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Abstract

The selection of biomarker panels in omics data, challenged by numerous molecular features and limited samples, often requires
the use of machine learning methods paired with wrapper feature selection techniques, like genetic algorithms. They test various
feature sets—potential biomarker solutions—to fine-tune a machine learning model’s performance for supervised tasks, such as
classifying cancer subtypes. This optimization process is undertaken using validation sets to evaluate and identify the most effective
feature combinations. Evaluations have performance estimation error, measurable as discrepancy between validation and test set
performance, and when the selection involves many models the best ones are almost certainly overestimated. This issue is also relevant
in a multi-objective feature selection process where various characteristics of the biomarker panels are optimized, such as predictive
performances and feature set size. Methods have been proposed to reduce the overestimation after a model has already been selected in
single-objective problems, but no algorithm existed capable of reducing the overestimation during the optimization, improving model
selection, or applied in the more general multi-objective domain. We propose Dual-stage Optimizer for Systematic overestimation
Adjustment in Multi-Objective problems (DOSA-MO), a novel multi-objective optimization wrapper algorithm that learns how the
original estimation, its variance, and the feature set size of the solutions predict the overestimation. DOSA-MO adjusts the expectation
of the performance during the optimization, improving the composition of the solution set. We verify that DOSA-MO improves the
performance of a state-of-the-art genetic algorithm on left-out or external sample sets, when predicting cancer subtypes and/or patient
overall survival, using three transcriptomics datasets for kidney and breast cancer.
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Introduction
Molecular biomarker discovery with machine learning (ML) is
usually limited by data that include many features but few sam-
ples [1]. This renders trained models prone to overfitting and
the evaluation prone to estimation error. Hyperparameter tun-
ing, including feature selection, is often a crucial aspect of the
optimization process where the model’s performance is assessed
using a training, validation, and test paradigm. This involves
choosing the most effective hyperparameters for the ML’s model.
Selecting the best model from many often leads to overestimation,
given by a significant gap between validation set performance
and actual, real-world performance, a phenomenon known as the
“winner’s curse”. The models that fit the noise present in the
validation set are advantaged, a phenomena sometimes referred
as overfitting on the validation set [2]. Seeking higher accura-
cies by expanding hyperparameter configurations can enhance
model performance on validation sets. However, this often results
in heightened overestimation, leading to reduced or potentially
negative impact on test set performance. For this reason brute
force approaches, based on increasing the number of the hyper-
parameter configurations that are evaluated, often do not provide

the desired improvement: the more evaluations are performed,
the more overestimation must be expected on the selected ones.
In biomarker discovery, the focus is often not only on optimizing
the accuracy of ML models, but also on minimizing the number of
used molecular features, to ensure clinical feasibility and resource
efficiency [3–6]. Characterizing all the best compromises between
predictive value and feature set size is a multi-objective (MO) opti-
mization problem [7, 8] that can be solved by means of MO feature
selection (MOFS) techniques [4, 6, 9–11]. They aim to identify not
just a single best solution, as in single-objective (SO) problems,
but rather a Pareto front of solutions: the set of optimal solutions
that illustrate the trade-offs between different objectives. Still, all
candidate solutions are evaluated on the validation set, which can
result in the overestimation of the performance of the selected
models.

K-fold cross-validation (CV) stands as the predominant
methodology for ML assessment, with its advantages and
limitations extensively explored, particularly in SO scenarios
[12–14]. K-fold CV returns a model trained on all the available
samples and an estimation of its performance computed by
averaging k CV results. The obtained model performance tends to
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be overestimated when multiple configurations are evaluated,
and the model (or feature set) with the best performance is
returned [2]. This situation becomes particularly pronounced
in MO approaches, where identifying multiple favorable trade-
offs often leads to an increased number of models to be
evaluated. A practical, illustrative example is presented in
Cattelani et al. Fig. 1, where the performance of various gene
expression-based molecular feature sets for classifying breast
cancer subtypes is evaluated [6]. Balanced accuracy and feature
set size serve as evaluation metrics. The expected balanced
accuracy tends to increase with the addition of more features.
Similarly, overestimation—quantified as the difference between
expected and test set performance—also grows as the estimation
improves. These correlations may suggest that characteristics of
the solutions might be predictive of the degree of overestimation,
and instead of focusing on just extensively exploring the solution
space, which tends to increase the overestimation of the selected
solutions, it can be worth to try to reduce their overestimation by
predicting it with an ML approach.

Although various methods have been developed to enhance
performance estimation in model selection using k-fold CV, their
design and implementation have been limited to SO problems.
Tsamardinos et al. [15] compared double CV, the Tibshirani and
Tibshirani method [16], and nested CV in their ability to improve
the estimation of the fitness for SO problems. These algorithms
modify fitness estimations but do not affect the model selec-
tion process: the chosen model remains the same as it would
be using simple hyperparameter optimization with k-fold CV
for model evaluation. Automated ML (AutoML) tools offer an
approach designed to explore various model and hyperparameter
combinations. They aim to identify the most effective model along
with an assessment of its performance. In Tsamardinos et al.,
six AutoML tools were compared [17]. Of these, only one had
a predictive performance estimation strategy that could adjust
for multiple model validations (limitedly to SO problems and
not affecting model selection), while most of the tools have the
necessity to withhold a test set for an unbiased estimation of the
performance of the winning model, thus losing samples from the
final model training.

No significant efforts have been directed toward improving
performance estimation in MO problems, of which SO problems
are a special case and which are more relevant to biomarker
discovery in high-dimensional omics data. Moreover, while there
are approaches for SO problems to enhance the performance esti-
mation of a chosen model, these models are still selected based
on unadjusted estimations, not leading to any improvement in
the actual model selection process. To the best of our knowledge,
no previous work experimented the effectiveness of methods for
mitigating the overestimation in MO problems using ML algo-
rithms. Additionally, no previous work applied the adjustment
to the performance estimation during the optimization of the
solution set, thus affecting the selection.

Here we present the DOSA-MO (Dual-stage Optimizer for Sys-
tematic overestimation Adjustment in Multi-Objective problems),
an algorithm aimed at predicting and adjusting for overestimation
in MO problems. Initially, a wrapped MO optimizer is integrated
with ML algorithms, to create a series of preliminary solutions
(feature sets in our case study). These initial solutions are then
used to train regression models that are designed to predict
performance overestimation. This prediction is based on char-
acteristics of the solutions, such as the variance in evaluation
metrics or the size of the feature set itself. As wrapped MO
optimizer for our case study we used a modification of the Non-
dominated Sorting Genetic Algorithm III (NSGA3) [18]: NSGA3

with Clone-Handling method and Specialized mutation operator
(NSGA3-CHS, see Section 2 Case study overview). Subsequently,
the algorithm executes a wrapped MO optimizer once more, but
now utilizes the regression models to deliver adjusted fitness eval-
uations, enhancing the model selection process. The final result-
ing models are then trained on all the available samples, thus no
samples are lost in order to compute their expected performance
on new data. Figure 1 shows the steps of the DOSA-MO algo-
rithm in a practical use case. In our benchmarking study, which
concentrates on selecting gene expression-based feature sets for
cancer subtype classification [10, 19, 20] and patient survival
prediction [21], we have empirically demonstrated that DOSA-MO
effectively mitigates overestimation and improves model selec-
tion. It consistently delivers improved performance estimations
in biomarker discovery across diverse population-based cohort
datasets. Additionally, two novel measures are introduced in our
study: MO performance error (MOPE) and Pareto delta (P�). To
the best of our knowledge, these are the first to be designed
to evaluate the discrepancy between the performance expected
by the algorithm and the actual performance observed on new
samples in MO problems. These assessments consider the entirety
of the solution set determined by the MO optimizer, providing a
comprehensive view of the algorithm’s effectiveness.

Disambiguations for the most technical terms can be found in
Supplementary Section 4.

Methods
DOSA-MO: algorithm description
The DOSA-MO algorithm wraps a MO optimizer, serving two
purposes: improve the estimate of the solutions’ performance,
and increase the overall performance of the solution set (set of
biomarker models in our case study). In our case study, these
optimizers are represented by genetic algorithms (GAs) [22] specif-
ically designed for MO problems and paired with supervised ML
algorithms, such as the Gaussian Naïve Bayes (NB) classifier
to distinguish cancer subtypes or the Cox Proportional-Hazards
Model (Cox) for survival analysis. In more details, DOSA-MO con-
sists of three steps (Supplementary Fig. S1a).

1. Generating solution sets for overestimation prediction. It
collects solutions to be used as training samples to learn how to
adjust the objective functions that are used to evaluate solutions,
such as the classification accuracy. This consists of running MO
optimizers in a k-fold CV loop. For each fold, a solution set is pro-
duced using only training data, and its performance is measured
on the left-out samples. Depending on the MO optimizers used,
step 1 might be computationally expensive. A strategy to limit its
cost when using GAs is described in Supplementary Section 1.3.

2. Training of regression models for overestimation. For each
objective DOSA-MO trains a regression model on the samples
collected during step 1. Each sample contains as independent
variables three meta-features of the solutions that are potentially
predictive of the overestimation. They are the original fitness (i.e.
the fitness used by the optimizer to choose the best solutions,
measured using only training data, applying inner k-fold CV in
our case study), the standard deviation (SD) of that fitness, and
the number of features included in the solution (number of
genes forming the biomarker in our case study). Our method for
computing the SD of the original fitness combining bootstrap with
k-fold CV is described in Supplementary Section 1.4. The depen-
dent variable is the overestimation: the difference between the
original fitness and the fitness computed on new data through CV.
Solutions cannot be considered as equally important. We might
expect solutions that are in crowded areas of the non-dominated
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Figure 1. Depiction of a DOSA-MO use case for external validation of breast cancer biomarkers, including its architecture in three steps. A MO problem
is defined with two objectives: cancer subtype classification and parsimony in the feature set size. TCGA breast omics data are fed to DOSA-MO for its
optimization process. In step 1, it performs a k-fold CV with a wrapped MO optimizer and collects the solutions from all the folds. From each solution
and objective a sample is constructed. It has the fitness expected by the wrapped MO, its SD, and the feature set size as independent variables, the
overestimation (expected fitness minus fitness assessed on left-out set) as dependent variable, and the partial derivative on the HV with respect to this
fitness measurement as sample weight. In step 2, these samples are used to train regression models for overestimation, and new adjusted objective
functions are created. In step 3, a wrapped MO optimizer is run with the adjusted objective functions, impacting how the models are selected. DOSA-MO
outputs a set of biomarkers, each one with its own set of genes and expected accuracy. The SCAN-B dataset is used to externally validate the set of
solutions. Both the accuracy and its estimation improve with respect to the biomarkers identified by the wrapped MO algorithm alone (Section Results).

front to be selected less often by a decision maker. Consequently,
each sample is weighted according to the partial derivative of the
HyperVolume (HV, constructed using the original fitnesses) [23]
with respect to the considered solution and objective. The weights
for each fold and objective are scaled to sum to 1. We minimize
the absolute error, when allowed by the specific regression model,
since the impact of an error on the HV is approximately linear for
small errors.

3. Generating the solution set using adjusted performance. A
second MO optimizer is deployed to generate a solution set (each
solution refers to a feature set in our case study), with objectives
that are adjusted by previously trained regression models for
overestimation. Each original objective function is replaced by a
pipeline that initially computes the function’s result, its SD, and
the feature count of the solution. These data are then feed to
the corresponding adjuster regression model, which predicts the
overestimation. The final adjusted performance is calculated by
deducting the predicted overestimation from the original fitness
value. The solution set generated by the MO optimizer during this
final run represents the output of the whole DOSA-MO.

Pseudocode formulation of the DOSA-MO
algorithm
In order to wrap any MO optimizers, the DOSA-MO must be poly-
morphic, so we define an abstract class MultiObjectiveOpti-

mizer representing a generic MO optimizer (Pseudocode 1). It has
a single method optimize that works with provided objectives
and training data. The DOSA-MO is a MultiObjectiveOptimizer
itself (Pseudocode 2).

Pseudocode 1 MultiObjectiveOptimizer abstract class
definition.

class MultiObjectiveOptimizer

method optimize(objectives, trainingData)

Pseudocode 2 DosaMO class definition.

class DosaMO

inherits MultiObjectiveOptimizer

method new(

tuningOptimizer, adjusterLearner,
mainOptimizer) :

self.tuningOptimizer = tuningOptimizer

self.adjusterLearner = adjusterLearner

self.mainOptimizer = mainOptimizer

method optimize(objectives, trainingData) :
foldsData =

createFolds(trainingData)

foldHofs = [
self.tuningOptimizer.optimize(

objectives, f.train)

for f in foldsData]
for i in 1 :: objectives.size :

obj = objectives[i]
weights = [
assignWeights(

h.fitnessHyperboxes(), i)

for h in foldHofs]
adjuster = trainAdjuster(

self.adjusterLearner, obj,
foldHofs, foldsData, weights)

adjustedObjectives[i] =
createAdjustedObjective(

obj, adjuster)

return self.mainOptimizer.optimize(

adjustedObjectives, trainingData)
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The method new is just a simple constructor that saves the
polymorphic parts of the algorithm: the tuningOptimizer, a MO
optimizer used to create the samples for the adjusting regres-
sion, the actual regression model (adjusterLearner), and the
mainOptimizer that is the MO optimizer that uses the adjusted
objectives to produce the results for the user.

The DosaMO implementation of optimize first organizes the
data into folds. The resulting object,foldsData, contains the data
itself and also the description of how it is partitioned into folds.
DosaMO then executes the tuningOptimizer on each fold and
collects the results: a set of solutions for each fold. The set of
solutions returned is optimizer-dependent in general, but in our
experiments we used the non-dominated front of all the solutions
that were explored. For each objective obj the algorithm assigns
weights to the solutions: for each tuningOptimizer result set h,
the solutions receive a weight that is proportional to the partial
derivative of the HV of the belonging result set with respect to
the solution and the current objective obj. An adjuster regression
model is trained for the current objective obj using the func-
tion trainAdjuster that receives in input a regression model
adjusterLearner, the current objective obj, the tuningOpti-

mizer solution set for each fold, the data including folds informa-
tion (foldsData), and the weigths of the samples (weights). The
returned adjuster predicts how much the fitness of a solution
changes between the training sample set and an unseen testing
sample set. The function trainAdjuster has its own description
below. Using the previous objective obj and the adjuster, a new
adjusted objective is created that when evaluating a solution first
uses the old fitness function to compute a temporary fitness and
its SD, then adjustes this fitness by subtracting the prediction of
the adjuster. Finally, DosaMO runs the mainOptimizer on the
whole trainingData, using the adjusted objectives instead of the
original objectives.

The trainAdjuster function trains a fitness adjuster regres-
sion model for one of the objectives using as samples the solutions
resulting from running the tuningOptimizer on all the folds
defined by foldsData. Each solution is assigned a weight propor-
tional to the HV partial derivative with respect to the considered
objective, with the weights for each fold that sum to 1.

Pseudocode 3 trainAdjuster function definition.

trainAdjuster(

adjusterLearner, obj, foldHofs,
foldsData, weights) :

for i in 1 :: foldsData.size :
allFitnesses =

evaluateWithCV(

foldHofs[i], obj, foldsData[i])
originalFitnesses[i] = allFitnesses.innerCV())

stdDevs[i] = allFitnesses.innerCV_sd()

testFitnesses[i] = allFitnesses.test()

nFeatures[i] =
[h.num_features() for h in foldHofs[i]]

return adjusterLearner.fit(

originalFitnesses, stdDevs, nFeatures,
testFitnesses, weights)

For each fold i as defined by foldsData, trainAdjuster
prepares the samples for training the adjuster regressor
(Pseudocode 3). The samples are prepared separately for each
fold, then used together in training. The function evaluate-

WithCV assigns two fitnesses to each solution: one previously

computed on the train data of the current fold i (using a nested
k-fold CV in our case study), and another computed on the
test data. It also computes the SD of the train fitness with the
bootstrap method (Supplementary Section 1.4). The differences
between train and test performance are the values that the
regression will learn to predict. The regression has three input
meta-features: the original fitness, i.e. the performance on the
train data, the SD of the original fitness, and the number of the
features that are included in the solution (number of genes in our
case study).

Case study overview
We have benchmarked DOSA-MO in the context of MOFS for
cancer biomarker discovery. Our goal was to identify biomarkers
for classifying cancer subtypes and survival prediction in kidney
and breast cancer patients. This was done using gene-based kid-
ney and breast transcriptomic datasets from The Cancer Genome
Atlas (TCGA) project [24]. The TCGA breast dataset contains 1081
samples. The TCGA kidney dataset contains 793 samples with
both subtype and survival information, which increases to 924
when only subtype information is needed. For breast cancer, an
additional cohort from The Sweden Cancerome Analysis Network
- Breast (SCAN-B) [25] with 2969 samples serves as an external val-
idation set. A description of the datasets and their preprocessing is
in Supplementary Section 1.6. The first two principal components
of the considered datasets are shown in Supplementary Fig. S2,
S3, S5 and S6, while Supplementary Fig. S4 shows the kidney
survival outcomes. As wrapped MO optimizer, we used a novel
modification of NSGA3 [18]: NSGA3-CHS, with NB or support vec-
tor machine (SVM) as inner classifiers, and Cox as inner survival
model. We used both internal k-fold CV and external validation
to compare the unadjusted optimizer (abbreviated as “zero”) with
adjustments by five different regression models: weighted median
(dummy), pruned decision tree (ptree), random forest (RFReg),
support vector regression (SVR), and SVR with optimized regular-
ization parameters (rSVR). The regression models are described
in detail in Supplementary Section 1.2. Supplementary Fig. S1b
depicts the external validation procedure.

NSGA3-CHS is an instantiation of the more general algorithm
NSGA∗. They are both defined in Supplementary Section 1.1.
The considered experimental setups are listed in Table 1 and
described in detail in Supplementary Section 1.7, where it is also
defined the root-leanness, used as fitness function for the parsi-
mony of the feature sets. Classification and survival prediction
performance are measured, respectively, with balanced accuracy
and concordance index (c-index).

Measuring overestimation in multi-objective
problems
We propose two new methods to measure the error of the per-
formance estimates for the solutions to MO problems: MOPE and
P�. The data-driven approach complicates the measurements, as
CV yields varied performance metrics. These include the per-
formance anticipated by the optimizer, based on training data,
and the performance measured on left-out/new samples post-
optimization. To our knowledge, there is no established metric for
the error in evaluating the predictive performance of solutions
in MO problems within a CV framework. In SO scenarios, one
might simply assess the absolute difference between the fitness
expected from training data and the fitness observed on new data.
However, in MO scenarios, it is crucial to consider each solution’s
contribution to the Pareto front. We introduce two novel metrics
to measure this estimation error in MO CV setups.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
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Table 1. Overview of datasets, objectives, inner models, and validation methods used in the analysis of kidney and breast cancer

Datasets Objectives Inner models Validation

Kidney cancer Subtype classification (balanced accuracy), set size (root-leanness) NB CV
Kidney cancer Overall survival (c-index), set size (root-leanness) Cox CV
Kidney cancer Subtype classification (balanced accuracy), overall survival (c-index), set size

(root-leanness)
NB/Cox CV

Breast cancer Subtype classification (balanced accuracy),
set size (root-leanness)

NB, SVM CV

Breast cancer Subtype classification (balanced accuracy), set size (root-leanness) NB, SVM External (SCAN-B)
Breast cancer Overall survival (c-index), set size (root-leanness) Cox CV

Multi-objective performance error
We define the MOPE Eυ starting from the HV [23] computed on
the train performance (Hι) and the Cross HyperVolume (CHV) (Hυ ).
Hι and Hυ have been formally defined by Cattelani et al. [10].
Since Hυ is a family of functions, with the specific instantiation
that depends on the user provided function υ, Eυ is a family of
functions too.

Eυ(X, X′) = |Hι(X, X′) − Hυ(X, X′)| (1)

where X encodes the performance of the solutions evaluated on
the train data, and X′ the performance evaluated on the test data.
In our case study we use the same instantiation of υ as in Cattelani
et al.: the function λ [10].

Eυ has a simple definition and can be computed very efficiently
if the experimental setup already includes the measuring of Hι

and Hυ . It can be seen intuitively as the difference between
the aggregated performance of all the solution set as expected
by the optimizer taking into account only train data, and the
aggregated performance of the same solutions when applied on
never before seen test data by decision makers that must choose
their preferred solution informed by train performance only.

Pareto delta (P�)
The MOPE, derived directly from the training HV and CHV, does
not specify the exact sources of discrepancies between these mea-
sures. Although CHV accounts for differences between training
and testing performance, variations in solution performance of
opposite sign can offset each other, resulting in a lower MOPE
despite significant train-test discrepancies. To tackle this issue, we
introduce a supplementary metric, the P�. It has the property of
being equal to 0 only when there is no difference in performance
between train and test data for all elements of the solution set.
To calculate the P�, we sum up the absolute error in fitness
estimation for each solution, multiplying it by the derivative of
the HV concerning that specific objective and solution. Then, we
compute the average across all objectives.

Let n be the number of solutions and m the number of objec-
tives. Let X be an n × m matrix where xi,j is the train performance
for the jth objective of the ith solution, with 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Similarly, let X′ be an n×m matrix where x′

i,j is the test performance
for the jth objective of the ith solution. Let Hι be the HV computed
on the train performance X. ∂Hι/∂xi,j is the partial derivative of the
HV with respect to xi,j. We define the P� function as

P�(X, X′) = 1
m

m∑

j=1

n∑

i=1

|xi,j − x′
i,j|

∂Hι

∂xi,j
(2)

in the special cases with 0 dimensions or 0 solutions, we define
P� as 0. As long as the differences |xi,j − x′

i,j| are small, P� is pro-
portional to the difference between the volume of the geometrical
union of the space under the train and test fronts and the volume
of the intersection of the same two spaces.

Results
We compare six different instantiations of the DOSA-MO by vary-
ing the regression model used for the adjustment, including the
zero regression model, equivalent to not applying any adjustment.
The regression models receive as input three meta-features of the
solutions correlated with the overestimation: the original fitness,
its SD, and the feature set size (number of genes). For an example
of correlations between meta-features and overestimation see
Supplementary Section 2.1 and Supplementary Fig. S8. We use
NSGA3-CHS as wrapped model. The tests are repeated with eight
different combinations of validation type, datasets, objectives,
and classification inner model. For each combination we report
two measures for the accuracy of the fitness estimation: the MOPE
(Section Comparative analysis using multi-objective performance
error) and the P� (Section Comparative analysis using the Pareto
delta). Additionally, we report a measure of overall performance of
the optimizers: the CHV (Section Evaluating DOSA-MOs effective-
ness in MO feature selection). A focus on the best solution sets
from the external validation is shown in Fig. 2 and discussed in
Supplementary Section 2.2, with in depth performance measures
for the classification of each cancer subtype in Supplementary
Fig. S9. A more detailed comparison of the quality of the solution
sets obtained with and without DOSA-MO is presented in Section
Comparison between the best solution sets with and without
DOSA-MO, while an analysis of the specific biomarkers that have
been identified can be found in Supplementary Section 2.3.

Overestimation in feature selection for biomarker
discovery
We measured the error of the performance estimates with two
methods: the MOPE and the P�. The MOPE quantifies the discrep-
ancy between the HV computed on the train performance and the
CHV. In contrast, the P� captures differences between expected
performance and actual performance on new samples, focusing
on the more granular level of individual solutions.

Comparative analysis using multi-objective performance
error
The MOPE evaluates the DOSA-MO algorithm’s capability in
reducing the performance estimation error (Section Multi-
objective performance error). The MOPE outcomes from various
regression-based adjusters are reported in Fig. 3.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
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Figure 2. Scatter plots depicting solutions from external validation on breast cancer transcriptomics data using SVM as inner model. MO optimization
of balanced accuracy for subtypes prediction and root-leanness. Horizontally, the number of features is depicted for simplicity. For each solution it is
shown the performance measured in the inner CV, i.e. the performance expected by the optimizer, the performance of the model trained on the TCGA
breast set and tested on the same set, and the performance of the same model on the external SCAN-B set. The lines are interpolating splines. (a) Using
the unadjusted optimizer. (b) Using SVR as regression model for fitness adjustment. (c) Using RFReg as regression model for fitness adjustment.

Figure 3. MOPE results for internal k-fold CV (a–e) and external validation (f). (a) Kidney cancer, subtype classification, and root-leanness. (b) Kidney
cancer, overall survival prediction, and root-leanness. (c) Kidney cancer, overall survival prediction, subtype classification, and root-leanness. (d) Breast
cancer, subtype classification, and root-leanness. (e) Breast cancer, overall survival prediction, and root-leanness. (f) External validation for breast cancer,
subtype classification, and root-leanness. Error bars represent SD between folds.

Significantly, ptree and RFReg often outperform other overesti-
mation predictors. Therefore, for users prioritizing the reduction
of MOPE, ptree and RFReg regressors emerge as particularly effec-
tive choices. SVR-based estimators of overfitting appear to be the
least effective. ptree and RFReg regressors perform particularly
well in external validation scenarios, where an external dataset
(SCAN-B) is used to evaluate the models (biomarker sets) that
were selected according to their adjusted performance learned
from the initial TCGA breast cohort.

Comparative analysis using the Pareto delta
The P� measure (Section Pareto delta (P�)) considers the differ-
ence between a model’s predicted and actual test performance for
each individual solution. This makes it particularly relevant and
more informative than the MOPE in the common situation where
users are presented with multiple solutions but will ultimately
select only one. The P� across the experimental setups is shown
in Fig. 4.

ptree and RFReg regressors consistently outshine others when
reducing the P�. Interestingly, while no significant differences are
noted in MOPE between the dummy model and the unadjusted
optimizer, all kidney cancer setups with proper regressors have a
lower P� compared to the unadjusted optimizer. rSVR performs

better than the zero regressor in all scenarios except one. RFReg
and ptree always yield lower P�s than the zero regressor, including
in breast cancer setups, highlighting their promise in both overes-
timation measures.

Evaluating DOSA-MO’s effectiveness in MO
feature selection
The previous results highlight DOSA-MO’s success in reducing
performance estimation errors in ML-driven feature selection for
biomarker discovery. It is also important to evaluate if DOSA-MO
enhances the quality of the produced feature sets: the final output
for biomarker selection models considered for clinical validation.
To assess the impact on the overall feature selection process, we
calculated the CHV for each experimental setup (see Fig. 5).

Tree-based regressors reduce estimation errors but do not sig-
nificantly improve the quality of solution sets generated by DOSA-
MO. This indicates that using these regressors for overestimation
prediction may not always enhance solution sets, despite reducing
quality estimation errors. Interestingly, dummy and SVR-based
MO optimizers consistently outperform the CHV of unadjusted
models, highlighting the effectiveness of overestimation predic-
tion for superior feature selection outcomes. Specifically, SVR
yelds the best CHV in all setups except in scenarios involving



Dual-stage optimizer for systematic overestimation adjustment | 7

Figure 4. P� results for internal k-fold CV (a–e) and external validation (f). (a) Kidney cancer, subtype classification, and root-leanness. (b) Kidney cancer,
overall survival prediction, and root-leanness. (c) Kidney cancer, overall survival prediction, subtype classification, and root-leanness. (d) Breast cancer,
subtype classification, and root-leanness. (e) Breast cancer, overall survival prediction, and root-leanness. (f) External validation for breast cancer,
subtype classification, and root-leanness. Error bars represent SD between folds.

Figure 5. CHV results for internal k-fold CV (a–e) and external validation (f). (a) Kidney cancer, subtype classification, and root-leanness. (b) Kidney
cancer, overall survival prediction, and root-leanness. (c) Kidney cancer, overall survival prediction, subtype classification, and root-leanness. (d) Breast
cancer, subtype classification, and root-leanness. (e) Breast cancer, overall survival prediction, and root-leanness. (f) External validation for breast cancer,
subtype classification, and root-leanness. Error bars represent SD between folds.

the overall survival objective, while the dummy model excels in
setups that include survival prediction.

The HV metric does not take into account the differences
between expected and measured performance and is less interest-
ing for ML applications than the CHV [10]. Nonetheless, we present
the HVs computed on the test or external sets in Supplementary
Section 2.4 and Supplementary Fig. S10.

Comparison between the best solution sets with
and without DOSA-MO
Figure 6 shows, for each experimental setup with two objectives,
a comparison between the best solution sets, according to the
CHV metric, obtained without DOSA-MO and the ones obtained
using DOSA-MO. The non-adjusted algorithms solution sets, on
the left, in which the expected fitness is computed by inner k-
fold CV, are affected by an overestimation (difference between

expected and measured fitness) that increases with the number of
features and reaches important amplitudes varying from ∼0.1 to
∼0.3 depending on the experimental setup. It can be appreciated
that the algorithms with DOSA-MO, on the right, in which the
expected fitness is computed by inner k-fold CV followed by
fitness adjustment, have a noticeably lower overestimation, thus
offering more precise expectations to the user.

The improvement in the overall performance of solution sets
obtained by using DOSA-MO, as measured by the CHV (Fig. 3), is
more pronounced in the experimental setups for breast cancer
subtype classification, followed by the one for breast cancer sur-
vival prediction, while the improvement still exists, but is smaller,
in the kidney experiments. Coherently, in Fig. 6, the differences
in measured fitness between the solution sets obtained without
DOSA-MO (A, C) and with DOSA-MO (B, D) for the subtype classi-
fication on breast datasets are particularly noticeable, followed

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae674#supplementary-data
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Figure 6. Comparisons between the best solution sets, according to the
CHV metric, without using DOSA-MO (on the left) and using DOSA-MO
(on the right) for the experimental setups with two objectives. There
is a row for each experimental setup. For each result set the subplot
shows the performance predicted by the MO optimizer (”Expected”) and
the performance measured on left out or external samples (”Measured”).
The first row (A, B) shows the external validation with training on TCGA-
breast and testing on SCAN-B. The following rows are related to the k-fold
CVs on, in turn, TCGA-breast with balanced accuracy and root-leanness
objectives (C, D), TCGA-breast with concordance index and root-leanness
(E, F), TCGA-kidney with balanced accuracy and root-leanness (G, H),
and TCGA-kidney with concordance index and root-leanness (I, J). The
subplots for the k-fold CV show the solutions for all the folds. Above
each subplot it is indicated the name of the algorithm that produced the
represented solution set/sets.

by the differences that can be observed between the survival
predictions for the same cancer type (E, F). The improvements
that are present in the kidney experiments are the less noticeable
(G, H, I, J).

Discussion
We introduced DOSA-MO, a novel wrapper MO optimizer designed
to adjust performance measures for overestimation in ML-driven
MO problems, improving the solution sets that are produced.
This approach has been successfully validated across multiple
transcriptomic-based datasets commonly used for biomarker
discovery in cancer subtype classification and survival prediction.
The assessment has been made in a fully transparent and
repeatable manner by providing access to a public repository that
includes a working implementation of DOSA-MO as a software
tool, the source code, the input data and the results for all
the tests that are described in this work. Our benchmarking
extends to a scenario where biomarker models, trained in one
population-based cohort (TCGA), are applied to classify cancer
subtype in a second cohort (SCAN-B). This method effectively
enables biomarker discovery and validation across multiple
cohorts. External validation is the strongest form of ML-based
validation, and in this case, it is particularly robust due to the large
sample sizes of the TCGA and SCAN-B cohorts, comprising 1081
and 2969 patients, respectively. Additionally, we have developed
two innovative measures for evaluating the performance of MO
algorithms: the MOPE and the P�. According to both metrics,
the DOSA-MO algorithm demonstrated improved performance
estimates in all tested cases, particularly when using decision
tree-based regression models for predicting overestimation.

Our study found that even a basic regression model, which
learns solely the weighted average of overestimation and is used
for fitness adjustment, resulted in improved overall performance
compared to the unadjusted optimizer in seven out of eight
experimental setups, as indicated by the CHV metric. Likewise,
the MO optimizer directed by the SVR model, which predicts
overestimations, surpassed the unadjusted optimizer in seven out
of eight setups, affirming its effectiveness. Notably, the MO opti-
mizer guided by the simpler dummy regression model excelled
in the three setups involving survival prediction, while the SVR
model proved superior in the five setups focused on subtype
classification and feature set size. The rSVR regression model,
which selects the hyperparameters for the regularization strength
of the SVR with random search, utilized for predicting overestima-
tion, underperformed with respect to dummy and SVR regression
models. A regularization that works well while cross-validating on
solutions obtained by an unadjusted optimizer is not as effective
when the GA runs with a bigger population, more generations, and
the adjustment is applied to the evaluation of the individuals.

Predicting the overestimation is more complex when the
adjustment to the fitness is applied during the optimization as
in our approach. The fitness adjustments alter the optimizer’s
exploration path, leading to a divergence in the solution
distribution from the one used to train the regressors for
overestimations, even within their applicability domain. This
creates a “moving target” problem, commonly addressed in other
contexts, like artificial neural networks, through incremental
optimization across multiple epochs. Although executing more
computationally intensive MO GAs is possible, further research
is essential to enhance our understanding and address the
challenges of the applicability domain and the moving target
problem in these contexts.
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DOSA-MO is versatile and can be applied to any ML problem,
including the ones requiring a MO evaluation framework, making
it particularly well-suited for biomarker discovery in high dimen-
sional molecular datasets. It has been experimentally validated
with cancer transcriptomics data, demonstrating its applicability
and effectiveness to push forward the state of the art in this
important domain. Further research will be needed to assess the
efficacy of DOSA-MO for other cancer types, wrapping other MO
algorithms, with different or multiple data types, like single cell
RNA-seq or multiomics, and on other problem domains.

Key Points

• We introduce DOSA-MO, the first data-driven, multi-
objective optimization algorithm designed to minimize
the performance overestimation of the best models. By
directly addressing overestimation during the optimiza-
tion process, our approach ensures more accurate and
reliable model selection.

• DOSA-MO identifies solutions with better predictive per-
formance, but it also provides a more accurate estimate
of them, allowing the user to have both better solutions
and more realistic expectations.

• We verify that DOSA-MO is effective in feature selec-
tion for omics-based biomarker discovery, improving the
performance on left-out or external sample sets, when
predicting cancer subtypes and/or patient overall sur-
vival, using gene expression-based datasets for kidney
and breast cancer.

• Focusing on complex prediction tasks, such as cancer
subtype classification and survival prediction with gene
expression data, DOSA-MO uncovers biomarker panels
with better predictive ability on new data, marking a
crucial step toward advancing these panels closer to the
clinical validation stage.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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