methods in that they fail to take into con-
sideration genes with low degree and high eigenvector centrality,
thus being indirectly impacted by degree bias. Lastly, we observed
that all methods under study favored community-like subnet-
works. Interestingly, these subnetworks, despite their clear topo-
logical modularity, do not consistently align with disease modules
described in previous studies [16]. We presented the main findings
of this study as well as the comparison with the study conducted
in Lazareva et al. [15] in Supplemental Table 1. Our findings have
implications for both practitioners and developers and highlight
key considerations for the future development and refinement of
these algorithms.

Literature survey
We conducted a comprehensive benchmark study of 12 network-
based methods, namely BioNet [17, 18], ROBUST [12], MuST [19],
RegMOD [20], HotNet2 [6], hierarchical HotNet [10], DOMINO [9],
DIAMOnD [21], FDRnet [7], NetMix2 [13], NetCore [11], and ClustEx
[22] (Supplemental Table 2). The selection of these methods was
based on three primary criteria. First, a preference was given
to more recently developed methods. Secondly, we focused on
methods that take as input a PPI network and P-values obtained
from a gene-level mutation analysis (e.g. MutSig [4]) and yield
a list of subnetworks as potential cancer pathways. Third, we
prioritized methods that are compatible with high-performance
computing platforms and require minimal configuration, due
to the extensive computational demands of our experiment.
Considering that the main challenge in developing network-
based methods is to devise strategies to effectively integrate

gene-based scores with the PPI network topology, we categorized
the selected methods into five groups based on their integration
strategies: neighbor-based (DIAMOnD), maximum score-based
(BioNet, ROBUST, MuST), diffusion-based (RegMOD, HotNet2,
hierarchical HotNet), community-based (DOMINO), and hybrid
methods (FDRnet, NetMix2, NetCore, ClustEx). Next, we provide a
brief discussion of the methods in each category.

Neighborhood-based approach: Neighborhood structure is a
fundamental aspect of network-based analysis. DIAMOnD works
by integrating neighborhood interactions in a PPI network with
gene scores. It starts with a core set of genes that have high scores
and iteratively expands the set. In each iteration, new genes are
added to the disease module identified in the previous iteration if
the new genes have a significantly higher number of connections
with genes already in the module than would be expected by
chance. A notable limitation of this method is that it does not
take into consideration gene scores in the iterative expansion
process. As a result, there is a potential for incorporating genes
into a detected module that, despite their connectivity, may not
be relevant to cancer.

Maximum score-based approach: The connectivity structure
offers a more comprehensive view than the neighborhood struc-
ture in network analysis, as it considers the interconnections
among a set of genes rather than focusing solely on individ-
ual genes. To leverage the connectivity structure, the maximum
score-based approach identifies a connected subnetwork in a PPI
network that maximizes the total gene score. The representa-
tive methods include BioNet, MuST, and ROBUST. Typically, gene
scores are derived from P-values, and the task of subnetwork iden-
tification is formulated as a combinatorial optimization problem,
commonly known as the Steiner tree problem [18, 23, 24]. Conse-
quently, methods in this category can employ various techniques
for efficient solution discovery. However, a key limitation is that
they are unable to adequately address the scale-free nature of
PPI networks. Since many genes are connected with each other
through numerous high-degree nodes, these methods often end
up linking a large number of cancer-related genes into a large
network, thereby failing to discover subnetwork structures.

Diffusion-based approach: Diffusion processes offer a more
effective way to harness complex topological structures of a net-
work, going beyond simple connectivity analysis. Consequently,
several diffusion-based methods have been developed to address
the issue of the scale-free structure. Gene scores are incorporated
into diffusion processes either through genes (e.g. RegMOD) or
through gene interactions (e.g. HotNet2 and hierarchical HotNet).
Upon completion of a diffusion process, a threshold is chosen to
extract high-scoring modules. However, selecting an appropriate
threshold poses a significant challenge. HotNet2 and hierarchical
HotNet tackle this issue using time-intensive, permutation-based
techniques, whereas RegMOD opts for a data-dependent, outlier-
based approach.

Community-based approach: Community detection is an
alternative way to exploit the complex topological structures
of a network. In this approach, as exemplified by DOMINO, the
entire PPI network is first partitioned into distinct communities
using a community detection algorithm. Subsequently, sub-
communities enriched with high-scoring genes are identified.
While the community detection problem has been well studied
and can be solved efficiently, this approach suffers from two
notable drawbacks. First, the results of community detection are
static and cannot be altered through post-analysis. This rigidity
means that a subnetwork spanning multiple communities might
not be identified. Secondly, since gene scores are not used in the
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Figure 1. Overview of the benchmark study.

community detection phase, identified subnetworks often include
many low-scoring genes, potentially leading to the incorporation
of many genes that are not related to cancer.

Hybrid approach: The methods in this category, which include
FDRnet, NetMix2, NetCore, and ClustEx, employ a combination
of diffusion-based techniques and other approaches to integrate
network structures with gene scores. For these methods, the initial
step involves a diffusion process to exploit the network structures,
and then the outcomes are utilized to guide the identification
of subnetworks. Specifically, FDRnet begins by generating a local
graph through diffusion and then searches within the local graph
for a subnetwork that minimizes the conductance score, a metric
often used in community detection. In a similar way, NetMix2
constructs a graph via diffusion and then identifies a subnet-
work that maximizes the total gene score. NetCore enhances the
neighborhood-based approach by incorporating diffusion-based
significance scores into the process of adding genes to subnet-
works. Finally, ClustEx applies traditional clustering algorithms to
diffusion-based similarity metrics to identify clusters.

Experimental protocol
To evaluate the performance of network-based methods for the
detection of significantly perturbed subnetworks in cancer, we
devised an experimental protocol that employed extensive syn-
thetic datasets. Figure 1 presents an overview of the benchmark
study. Typically, a network-based method takes a PPI network
and a set of synthetic P-values as input and outputs a list of
subnetworks as potential cancer pathways. For PPI networks, we
relied on four well-maintained and commonly used PPI networks,
namely BioGRID [25], iRefIndex [26], ReactomeFI [27], and STRING
[28]. For the STRING database, we retained only high-confidence
interactions with confidence scores ≥ 0.9, following the guideline
provided by the STRING database [28]. This strategy was also
adopted in previous cancer studies [7, 8].

To generate synthetic P-values, we employed a two-step
process. First, we selected target subnetworks in a PPI network,
and then sampled P-values for all genes based on whether
they were included in target subnetworks. To select biologically
meaningful target subnetworks, we utilized two manually curated
gene-set databases with distinct topological features: Reactome
[27], a biological pathway database, and CORUM [29], a protein
complex database where gene sets tend to be more densely
connected. We started by extracting known cancer-related
subnetworks from the two databases. Then, we pre-processed
the subnetworks by excluding gene sets that were too small
(fewer than 10 genes) and those having substantial overlaps
with others (overlapping with other sets by more than 80%). We
obtained only a limited number of subnetworks (12 subnetworks
from CORUM, 10 from Reactome), which restricted the statistical

power of our analysis. To address this issue, we expanded our
selection to include target subnetworks from the full databases,
including both cancer-related and general biological pathways
and protein complexes. Using the same preprocessing procedure,
we obtained 678 and 97 gene sets from the Reactome and CORUM
databases, respectively. Then, we randomly sampled 10 gene
sets as target subnetworks. The sampling process was repeated
five times for each database, yielding a total of 10 sets of target
subnetworks where each set contained 10 subnetworks. In Section
“Performance comparison,” we empirically demonstrated that
the network-based methods performed similarly regardless of
whether cancer-related or general biological pathways were used
as target subnetworks. Hence, in the subsequent analysis to
assess the potential biases of a method toward certain topological
features of genes and subnetworks, we focused only on the
results obtained using the general biological pathways. As we
used the ReactomeFI PPI network, one concern was that using
gene sets from the Reactome databases as target subnetworks
might introduce bias. In Section “Performance comparison,” we
empirically demonstrated that this was not the case.

Given a set of target subnetworks, we employed a signal-to-
noise decomposition model [7, 23, 30] to generate P-values for
all genes in a PPI network. Specifically, we assumed that the P-
value distribution is a mixture of two distributions: the signal
distribution (where P-values arise from the alternative hypothesis,
i.e. a gene is cancer-related) and the noise distribution (where
P-values are derived from the null hypothesis, i.e. a gene is not
cancer-related). It is well established that P-values from the null
hypothesis follow a uniform distribution, U(0, 1) [30]. Under the
alternative hypothesis, the distribution of P-values is character-
ized by a high density at values close to zero, which decreases
as the P-values increase. This distribution aligns with a specific
form of the beta distribution beta(a, 1). Thus, for each gene, we
sampled its P-value from beta(a, 1) if it was in a target subnetwork;
otherwise, we used U(0, 1). In the beta distribution, the parameter
a determines the signal strength, with a smaller a corresponding
to a larger signal strength. To assess the performance of a method
applied to data with different signal strengths, we varied the
values a from 0.01 to 0.11 with increment of 0.01. To minimize
random variations, for each value of a, we repeated the sampling
process 10 times. This resulted in 1100 P-value sets for testing.
Using different combinations of 1100 sets of P-values and four
PPI networks, in total, we conducted 4400 experiments for each
method.

In addition to the simulation study, we conducted an experi-
ment using the mutation and copy number data of nine cancers
obtained from the TCGA study, including bladder cancer (BLCA),
breast cancer (BRCA), colorectal adenocarcinoma (COADREAD),
head and neck squamous cell carcinoma (HNSC), pan-kidney
cohort (KIPAN), lung adenocarcinoma (LUAD), lung squamous cell
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carcinoma (LUSC), prostate adenocarcinoma (PRAD), and uterine
corpus endometrial carcinoma (UCEC). We followed the pipeline
described in [7] to integrate both mutation and copy number data
and calculate the P-value of each gene. We used the four PPI
networks in the cancer experiment.

We set the parameters for each method based on the recom-
mendations from their original papers. For methods that require
a predefined list of putative cancer genes (DOMINO, DIAMOnD,
NetCore, and ClustEx), we performed an empirical Bayes analysis
[31] on P-values to estimate the probabilities of individual genes
being false discoveries (i.e. not related to cancer) and selected
genes with probabilities below a specified threshold. In this study,
we set the threshold to 0.1, aligning with the default threshold
utilized by FDRnet. When default parameters were not provided
for a particular method, we manually selected a range for each
parameter and conducted multiple tests to explore the influence
of various parameter settings. We then used the setting with the
best performance in comparison.

Performance comparison
We compared the ability of the 12 methods to detect target genes
and subnetworks. Ideally, a good detection method should be
able to not only identify correct target genes but also place them
into correct subnetworks. Furthermore, it is crucial to control for
the presence of nontarget genes (i.e. false positives) within each
identified subnetwork to ensure their relevance to the task of
subnetwork identification. For this purpose, we employed three
metrics. First, we assessed the ability of a method to identify target
genes (i.e. genes included in target subnetworks) using the F-score
[32] computed by comparing identified and target genes. Secondly,
we assessed the ability of a method to identify target subnetworks
using the Fsub score, a natural extension of the F-score, that was
introduced in [7] and specifically designed to evaluate identi-
fied subnetworks with respect to target ones. Lastly, to measure
the ability of a method to control false positives, we calculated
the false discovery rate (FDR) for identified subnetworks, which
was defined as the proportion of nontarget genes in identified
subnetworks.

First, we assessed the overall performance of each method
evaluated on 4,400 test datasets. Figure 2(a–c) presents the
F-scores, Fsub scores, and FDRs of the 12 methods as a function
of the signal strength parameter a. As expected, for both F-scores
and Fsub scores, the performance of all the methods dropped as
the signal strength became weaker (i.e. with increasing values
of a). Nevertheless, the relative ranking of the methods largely
remains unchanged. Notably, in terms of F-scores, a group of
methods (FDRnet, MuST, BioNet, ROBUST, NetMix2, DIAMOnD,
NetCore) performed significantly better than all other methods.
However, in terms of Fsub score, all these methods, except for
FDRnet, performed poorly. While effective in identifying indi-
vidual genes, these methods struggled to accurately determine
subnetwork structures. In fact, they tended to connect identified
genes into a small number of subnetworks, often resulting in
one disproportionately large subnetwork (see Supplemental
Table 3). Further examination revealed that while some methods
consistently controlled FDRs at a certain level (FDRnet, BioNet,
NetMix2, hierarchical HotNet, HotNet2), four methods (DIAMOnD,
DOMINO, RegMOD, and ClustEx) appeared less effective in
controlling FDR. Notably, DOMINO did not perform well across all
three metrics in our evaluation. This may be due to the fact that
the method first partitions a PPI network into communities and
then identifies subnetworks within each detected community.

While this could yield functionally cohesive groups, it may not
work well in scenarios where target subnetworks do not align with
pre-defined communities, potentially leading to the inclusion
of many nontarget genes and the formation of suboptimal
subnetworks. Based on the above results, we concluded that
while many methods can effectively identify individual genes,
if one considers both gene and subnetwork identification, FDRnet
should be initially considered.

We performed an experiment where we applied the network-
based methods to the cancer-related subnetworks extracted from
the Reactome and CORUM databases and reported the F-scores,
Fsub scores and FDRs (Supplemental Figure 1). We found that all
the methods performed similarly regardless of whether cancer-
related or general biological pathways were used as target sub-
networks. Specifically, the same group of methods performed
significantly better than all other methods in terms of F-score
and FDRnet had the best performance in terms of Fsub score. This
result suggests that general biological pathways can be used as
suitable proxies for cancer-related pathways in assessing method
performance. Consequently, we will use the results derived from
the general biological pathways in our subsequent analyses since
the large number of experiments allows for more reliable detec-
tion of true differences in method performance and leads to
robust and generalizable conclusions.

We further validated our observations on the mutation and
copy number data obtained from nine cancers. For BioNet, it
failed to fit the distributions of P-values and thus it could not
generate any results. For other methods, we estimated the FDRs of
the identified subnetworks using the local FDR-based procedure
described in [7] since there was no ground truth information to
calculate exact FDRs (Supplemental Fig. 2). Based on the esti-
mated FDRs, we excluded three methods from the performance
evaluation—DIAMOnD (0.78), RegMOD (0.91), and ClustEx (0.94)—
as their average FDRs exceeded 0.5, indicating an inclusion of
too many irrelevant genes in their results. For the rest of the
methods, we used cancer-related subnetworks from the CORUM
and Reactome databases as proxy standards to indirectly evaluate
the performance of these methods in terms of F-score and Fsub

(Supplemental Fig. 3). We found that, although the results varied
across cancers, the conclusions drawn from the synthetic data
remained largely valid. For example, FDRnet, MuST, ROBUST, and
NetCore achieved the highest F-scores in most cases, and all
methods, except for FDRnet, performed poorly in terms of Fsub

score. These findings further confirm the effectiveness of FDRnet
in both synthetic and real datasets, highlighting its superiority in
accurately identifying cancer-related subnetworks.

Next, we examined how the 12 methods performed when
target subnetworks were extracted from two different databases.
Figure 3(a and b) presents the F-scores and Fsub scores obtained by
the 12 methods applied to test datasets where target subnetworks
were derived from the CORUM or Reactome database (a = 0.01).
First, we can see that the F-scores and Fsub scores obtained using
the two databases differ for each method. However, the relative
ranking of the methods remained unchanged. This suggested
that none of the methods obtained a disproportionate advantage
from using a specific type of target subnetwork. Moreover, for
most methods, F-scores obtained using the CORUM or Reactome
database did not exhibit a marked difference, suggesting that the
identification of target genes is not significantly influenced by
the source dataset. However, for FDRnet, which performed the
best in terms of Fsub score, we noted that its performance on
CORUM was significantly better than on Reactome (average Fsub

score: 0.7 versus 0.55; P-value < 0.0001, two-tailed t-test). Given
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Figure 2. Comparison of 12 methods performed on test datasets generated using different signal strength parameters ranging from 0.01 to 0.11.
(a) F-score. (b) Fsub. (c) FDR. In some cases, the resulting FDRs were very close to zeros (hHotNet: a = 0.01 to 0.08, HotNet2: a = 0.01 to 0.07, FDRnet:
a = 0.06 to 0.11) or all ones (ClustEx and RegMOD: a = 0.01 to 0.11). hHotNet: hierarchical HotNet.

that target subnetworks from the Reactome database are typically
pathways with sparser connections than those from the CORUM
database, this observation highlights the need to improve existing
algorithms in detecting pathway-like subnetworks. See Section
“Discussion and conclusion” for a detailed discussion on possible
directions for algorithm development.

We also investigated how the 12 methods performed when
different PPI networks were used. Figure 3(c and d) reports the
F-scores and Fsub scores of various methods applied to the four
PPI networks (a = 0.01). For most methods, in terms of F-score, the
differences in performance obtained using different PPI networks
are marginal, with BioGRID and iRefIndex showing slightly better
and more stable results (e.g. for FDRnet, 0.87(0.019) on BioGRID,
0.86(0.025) on iRefIndex, 0.85(0.043) on ReactomFI, 0.83(0.051)
on STRING). However, for some diffusion-based methods (e.g.
NetMix2 and HotNet2) an opposite trend was observed. One
possible explanation is that these methods depend on densely
connected structures for gene identification, which are more

prevalent in ReactomeFI and STRING networks compared with
the other two networks. This result is also supported by the
Fsub scores, where we observed a better result for all the
methods that used ReactomeFI and STRING and can identify
multiple subnetworks (e.g. FDRnet and HotNet2). The above
observations indicate that the four PPI networks have different
topological structures that may affect the performance of a
detection method. This motivated us to conduct an in-depth
analysis on the topological bias, described in Section “Impact
of topological features of subnetworks on detection rates.”

Finally, we examined whether detecting target subnetworks
constructed from the Reactome database in the ReactomeFI PPI
network would introduce any bias. Supplemental Fig. 4 showed
that this is not the case. Only for FDRnet were the results obtained
using ReactomeFI superior to those obtained using other PPI
networks in terms of Fsub score, but this difference was not
statistically significant (0.62(0.08) on ReactomeFI versus 0.60(0.06)
on STRING; P-value = 0.16, two-tailed t-test).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae692#supplementary-data
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Figure 3. Comparison of 12 methods applied to detect target subnetworks extracted from two different databases in four different PPI networks. (a and
b) F-scores and Fsub scores obtained when target subnetworks were derived from the CORUM or Reactome database. (c and d) F-scores and Fsub scores
obtained when four different PPI networks were used. hHotNet: hierarchical HotNet.

Impact of topological features of genes on
detection rates
Our benchmarking framework enables us to investigate how the
topological features of a gene affect its chance of being detected.
To this end, for each gene in a target subnetwork, we calculated a
topological feature of the gene (e.g. degree) in a PPI network and
its detection rate across experiments and performed a regression
analysis to reveal the relationship between the detection rate
and the topological feature. In this study, we used four widely
recognized topological features, namely, degree (the number of
interactions with other nodes), betweenness centrality (a measure
of how often a node appears on the shortest path between each
pair of nodes in a network), eigenvector centrality (a measure of
the influence of a node in a network), and clustering coefficient
(a measure of the degree to which nodes in a network tend to
cluster together) [33]. We should point out that, except for degree,
the analysis of the other features was previously infeasible, due
to the fact that the past studies relied on a permutation-based
procedure where it is difficult to generate networks with nodes
having specific topological features. To calculate the detection
rate of a gene, we counted the number of times the gene was
detected and normalized it by the number of experiments where
the gene was included in a target network. For the regression
analysis, we employed the Lowess algorithm [34] for its efficacy
and robustness.

We started with the analysis of the degree, a fundamental
topological feature in network analysis. It is well documented
that existing PPI networks are subject to technical bias [35] (bait
proteins often exhibit more interactions) and literature bias [36]
(proteins with well-characterized functions are more frequently
studied). As a result, some proteins may be represented inap-
propriately with higher degrees [37] and have a higher probabil-
ity of being detected. Thus, it has been suggested to explicitly
or implicitly penalize genes with high degrees and thus reduce
their chances of being detected. Figure 4 depicts the detection
probability of a gene as a function of its degree in one of the
four PPI networks for seven methods, including BioNet, HotNet2,
DIAMOnD, DOMINO, NetCore, NetMix2, and FDRnet. BioNet was
selected as a representative for the three maximum score-based
methods due to their methodological similarity. Likewise, HotNet2
was chosen to represent both itself and hierarchical HotNet.
We excluded ClustEx and RegMOD from the analysis because
of their low mean F-scores (< 0.1). Visually, the observed pat-
terns can be categorized into two classes: a steep downward
trend for DOMINO and HotNet2 (class 1), and an almost flat or
slight decline trend for FDRnet, BioNet, NetMix2, NetCore, and
DIAMOnD (class 2). For the methods in class 1, we can see that
the detection probabilities approach almost zero as the degree
increases. This suggests that these methods might fail to identify
important cancer genes with high degrees. Although the observed
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Figure 4. The detection probability of each gene for seven methods as a function of its degree in one of four PPI networks. Each dot represents a gene,
and the black line was determined by the regression analysis.

patterns for the methods in class 2 are similar, a close look
at detected subnetworks revealed that, except for FDRnet, all
other methods tend to group all detected genes into only one
or a few subnetworks through hub genes of high degree (see
Supplemental Table 3), resulting in low Fsub scores (Fig. 2b). In
contrast, by minimizing the conductance score, FDRnet implic-
itly penalizes high-degree genes, yet maintains a high detection
probability for those genes if they are significantly mutated. This
also explains why the detection probability of FDRnet did not
decrease significantly as the degree increased when the Reac-
tomeFI and STRING networks were used. As shown later in Sec-
tion “Impact of topological features of subnetworks on detection
rates,” the same subnetwork may exhibit a more community-
like structure in ReactomeFI and STRING compared with BioGRID
and iRefIndex. Consequently, penalization is less stringent in
ReactomeFI and STRING than in BioGRID and iRefIndex, allowing
for a higher detection probability of high-degree genes.

Regarding other topological features, we anticipate similar
behaviors since these measures are highly correlated with
degree [38]. This is indeed the case for betweenness centrality
(Supplemental Fig. 5). For the clustering coefficient, we noted
that the detection probability for the methods in class 1 (i.e.
DOMINO and HotNet2), which impose penalties on high-degree
nodes, increases with it (Supplemental Fig. 6). By definition, the
clustering coefficient of a given gene quantifies the extent to
which its neighbors form a highly connected cluster [39]. The
observed pattern implies a preference of these methods for genes
in denser network regions, which is an expected consequence
of penalizing nodes with high degrees. Thus, the pattern is also
consistent with that observed for degree. However, for eigenvector
centrality, while the result generally aligned with that for degree
in most methods when BioGRID and iRefIndex were used as
input PPI networks, notable differences were observed when
ReactomeFI or STRING were used (Fig. 5). Specifically, for genes

with high eigenvector centrality, the detection probability for
HotNet2 does not decline with increasing centrality, and for
DOMINO and DIAMOnD the detection probability even increases.
To understand this phenomenon, we examined the correlation
between degree and eigenvector centrality across the four PPI
networks (Supplemental Fig. 7). While BioGRID and iRefIndex
displayed clear linear correlations between these two measures,
there are some genes in ReactomeFI and STRING that have
low degrees but high eigenvector centrality. By the definition
of eigenvector centrality, these low-degree genes are typically
connected to some high-degree genes [40]. This connection
suggests that, although indirect, their positions in a PPI network
are significantly influenced by the degree bias. Therefore,
researchers should take this indirect impact of the degree bias
into consideration when designing algorithms to counteract it.

Impact of topological features of
subnetworks on detection rates
Finally, we examined how the topological features of a subnetwork
in a PPI network influence its chance of being detected by each
method. Similar to the analysis for individual genes, we calculated
the detection rates and topological features of target subnetworks
and performed a regression analysis to determine their statistical
relationships. Following a seminal study [41], we selected four
subnetwork topological features: separability (measured as the
internal-to-external edge ratio of a subnetwork [42]), density (the
proportion of actual to possible edges in a subnetwork [43]),
cohesiveness (using conductance score; calculated as the ratio of
external to internal edges in a subnetwork [44]), and clustering
(measured by the average clustering coefficient of the nodes in
a subnetwork [39]). To determine the detection probability of a
target subnetwork, we utilized the F-score to account for both

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae692#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae692#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae692#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae692#supplementary-data
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Figure 5. The detection probability of each gene for seven methods as a function of its eigenvector centrality in one of four PPI networks.

partial coverage and false positives in identified subnetworks.
Specifically, we calculated the F-score between the target subnet-
work and each identified subnetwork and used the highest score
as the detection proportion. The overall detection probability
for a given subnetwork was then calculated by normalizing the
sum of these detection proportions across all datasets where the
subnetwork was included as a target. Again, we employed the
Lowess algorithm for regression analysis.

Figure 6 illustrates the regression results correlating the four
topological features with the detection probability obtained by
the four methods (FDRnet, HotNet2, DOMINO, hierarchical Hot-
Net) applied to the four PPI networks. We excluded the methods
that achieved low mean Fsub scores (ClustEx and RegMOD, See
Fig. 2(b)), and those unable to identify subnetwork structures
(MuST, BioNet, ROBUST, NetMix2, DIAMOnD, and NetCore, See
Supplemental Table 3). The regression results show that the four
methods have a preference for detecting subnetworks character-
ized by high separability, density, cohesiveness (low conductance),
and clustering coefficient. This indicates that the four meth-
ods have a significant bias toward recognizing community-like
structures, also known as topological modules. However, previous
research has cautioned that although disease modules often over-
lap with topological modules, they are not identical [16]; disease
modules are local clusters of disease-associated genes, while
topological modules are local clusters of genes without regard
to disease associations [16]. Therefore, it is crucial to consider
this distinction in future algorithm development to enhance the
accuracy in identifying disease modules.

Our analysis explains why the performance of FDRnet var-
ied when subnetworks were derived from different databases,
as shown in Fig. 3(b). To this end, we examined the distribu-
tions of the four topological metrics of the subnetworks derived
from the Reactome and CORUM databases (Supplemental Fig. 8).
Notably, the distributions of the density for subnetworks from the
CORUM database center around 0.5, while the distributions for the

Reactome database are markedly skewed toward the lower end.
Thus, as FDRnet has a preference for subnetworks with higher
densities (Fig. 6), the better performance on CORUM are expected.

Our analysis also explains why the existing methods performed
differently when different input PPI networks were used, as shown
in Fig. 3(c and d). A key observation in Supplemental Fig. 8 is
that, in most cases, the topological features of the same sets of
target subnetworks exhibited flatter distributions in ReactomeFI
and STRING, compared with those in BioGRID and iRefIndex. This
suggests that subnetworks in ReactomeFI and STRING are more
inclined to form community-like structures compared with those
in BioGRID and iRefIndex. Since we have shown that community-
like structures have more chances to be detected, it is reasonable
to conclude that using ReactomeFI or STRING as an input PPI
network is more likely to lead to improved Fsub scores.

Discussion and conclusion
Our study demonstrated the complexity of identifying cancer
genes and subnetworks, a task influenced by multiple factors.
These factors include not only the selection of a detection
algorithm, but also the input PPI network and the structural
features of target genes and subnetworks. For researchers who
aim to identify cancer genes and subnetworks, our findings
support several recommendations. First, the choice of a detection
algorithm is of paramount importance. Our data showed that the
performance can vary significantly among different methods. For
those who focus solely on gene identification, methods based on
maximum scores have proven to be particularly effective due to
their high accuracy in discerning individual genes. However, since
they do not penalize high-degree genes, there is a risk that the
results are affected by the construction bias of PPI networks. For
tasks that aim to identify both genes and subnetworks, FDRnet
consistently emerged as the best method across various settings.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae692#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae692#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae692#supplementary-data
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Figure 6. The detection probability of a subnetwork for four methods as a function of its topological features including separability, density, conductance,
and clustering metrics. Each dot represents a subnetwork, and the black line was determined by the Lowess regression analysis. hHotNet: hierarchical
HotNet.

Secondly, the choice of the input PPI network is not to be
overlooked. Different PPI networks, constructed from distinct
data sources and based on different principles, have unique
topological structures. This is especially crucial for subnetwork
identification, given that all methods that we tested tend
to prefer community-like subnetworks. In this context, we
recommend using the ReactomeFI and STRING networks, as
subnetworks mapped to these networks are more likely to exhibit
community-like structures. Finally, having some prior knowledge
or hypotheses about genes or subnetworks that one aims to
detect can be advantageous. For example, if target subnetworks
to be detected are more like signaling pathways than protein
complexes, performance often degrades. This is particularly
relevant given that FDRnet—the best-performing method on both
types of data—achieved a higher Fsub score for protein complexes

compared with pathways. Additionally, if it is anticipated that
some genes with high degrees may play important roles in a
disease, methods such as HotNet2 and DOMINO may not be
suitable, as they tend to exclude such genes even if they show
significant connection with the disease in a gene-based analysis.
In contrast, FDRnet imposes a soft penalty on high-degree genes,
thereby alleviating the above issue. Looking ahead, there are
several exciting avenues for the development of algorithms in
this domain. First, our results clearly show that existing methods
do not perform well on noncommunity-like subnetworks, such as
those found in the Reactome pathway database. Our analysis
of the topological bias indicates that this limitation arises
because all existing methods favor community-like structures.
Given that disease modules and topological modules are
not identical, there is a pressing need to develop algorithms
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capable of better identifying noncommunity-like subnetworks.
Exploring topological features other than community-like ones
may yield more insightful characterizations of target subnet-
works. For example, pathway structure may play an important
role in mitigating disruptive effects of gene mutations, thereby
preserving the robustness of biological systems. Secondly, our
findings highlight that overcoming the degree bias remains a
persistent challenge. This underscores the need for strategies that
can effectively penalize high-degree genes rather than unfairly
excluding them. In addition to degree, eigenvector centrality,
which provides a more intricate view of the influence of a gene on
its connectivity pattern, also merits attention. Future algorithm
development should incorporate this metric to ensure that the
degree bias is appropriately addressed.

In summary, we have presented a comprehensive benchmark-
ing study of subnetwork identification methods, utilizing a ground
truth-based approach. We anticipate that the results will guide
the selection of proper methods for cancer pathway identification
and inspire the development of new algorithms. While our ground
truth-based strategy offers a practical benchmarking framework,
it is important to recognize that it introduces an inherent bias,
arising from the selection of target subnetworks from general
databases and from incomplete knowledge about cancer-related
subnetworks. Nevertheless, our approach provides a valid ref-
erence point, and the databases that we have carefully chosen
are likely to be representative of subnetworks that may have
roles in cancer progression. In future work, we will extend this
benchmarking study to include additional methods and various
types of networks.

Key Points

• We proposed a novel benchmarking framework using
synthetic data for the comparison of existing methods
for the identification of cancer pathways.

• We conducted an in-depth analysis to investigate the
ability of existing methods to detect target genes and
subnetworks and to control false positives, and how they
perform in the presence of topological biases at both
gene and subnetwork levels.

• Our analysis provided insights into algorithmic perfor-
mance that were previously unattainable and presents
findings that challenge established views.

• We presented a practical guide for users on how
to select appropriate detection methods and protein–
protein interaction networks for cancer pathway iden-
tification and provided suggestions for future algorithm
development.
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