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Abstract

The diffusion generative model has achieved remarkable performance across various research fields. In this study, we propose a
transferable graph attention diffusion model, GADIFF, for a molecular conformation generation task. With adopting multiple equivariant
networks in the Markov chain, GADIFF adds GIN (Graph Isomorphism Network) to acquire local information of subgraphs with
different edge types (atomic bonds, bond angle interactions, torsion angle interactions, long-range interactions) and applies MSA (Multi-
head Self-attention) as noise attention mechanism to capture global molecular information, which improves the representative of
features. In addition, we utilize MSA to calculate dynamic noise weights to boost molecular conformation noise prediction. Upon
the improvements, GADIFF achieves competitive performance compared with recently reported state-of-the-art models in terms
of generation diversity(COV-R, COV-P), accuracy (MAT-R, MAT-P), and property prediction for GEOM-QM9 and GEOM-Drugs datasets.
In particular, on the GEOM-Drugs dataset, the average COV-R is improved by 3.75% compared with the best baseline model at a
threshold (1.25 Å). Furthermore, a transfer model named GADIFF-NCI based on GADIFF is developed to generate conformations for
noncovalent interaction (NCI) molecular systems. It takes GADIFF with GEOM-QM9 dataset as a pre-trained model, and incorporates a
graph encoder for learning molecular vectors at the NCI molecular level. The resulting NCI molecular conformations are reasonable,
as assessed by the evaluation of conformation and property predictions. This suggests that the proposed transferable model may
hold noteworthy value for the study of multi-molecular conformations. The code and data of GADIFF is freely downloaded from
https://github.com/WangDHg/GADIFF.
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Introduction
Molecular Conformation Generation (MCG) plays a crucial role in
drug discovery and is an important part of lead drug discovery
field [1]. It is designed to generate the low-energy spatial struc-
ture of molecules [2]. Moreover, MCG is closely related to many
research issues, such as molecular property prediction [3], molec-
ular docking [4], and pharmacophore modeling [5]. The molecular
conformation varies with the environment and is highly flexible
[2]. The purpose of MCG is to generate 3D coordinates of all
the atoms in a molecule and apply the resulting conformation
to research fields or specific tasks [6]. However, both chemical
experiments (e.g. X-ray crystallography [7]) and theoretical com-
putational methods (e.g. molecular dynamics [8]) are costly or
unable to generate plenty of high quality conformations. There-
fore, obtaining rational flexible molecular conformations in an
efficient way is a significant task yet challenging.

The rapid development of deep learning has driven improve-
ments in MCG models [6, 9–17]. MCG problem can be solved not
only by connecting molecular fragments using a set of rules, but
also by features learned from large molecular databases [18]. A
large number of studies have shown the great potential of deep
learning on MCG. Mansimov et al. [9] proposed the conditional
deep generate graph neural network (CVGAE) that could directly
learn to generate energetically favorable molecular conforma-
tions. Later, Simm & Hernandez Lobato [10] proposed GRAPHDG
to obtain a generation model with roto-translation invariance. Shi
et al. [13] suggested CONFGF that is able to generate molecular
conformations directly, which greatly reduces the cumulative
error during model generation. Ganea et al. [14] devised a torsional
geometric generation approach and came up with new criterion
metrics to evaluate the quality of molecular conformations. Xu
et al. [16] theoretically demonstrated that Markov chains evolving
with equivariant Markov kernels can induce an invariant distribu-
tion by design under the diffusion framework, and they developed
an end-to-end model GEODIFF.

The diffusion model is one of the most powerful generation
models. It has achieved remarkable results in many fields such
as computer vision, natural language processing and bioinfor-
matics [19]. And many diffusion models also have been applied
to solve various cheminformatics problems, such as molecular
generation [16] and protein design [20]. These models gener-
ally outperform previous generation models such as variational
autoencoder (VAE) and generative adversarial network (GAN),
showing that diffusion model has great potential in cheminfor-
matics.

Inspired by the work in the reference [16], we propose a graph
attention diffusion generation model, GADIFF, by adding noise
attention and multi-scale representation for MCG tasks. GADIFF
is designed under roto-translational invariant diffusion frame-
work, where molecules can obtain the conformations with invari-
ant likelihood from the Markov chains evolving with equivari-
ant Markov kernels. Besides that, we use E(n) Equivariant Graph
Neural Networks (EGNNs) to maintain the equivariant molecular
property of GNN model in Markov kernels. The contributions of
this research are described as follows:

• Data representation is critical for the performance of
diffusion generation model. In order to improve node

representation, GADIFF utilizes Graph Isomorphism Network
(GIN) to extract local node features by aggregating hetero-
geneous graphs with different types of edges, atomic bonds,
bond angle interactions, torsion angle interactions and long-
range interactions. On the other hand, GADIFF computes
node features in different surroundings (from the view of
various subgraphs related to one node), and then employs
Multi-head Self-attention (MSA) mechanism to fuse the node
features globally. Therefore, the equivariant node encoder
of εθ (the noise model) consisting of the above two modules
can learn both local and global information of all the nodes,
which thus improves the node representation.

• Noise calculation is central to the operation of diffusion
models. In order to obtain accurate conformation noise, GAD-
IFF implements MSA mechanism to dynamically compute
the attention scores for conformation noises from different
subgraphs. In GADIFF, the subgraph conformation noise at
different spatial scales is weighted by the MSA mechanism
to obtain the molecular conformation noise, which automat-
ically learns the weights of different subgraphs on the molec-
ular conformation noise. The module in εθ showed in Fig. 1(b)
is taken as noise encoder to compute the conformation noise.

• Noncovalent interaction (NCI) conformations are remarkably
significant for drug discovery; therefore, we further proposed
the transferring model GADIFF-NCI for NCI molecule
generation. Modeling of long-range interaction features
enables GADIFF to fulfill a MCG task of multi-molecular
systems. GADIFF-NCI takes GADIFF as the pre-trained model,
from which the node encoder parameters on GEOM-QM9
are migrated to GADIFF-NCI, followed by fine-tuning on NCI
dataset. For better adaptation to NCI dataset, we use a graph
encoder to obtain graph-level features via GIN network and
graph attention pooling module, which ensures information
completeness of node features. From experiments, the
well generated NCI conformations demonstrate that the
strategy of GADIFF-NCI can be applied to NCI conformation
generation, which provides a new strategy for the similar
molecular generation tasks.

Diffusion models
Generation methods, which aim to model the latent probability
distribution of a dataset, are being rapidly developed and widely
used. There are various deep generation models emerged, such
as VAEs, GANs, flow-based models, autoregressive models, and
diffusion models. Currently, diffusion model is one of the most
powerful deep generation models with the advantages of being
able to learn of complex data distributions and generate diversi-
fied data. It can achieve remarkable results in classical fields (e.g.
computer vision, natural language processing) and also has been
successful in interdisciplinary domains such as computational
chemistry, bioinformatics, and medical image reconstruction
[19, 20].

In the diffusion framework, the molecular conformation Ct is
modeled as a thermodynamic system that changes over time. The
C0 is the initial conformation from the data distribution q(C0|G). In
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Fig. 1. The illustrations for GADIFF and GADIFF-NCI framework. First, a is the graph encoder of GADIFF-NCI, and the output is the molecule-level feature
vector of NCI data. Next, b is εθ (G, Ct, t) of models (GADIFF, GADIFF-NCI), and the node encoder of εθ (G, Ct, t) in GADIFF-NCI is used for fine-tuning based
on pre-trained model. Finally, c is the diagram of the forward diffusion process and the reverse generation process of models (GADIFF, GADIFF-NCI). In
short, the GADIFF consists of b, c and the GADIFF-NCI consists of a, b, c.

the diffusion process, the white noise CT of the graph G is obtained
by adding noise into the C0 gradually in T time steps. And the ini-
tial conformation C0 is obtained through gradual noise reduction
of CT in the generation process that is the reverse process of the
diffusion process. Figure 1c displays the diffusion process and the
generation process of our diffusion model. The q(Ct|Ct−1) is the
fixed posterior distribution in the diffusion process, pθ (Ct−1|G, Ct)

is the Markov kernel in the generation process and εt represents
the noise in each time step t(t ∈ [1, T]). The main objective of
diffusion models is to apply the noise model εθ for learning a data
distribution pθ (C0|G) that approximates the real data distribution
q(C0|G) and samples new conformations from data distribution
pθ (C0|G).

The reverse generation process can be formulated as a condi-
tional Markov chain with learnable transition kernel, as shown in
Equation 1.

pθ (C0:T−1|G, CT) =
T∏

t=1

pθ (Ct−1|G, Ct),

pθ (Ct−1|G, Ct) = N(Ct−1; μθ (G, Ct, t), σ 2
t ).

(1)

The μθ is the mean parameterized by μθ (G, Ct, t) = (Ct − βt√
1−ᾱt

εθ

(G, Ct, t))/
√

αt, where εθ (G, Ct, t) is an equivariant noise model to
learn the noise ε̂ with parameters θ . And σ 2

t is a user-defined

variance. The forward diffusion process is defined as a fixed
posterior distribution q(C1:T|C0), as shown in Equation 2.

q(C1:T|C0) =
T∏

t=1

q(Ct|Ct−1),

q(Ct|Ct−1) = N(Ct;
√

1 − βtCt−1, βtI).

(2)

The q(Ct|Ct−1) is the transition kernel of Markov chain of the
diffusion process at step t, βt is the fixed variance schedule at step
t, and I is the identity matrix. The q(Ct|C0) is derived as Equation 3
from αt = 1 − βt, ᾱt = ∏t

s=0 αs, and Equation 2.

q(Ct|C0) = N(Ct;
√

ᾱtC0, (1 − ᾱt)I). (3)

With t sufficiently large, the forward process will convert con-
formation C0 to a whitened isotropic Gaussian distribution con-
formation CT, so p(CT) is set to a standard Gaussian distribution.

Instead of directly optimizing the exact logarithm likelihood,
diffusion methods design the training objective according to max-
imizing the evidence lower bound (ELBO). Ho et al. proposed a
simplified objective that is a weighted variational bound [21]. Xu
et al. designed an invariant ELBO based on the simplified objective,
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as shown in Equation 4 [16].

LELBO(θ) =
T∑

t=1

E{C0,G}∼q(C0,G),ε∼N(0,1)[||ε − εθ (G, Ct, t)||2]. (4)

The corrected noise vector θ which is equivariant to Ct can
be calculated by ∂Ct dt ·(dt−√

ᾱtd0)√
1−ᾱt

. And the Ct in Equation 4 can be

calculated by Ct = √
ᾱtC0 + √

1 − ᾱtθ according to Equation 3.
Some other related works are introduced in supplementary

information (SI).

Problem notations
In this research, G = 〈V, E〉 represents a molecular graph and
its related information. The V is the set of atoms in a molecule,
vi(vi ∈ V, 1 � i � |V|) represents the atomic attributes of the ith

atom, such as the elements type, and |V| represents the number
of atoms contained in the molecular graph, the embedding for
vi uses hi; while E is the set of interatomic edges in a molecule,
eij(eij ∈ E, 1 � i, j � |E|, i �= j) denotes the embedding of interatomic
edge attributes between ith atom and jth atom in the molecular
graph.

To obtain more abundant node information, we extend the
graph G (a traditional molecular bond graph) to four types of
graphs in terms of edge types (atomic bonds, bond angle inter-
actions, torsion angle interactions, and long-range interactions).
Therefore, the graph with one edge type is named as a subgraph
of G in this paper. The subgraphs are defined on the G with the
same atom set V and different edge set Ek{k = (bond, angle, torsion,
radius)}. The Ek is the set of ek

ij{k = (bond, angle, torsion, radius)}
and the detailed instructions of subgraphs are displayed in Fig. S1
of SI.

Each atom in the molecular graph G can get the coordinates
during the sampling process. The conformation set C(C =
[c1, c2, · · · , cn]) is the target of the sampling process, where ci(ci ∈
R|V|×3, 1 � i � |n|) denotes the ith molecular conformation in set C
and n means the number of conformations generated from each
molecular graph. We describe the importance of equivariance for
molecular modeling and its application to GADIFF in SI.

Graph attention diffusion model
Molecules switch between their different conformations and end
up in different local minima (stable conformation) because of
environmental conditions. Thus, there are many possible rational
conformations for each molecular graph, and even these con-
formations exhibit completely different properties. In this study,
GADIFF is proposed to generate multiple possible conformations
through molecular graphs and is also generalized to a multi-
molecular generation task.

Figure 1 presents the designed framework of the proposed
models GADIFF (b, c), GADIFF-NCI(a, b, c), and the diffusion the-
ory (c). The framework (GADIFF, GADIFF-NCI) is optimized by
minimizing the difference between the reference conformation
noise ε and the predicted molecular conformation noise ε̂. Then,
εθ (G, Ct, t) predicts conformation noise ε̂t for Ct. When extracting
features, GADIFF employs MSA mechanism in the node encoder
of εθ (G, Ct, t) to integrate the information from subgraphs. The
subgraph conformation noise {ε̂k}k=(bond,angle,torsion,radius), is acquired
by jointly training on edge and node features in the molec-
ular graph by the EGNN framework described in SI. And the

molecular conformation noise ε̂ is obtained by weighting the
subgraph conformation noise ε̂k using MSA mechanism.

Attention graph convolution layer
In GADIFF, we improve the Equivariant Graph Convolutional Lay-
ers (EGCL) in EGNN based on MSA mechanism for the tasks
with datasets like molecules with multiple edge types. The node
encoder of εθ (G, Ct, t) in GADIFF is attention graph convolution
layers (AGCLs). In AGCL, the node vectors of various subgraphs
can obtain local and global information through GIN network
and the MSA mechanism, respectively. The subgraph node vectors
({hl

i,k}k=(bond,angle,torsion,radius)) and edge embedding eij are initialized
using the Pytorch package’s Embedding layer. The lth AGCL of
the node encoder is shown in the following Equations 5–8. The
diagram of model structure has been shown in Fig. 1(b).

hl
i = χ(hl

i,bond, hl
i,angle, hl

i,torsion, hl
i,radius) (5)

ml
ij = φe(hl

i, hl
j, eij) (6)

Equations 5 and 6 denote the edge block in AGCL. In Equation 5,
χ is a convolution block to obtain node vector hl

i from node vectors
{hl

i,k}k=(bond,angle,torsion,radius) of a subgraph. In Equation 6, ml
ij is the

edge embedding in each layer and φe is an MLP network for
learning edge vector. Equations 5 and 6 constitute the edge block
of AGCL.

h̃l
i,k = ψn(hl

i,k, ml
ij,k), k = (bond, angle, torsion, radius) (7)

hl+1
i,bond, hl+1

i,angle, hl+1
i,torsion, hl+1

i,radius = ϕn(h̃l
i,bond, h̃l

angle, h̃l
torsion, h̃l

radius) (8)

In Equation 7, ψn denotes the GIN network utilized for
calculating local node features from subgraphs. In Equation 7,
{h̃l

i,k}k=(bond,angle,torsion,radius) are obtained as the input vectors for

Equation 8 to get the output node vectors {hl+1
i,k }k=(bond,angle,torsion,radius).

The ϕn in Equation 8 denotes the MSA mechanism designed for
fusing the local node vectors. Equations 7 and 8 carry out the
computation in the node block of AGCL.

In GADIFF, MSA strategy is used to integrate local information
into global molecular information, as shown in Equation 8.
Hence, the node vectors {hl+1

i,k }k=(bond,angle,torsion,radius) from subgraphs
are fused in AGCLs for aggregating local information, which
grant GADIFF get better representation for molecular data, thus
improve the performance accordingly.

Training objective and sampling
Since the purpose of εθ (G, Ct, t) is to predict the conformation noise
rather than the conformation itself, solving node coordinates in
EGNN is replaced by calculating the conformation noise. The
εθ (G, Ct, t) is composed of a node encoder and a noise encoder. And
ε̂ could be predicted by the weighted sum over different subgraph
conformation noises ε̂k as shown in Equation 10.

wbond, wangle, wtorsion, wradius = ϕε(hbond, hangle, htorsion, hradius, eij) (9)

ε̂ =
∑

k=(bond,angle,torsion,radius)

wk

∑

j∈N(i)

1
dij

(xi − xj)φx(ek
ij) (10)

In Equation 9, ϕε is an MSA mechanism for computing the
weights of conformation noise from subgraphs. Equation 10
gets the conformation noise ε̂ adaptively by summing over

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae676#supplementary-data
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Algorithm 1 GADIFF Training.

1: repeat
2: C0 ∼ q(C0|G), t ∼ Uniform({1, · · · , T}), ε ∼ N(0, I)
3: Ct ∼ q(Ct|C0) # Eq. 3
4: Initial atom node vector h0

i = vi and edge vector eij from Ct.
5: for l = 0, · · · , L − 1, L do
6: hl+1

i = AGCLθ (G, eij, hl
i); # node_encoder, Eq. 5 ∼ Eq. 8

7: end for
8: ε̂ = noise_encoderθ (G, Ct, eij, h) # noise_encoder, Eq. 9 ∼ Eq. 10
9: ∇||θ − θ̂ ||2 for the gradient descent step # training object, Eq. 4

10: until converged

the weighted subgraph conformation noises. In Equation 10,
{ek

ij}k=(bond,angle,torsion,radius) denotes the edge vectors of each subgraph,
dij is the distance norm (interatomic distances) between atom i
and j, xi and xj represent the coordinates of atom i and j in a
conformation Ct, and φx is an MLP network. As mentioned above,
Equation 4 defines LELBO. With εθ (G, Ct, t) obtained in Equation 10,
we can learn training objective LELBO.

In order to enhance prediction for the noise ε in Ct, we improve
εθ (G, Ct, t) by utilizing MSA mechanism again. The MSA mecha-
nism is used to output the weights wk for conformation noises
ε̂k = ∑

j∈N(i)
1
dij

(xi − xj)φx(ek
ij), k = (bond, angle, torsion, radius) of

subgraphs, as shown in Equations 9 and 10. In contrast to previous
models that learn the noise ε̂ directly, the weighting strategy
adopts adaptive learning the effects of different interactions on
the molecular conformation noise ε̂. It could assign the subgraph
weights of the same node well. Algorithm 1 gives the GADIFF
training procedure based on the designed objective.

The sampling process adopted in GADIFF is a Markov chain
[16]. It transfers the white noise conformation CT to the equilib-
rium state conformation C0. The CT is sampled from the normal
distribution p(CT) and progressively denoised to get Ct−1 from
pθ (Ct−1|G, Ct), t = T, T − 1, · · · , 1 according to Equation 1. The
proposed models use the same sampling algorithm as GEODIFF to
get a rational conformation C0. The Algorithm S1 in SI describes
the sampling process in detail.

Graph attention diffusion model for NCI
molecules
NCI conformations are important for the study of drug target
binding and the generation of NCI conformations is of research
value [22]. However, NCI conformation datasets [23–27] are not as
rich as the GEOM datasets [28], even though the amount of NCI
datasets is too large to manually identify edge types, therefore
we adopt Deep Transfer Learning (DTL) to extend the model
on NCI conformation generation. In our model, we transfer the
node encoder parameters in the pre-trained GADIFF based on the
similar size molecule in the dataset (GEOM-QM9), and fine-tune
GADIFF on the collated NCI datasets, thus form a transferring
model, GADIFF-NCI, for NCI MCG tasks.

h̃i,graph = ψg(vi, eij) (11)

hgraph = [
∑

i∈Gj
(h̃i,graph · φg(h̃i,graph)/nj)]

j∈(0,1)

(12)

Because systems in NCI datasets are molecular dimers,
GADIFF-NCI employs a graph encoder to obtain the graph-
level (molecular) vector for obtaining intact molecular pair
information. The graph encoder consists of a GNN network and a

graph attention pooling module, and their formula are expressed
by Equations 11 and 12, respectively, where ψg represents GIN
networks, φg is an MLP network to compute the weights for node
vectors h̃i,graph, i ∈ Gj in a graph Gj, j ∈ (0, 1), and nj is the atom
number of molecule graph Gj. The detailed training process for
GADIFF-NCI is in Algorithm 2.

Experiments
We build and evaluate GADIFF on two databases, small molecules
(GEOM-QM9) and drug-like molecules (GEOM-Drugs), and then
transfer the trained GADIFF to NCI datasets. Two common MCG
evaluation criteria, conformation generation metrics and prop-
erty prediction, are adopted for GADIFF. And the evaluations for
GADIFF-NCI are in terms of interatomic distance distributions dif-
ference and property prediction accuracy. In addition, to validate
the improving strategies, ablation experiments are conducted on
GADIFF and GADIFF-NCI, respectively. We describe the detailed
experimental setting of GADIFF and GADIFF-NCI in SI. And the
time complexity analysis of GADIFF is list in Table S1 of SI.

Experiment setup
Datasets
The GEOM dataset (the detail is described in SI) is used in model-
ing and the data segmentation is consistent with the dataset by
Shi et al. [13]. The training set consists of 40k randomly selected
molecules from the two datasets (GEOM-QM9, GEOM-Drugs), with
five low-energy conformations per molecule sorted by energies
(200k conformations). From the remaining data, 200 molecules are
randomly selected as a test set, and the number of conformations
per molecule is limited to between 50 and 500. The number
of generated conformations is the same as previous researches
(twice the number of reference conformations).

In order to generate NCI molecular conformation, the NCI
dataset is used to fine-tune GADIFF-NCI. For clearly demonstrat-
ing the model validity, only hydrogen-bond dominated molecules
among them are chosen for analyses. The NCI dataset used for the
GADIFF-NCI consists of two parts: hydrogen-bonded molecules
in the dataset (S22×5 [23], S66×8 [24], X40×10 [25]) collected in
the previous work [29] and hydrogen-bonded molecules in the
NCIAtlas database (HB300SPX×10 [26], HB375×10 [27]). The first
dataset consists of 319 conformations including 40 molecular
pairs and their derivatives along the dissociation curve, which
are dominated by hydrogen bonding [22, 24, 25, 29]. The second
dataset from NCIAtlas is created by Jan Řezáč with the aim
of building a wide range of NCI dataset using advanced quan-
tum chemical methods. The samples dominated by hydrogen
bonding in NCIAtlas are HB300SPX×10 and HB375×10. They are
adopted as the second dataset with 675 molecule pairs and 6750

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae676#supplementary-data
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Algorithm 2 GADIFF-NCI Training.

1: repeat
2: C0 ∼ q(C0|G), t ∼ Uniform({1, · · · , T}), ε ∼ N(0, I)
3: Ct ∼ q(Ct|C0)

4: Initial atom node vector h0
i = vi and edge vector eij from Ct.

5: hnode = node_encoderθ (G, Ct, h0
i , eij) # using the pre-trained GADIFF

6: hgraph = graph_encoderθ (G, h0
i , eij) # Eq. 11 ∼ Eq. 12

7: h = concatenation(hnode, hgraph)

8: ε̂ = noise_encoderθ (G, Ct, eij, h)

9: ∇||θ − θ̂ ||2 for the gradient descent step
10: until converged

conformations [26, 27]. Thus, in total the NCI dataset used for
GADIFF-NCI contains 7069 conformations of 715 molecule pairs.
The NCI dataset is randomly divided into a training set (6123
conformations of 619 molecule pairs), a validation set (473 confor-
mations of 48 molecule pairs) and a test set (473 conformations
of 48 molecule pairs).

Baselines
We compare GADIFF with the SOTA baseline methods: CVGAE
[9], GRAPHDG [10], CGCF [11], CONFVAE [12], GEOMOL [14], CON-
FGF [13], DGSM [15], GEODIFF [16], DMCG [6], RDKIT+Clustering
[17]. GADIFF has also been compared to the currently popular
open-source software for conformation generation, RDKIT [30], a
classical Euclidean distance geometry [31] approach. The detailed
introduction of baselines is in SI.

Results and discussions
Conformation generation
Evaluation metrics. In order to evaluate the quality and diversity of
the conformations generated by GADIFF, we use two general eval-
uation metrics as other baselines, Coverage (COV) and Matching
(MAT). COV is the coverage rate of one conformation set covered
by the other conformation set at a certain RMSD threshold. The
generated conformations with better diversity have a larger COV
value. And MAT measures the difference between the generated
conformations and the reference conformations. The smaller the
MAT value, the higher the accuracy of the generated confor-
mations. The evaluation metrics (COV-R, MAT-R, COV-P, MAT-P)
derived by COV and MAT based on the root-mean-square devia-
tion (RMSD) are often used in the field of generation modeling [14–
16]. The RMSD is defined as the normalized Frobenius norm of the
two atomic coordinates matrices aligned by the Kabsch algorithm
to measure the similarity between two conformations [32]. Let Sg
and Sr represent the generated and reference conformation set
respectively, and δ is the defined RMSD threshold. COV-R, MAT-R,
COV-P, MAT-P are defined as follows:

COV-R(Sg, Sr) = 1
|Sr| |{C ∈ Sr|RMSD(C, Ĉ) � δ, Ĉ ∈ Sg}| (13)

MAT-R(Sg, Sr) = 1
|Sr|

∑

C∈Sr

min
Ĉ∈Sg

RMSD(C, Ĉ) (14)

COV-P(Sg, Sr) = 1
|Sg| |{C ∈ Sg|RMSD(C, Ĉ) � δ, Ĉ ∈ Sr}| (15)

MAT-P(Sg, Sr) = 1
|Sg|

∑

C∈Sg

min
Ĉ∈Sr

RMSD(C, Ĉ) (16)

According to the experiment setup, the number of Sg confor-
mations per molecule is twice that of Sr. Higher COV scores as

well as lower MAT scores indicate that the model has the ability to
generate more novel realistic conformations. From the experience
of previous researches [13–16], the threshold δs of the GEOM-QM9
and GEOM-Drugs datasets are set 0.5Å and 1.25Å, respectively.

Model comparison. The evaluation metric (mean and median
of COV-R, MAT-R, COV-P, MAT-P) values of the models built on
GEOM-QM9 and GEOM-Drugs datasets are shown in Tables 1
and 2, respectively. In Tables 1 and 2, the results of DGSM [15]
are from its original paper, and the results of RDKIT, DMCG,
and RDKIT+Clustering were reported by the paper of RDKIT+
Clustering [17]. The results of the rest competitive baselines are
from the results recorded in the paper of GEODIFF [16]. It can
be seen that GADIFF outperforms those SOTA baselines on most
metrics, especially on the more challenging drug-like molecule
dataset, GEOM-Drugs. As shown in Table 1, COV-P and MAT-P of
GADIFF in GEOM-QM9 give the best results of all baselines in
both mean and median values and its results of COV-R and MAT-R
are also competitive. In Table 2, it shows GADIFF achieves better
performance in GEOM-Drugs than all other baseline methods.
With an increasing number of iterations until convergence, GAD-
IFF achieves an average performance of 95.37% and a median of
100.00% on the COV-R metric, which shows GADIFF outperforms
previous baselines across all measured criteria. A comparison
with computational chemistry energy-based method, Confab, is
shown in Table S2 of SI [33]. The result demonstrates that GADIFF
outperforms Confab on most evaluation metrics especially on
the GEOM-Drugs. Aforementioned results indicate that GADIFF
is capable of generating high-quality and diverse conformations,
and modeling diversified molecular distributions well.

The qualitative analysis of generated molecule conformations
by GADIFF is shown in Fig. 2. It shows GADIFF generates geomet-
rically diverse conformations that are more similar to reference
conformations. And GADIFF outperforms the CONFGF and CON-
FVAE in all four complex molecules by comparing local structures,
which illustrates that GADIFF could perform MCG tasks well.
More visualizations of generated drug-like molecule conforma-
tions are shown in Fig. S2 of SI. And the detailed discussions
of drug-like tautomers generated by GADIFF are illustrated in
Fig. S3 of SI.

Property prediction
Setup. Property prediction refers to computing the ensemble prop-
erties [28] of generated molecule conformations and comparing
them with references, which is a directly assessment of the quality
of the generated conformations. Simm and Hernandez-Lobato
reported the first work utilizing property prediction to evaluate
and analyze the generated molecule conformations [10]. We fol-
low the design scheme of Shi et al. [13], where sampling a split
containing 30 molecules from the GEOM-QM9 and generating 50

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae676#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae676#supplementary-data
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Table 1. Evaluation parameters of models based on the GEOM-QM9 dataset (δ is 0.5 Å)

Models COV-R(%)↑ MAT-R(Å)↓ COV-P(%)↑ MAT-P(Å)↓

Mean Median Mean Median Mean Median Mean Median

RDKIT 83.26 90.78 0.3447 0.2935 – – – –
CVGAE 0.09 0.00 1.6713 1.6088 – – – –
GRAPHDG 73.33 84.21 0.4245 0.3973 43.90 35.33 0.5809 0.5823
CGCF 78.05 82.48 0.4219 0.3900 36.49 33.57 0.6615 0.6427
CONFVAE 77.84 88.20 0.4154 0.3739 38.02 34.67 0.6215 0.6091
GEOMOL 71.26 72.00 0.3731 0.3731 – – – –
CONFGF 88.49 94.31 0.2673 0.2685 46.43 43.41 0.5224 0.5124
DGSM 91.49 95.92 0.2139 0.2137 44.64 43.72 0.5369 0.5023
GEODIFF 90.07 93.39 0.2090 0.1988 52.79 50.29 0.4448 0.4267
DMCG 94.98 98.47 0.2365 0.2312 – – – –
RDKIT+Clustering 97.65 100.00 0.1902 0.1818 – – – –
GADIFF 90.50 93.33 0.2142 0.2140 59.52 56.41 0.4070 0.3579

Table 2. Evaluation parameters of models based on the GEOM-Drugs dataset (δ is 1.25 Å)

Models COV-R(%)↑ MAT-R(Å)↓ COV-P(%)↑ MAT-P(Å)↓

Mean Median Mean Median Mean Median Mean Median

RDKIT 60.91 65.70 1.2026 1.1252 – – – –
CVGAE 0.00 0.00 3.0702 2.9937 – – – –
GRAPHDG 8.27 0.00 1.9722 1.9845 2.08 0.00 2.4340 2.4100
CGCF 53.96 57.06 1.2487 1.2247 21.68 13.72 1.8571 1.8066
CONFVAE 55.20 59.43 1.2380 1.1417 22.96 14.05 1.8287 1.8159
GEOMOL 67.16 71.71 1.0875 1.0586 – – – –
CONFGF 62.15 70.93 1.1629 1.1596 23.42 15.52 1.7219 1.6863
DGSM 78.73 94.39 1.0154 0.9980 40.08 37.15 1.4994 1.4496
GEODIFF 89.13 97.88 0.8629 0.8529 61.47 64.55 1.1712 1.1232
DMCG 91.27 100.00 0.8287 0.7908 – – – –
RDKIT+Clustering 87.93 100.00 0.8086 0.7838 – – – –
GADIFF (500 epoch) 94.69 100.00 0.6703 0.6579 71.77 76.29 0.9997 0.9517
GADIFF (converged) 95.37 100.00 0.6209 0.5960 74.59 80.73 0.9282 0.8696

Fig. 2. Generated conformations illustration of GEOM-Drugs test set generated by proposed and baseline models. We present the conformations best-
aligned with the ground truth.

conformations for each molecule [13]. The properties, the energy
E and HOMO-LUMO gap ε of each conformation, are calculated
using the chemical toolkit Psi4 [34] and compared with those
of the reference conformations on five metrics: average energy
E, lowest energy Emin, average gap ε, minimum gap εmin and
maximum gap εmax.

Property prediction analyses. The mean absolute errors (MAEs)
between the generated conformation properties and the reference

conformation properties are shown in Table 3. These properties
are highly sensitive to the geometric structure of molecules, so
superior performance indicates the high quality of generating
molecular conformations. As shown in Table 3, GADIFF achieves
the best results among all baselines on ε and εmin. Moreover,
GADIFF performs competitively in the other three metrics, with
no MAE exceeding 1, and it outperforms the current popular
theoretical calculation method RDKIT in the first four metrics.
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Table 3. MAEs of predicted ensemble properties (Unit: eV)

Methods E Emin ε εmin εmax

RDKIT 0.9233 0.6585 0.3698 0.8021 0.2359
G RAPHDG 9.1027 0.8882 1.7973 4.1743 0.4776
CGCF 28.9661 2.8410 2.8356 10.6361 0.5954
CONFVAE 8.2080 0.6100 1.6080 3.9111 0.2429
CONFGF 2.7886 0.1765 0.4688 2.1843 0.1433
DGSM 1.0313 0.0761 0.1963 1.1811 0.1271
GEODIFF 0.2597 0.1551 0.3091 0.7033 0.1909
DMCG 0.4324 0.1364 0.2057 1.3229 0.1509
GADIFF 0.8146 0.4065 0.1042 0.6559 0.4778

It indicates that GADIFF can ensure the quality of the generated
conformations.

NCI conformation generation
Setup. NCIs ubiquitously exist intra- or inter- molecules and they
are far weaker than covalent interactions. However, it naturally
plays an important role in macromolecular studies, such as drug
discovery, supramolecular assembly [22]. Therefore, accurately
generating of NCI molecules is of research value [29, 35]. Due to
the complexity and diversity of NCIs, and hydrogen bond being
one of the strongest interactions of all NCIs, NCI molecules in
datasets mainly dominated by hydrogen bonds are selected as the
sampling data. To adapt GADIFF to multi-molecular system gener-
ation such as NCI molecules, a pre-trained GADIFF on GEOM-QM9
is extending to GADIFF-NCI through DTL technique and we add a
graph pooling module to obtain molecular-level information.

Distributions over distances. Previously, references [10, 15]
reported the detailed analysis on the edge distance distribution.
They consider the distribution of interatomic distances derived
from the generated conformations as indicative of the variability
in atomic spacing. Due to the highly flexible structure of
multi-molecular systems, RMSD-based metrics such as COV
and MAT are not applicable in the evaluation of generated
NCI molecular conformations any more. Therefore, distance
distribution evaluation is applied to evaluate the gap between
the distributions of molecular conformations generated by the
GADIFF-NCI and the reference NCI dataset.

Figure 3 illustrates the instances of the generated molecu-
lar conformations from NCI datasets (S22, S66, X40, HB300SPX,
HB375) and some typical hydrogen bonding types (X-H· · ·O, X-
H· · ·N, X-H· · ·F) in the test set. Figure 3(a) shows five gener-
ated conformation groups from different datasets and each with
one reference conformation and two generated conformations.
Figure 3(b) displays three typical types of generated hydrogen-
bonding molecular conformations in a manner consistent with
Fig. 3(a). Moreover, a three-body water cluster is attempted to
be generated by GADIFF-NCI as representing in Fig. 3(c), which
displays three generated conformations and one reference con-
formation and demonstrates the generated conformations of the
water cluster are reasonable. It has seen from Fig. 3 that GADIFF-
NCI can generate molecular conformations that agree well with
references from varieties of datasets. More conformation exam-
ples of NCI systems are shown in Fig. S4 of SI.

NCI property prediction. The property prediction is also use to
assess the quality of the NCI molecular conformations generated
by GADIFF-NCI. The evaluation metrics are consistent with that of
GADIFF. Properties are calculated by a single point calculation for

each generated molecule conformation using the Gaussian09 [36]
program package (DFT M062X method and the 6-31G∗ basis set
under vacuum conditions [29]). The calculated molecular inter-
action energy E and HOMO-LUMO gap of NCI molecular systems
are compared with the properties of the reference NCI dataset on
the metrics (E, Emin, ε, εmin, εmax) in MAEs.

The distributions over interatomic distances are demonstrated
in Fig. 4. The kernel density curve of interatomic distance distri-
bution of the generated conformation (blue) is very close to that
(orange) of the reference NCI dataset in the test set, especially
the distances of (H,O) and (H,F). Moreover, the histogram of the
generation conformations and reference conformations is highly
overlapped, which means that generated conformation quality
is similar to the reference NCI dataset. It indicates that GADIFF
could be efficiently scaled to the NCI dataset and learn the
reference conformation distribution.

MAEs between the generated molecular properties and the
ground truth are shown in Table 4. Except for the εmax, MAEs of
the other metrics are less than 0.4, which suggests that the proper-
ties of the generated NCI conformations are very similar to those
in the reference NCI dataset conformations. The performance of
these ensemble properties also indicates the high quality of the
NCI molecular conformations generated by GADIFF-NCI.

Ablation study
In order to verify the validity of improvement on the noise model
εθ (G, Ct, t), ablation experiments are conducted on GADIFF and
GADIFF-NCI, respectively.

Multi-head self-attention mechanism in GADIFF
GADIFF utilizes the MSA mechanism to fuse the atom/node vec-
tors obtained from subgraphs, which is able to obtain significant
and global information of molecular conformations. Meanwhile,
GADIFF also employs the MSA mechanism to weight the con-
formation noise from different subgraphs. This helps us better
understand the impact of noise from various subgraphs on the
overall conformational noise. We name the former MSA mecha-
nism as node attention and the latter MSA mechanism as noise
attention. Table 5 shows the performance (COV, MAT) of the mod-
els on datasets (GEOM-QM9 and GEOM-Drugs) without the MSA
mechanism. From the results presented in Table 5, it is clearly
that the MSA mechanism impacts on both the fusion of atom
vectors and processing subgraph conformation noise. On the two
datasets, GADIFF with both node attention and noise attention
achieves the best performance. The t-SNE visualization of the
node feature vector in Fig. 5 displays the node feature vector
variation after adding MSA mechanism in node attention. It is

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae676#supplementary-data
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Fig. 3. Generated NCI molecular conformations in the test set by the proposed transfer model GADIFF-NCI.

Fig. 4. The interatomic distances (H,O; H,N; H,F) distribution histogram and kernel density curves.

Table 4. MAEs of predicted ensemble properties on NCI test set (unit: eV)

Methods E Emin ε εmin εmax

GADIFF-NCI (w/o graph encoder) 0.3957 0.4507 0.3439 0.2917 0.5039
GADIFF-NCI (w/o DTL) 0.4234 0.3621 0.3146 0.2345 0.4816
GADIFF-NCI 0.3648 0.3540 0.2382 0.2044 0.5855

obviously that the node features from different types of subgraphs
after MSA mechanism tend to be distinguishable by categories,
especially long-range interaction. The reason may be that atomic

bonds, bond angle interactions and torsion angle interactions are
all covalent interactions, so some feature values of them are
close; while long-range interaction/NCI is essentially different
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Table 5. Ablations of GADIFF on GEOM-QM9 and GEOM-Drugs

Datasets Models COV-R(%)↑ MAT-R(Å)↓ COV-P(%)↑ MAT-P(Å)↓

Mean Median Mean Median Mean Median Mean Median

GEOM-QM9 GADIFF (w/o node
attention)

90.14 93.75 0.2245 0.2184 58.09 54.85 0.4159 0.3765

GADIFF (w/o noise
attention)

89.97 92.31 0.2170 0.2197 59.61 56.11 0.4010 0.3644

GADIFF (used in
paper)

90.50 93.33 0.2142 0.2140 59.52 56.41 0.4070 0.3579

GEOM-Drugs GADIFF (w/o node
attention)

92.66 98.76 0.7438 0.7380 69.54 76.14 1.0520 0.9847

GADIFF (w/o noise
attention)

94.42 98.92 0.6663 0.6451 71.67 78.43 0.9889 0.9172

GADIFF (used in
paper)

94.69 100.00 0.6703 0.6579 71.77 76.29 0.9997 0.9517

Fig. 5. The t-SNE visualization of atom/node features before and after a MSA mechanism process applied for molecules from (a) GEOM-QM9 and (b)
GEOM-Drugs.

from covalent interaction, the boundary between them is evident.
This clearly shows MSA mechanism in our proposed models has
captured representative information of atom/node features.

Ablation experiments for GADIFF-NCI
We construct the GADIFF-NCI based on GADIFF and carry out
the multi-molecular conformation generation task on the NCI

datasets. Since the samples in the NCI dataset are in the form
of molecular dimer unlike the single molecule form in GEOM-
QM9, a graph encoder is added to obtain molecular-level fea-
tures. Additionally, transfer learning is applied for introducing
knowledge from GEOM-QM9 to GADIFF-NCI, which can com-
pensate the data information deficiencies, i.e., lacking of con-
formation diversity and the detailed edge features in the NCI
dataset.
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The ablation experiments are performed on the above two
items, the former is named graph encoder and the latter is named
DTL. Table 4 demonstrates the ablation results, which suggests
effectiveness of the graph encoder and the DTL in the GADIFF-
NCI. Obviously, both DTL and graph encoder can enhance the
accuracy of property prediction. It can be noticed that both the
molecular-level characteristics and the source domain knowledge
of multiple conformations impact on the GADIFF-NCI perfor-
mance.

Additionally, an ablation study on subgraph representation is
conducted to verify the importance of subgraphs to GADIFF. The
experiment results are shown in Table S3 of SI.

Conclusion and future work
Diffusion generation models have exhibited great potential across
various domain, but there are many issues to be addressed. In
this paper, we propose a diffusion generation model, GADIFF, that
focuses on data representation and noise computation. In the
Markov chain framework based on equivariant Markov kernels,
GADIFF utilizes MSA mechanism to improve molecular graph
representation and conformation noise prediction for MCG tasks.
On one hand, GADIFF fuses node vectors from subgraphs of
different edge types to obtain both local and global information
for a molecule; on the other hand, MSA weights the subgraph
conformation noises so that the GADIFF can learn the accurate
prediction of conformation noises. Comprehensive experiments
on multiple tasks show that GADIFF is competitive with existing
SOTA models based on GEOM-QM9 and GEOM-Drugs datasets.
We further adopt fine-tune transfer learning strategy on GDAIFF
to achieve a DTL model, GADIFF-NCI, for generating multi-
molecular systems. GADIFF-NCI takes GADIFF as the pre-trained
model that has been added a graph encoder to obtain multi-
molecular graph information instead of one molecule. Then, the
information learned from the GEOM-QM9 is transferred to the
NCI dataset, which enable GADIFF-NCI to generate reasonable
conformations for molecular pair and even trimer water clusters.
The distance distribution analyses and property prediction
performance on the NCI dataset indicate that GADIFF-NCI is
capable of generating NCI molecule conformations of high quality.
Future work includes further improving the model efficiency and
capability with advanced algorithms, and extending the model to
more challenging structures, such as protein-ligands.

Key Points

• We improve the diffusion generation model perfor-
mance by implementing MSA mechanism on comput-
ing dynamical attention scores for conformation noises.
With that, the proposed model, GADIFF, can automati-
cally learn the weights of different subgraph conforma-
tion noises at multi-scale feature spaces to better predict
the molecular conformation noise.

• We enhance molecular representation by fusing local
and global information of all the nodes. The local node
features are extracted by GIN, and then they are fused by
MSA mechanism into global representation. Therefore,
GADIFF can have comparably intact molecular informa-
tion.

• Our proposed models GADIFF and GADIFF-NCI can gen-
erate not only single molecule, but also noncovalent
interacting molecular pair, even a trimer water cluster,

owing to transfer learning technique. Taking the pre-
trained transferring strategy, GADIFF are pre-trained
on GEOM-QM9 and migrated to GADIFF-NCI to model
multi-molecular systems. In addition, a graph encoder is
employed to obtain graph-level features via GIN network
and graph attention pooling module, which ensures
complete information coverage for each noncovalent
molecular system.
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