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Abstract 
microRNAs (miRNAs) are central post-transcriptional gene expression regulators in healthy and diseased states. Despite decades 
of effort, deciphering miRNA targets remains challenging, leading to an incomplete miRNA interactome and partially elucidated 
miRNA functions. Here, we introduce microT-CNN, an avant-garde deep convolutional neural network model that moves the needle 
by integrating hundreds of tissue-matched (in-)direct experiments from 26 distinct cell types, corresponding to a unique training and 
evaluation set of >60 000 miRNA binding events and ∼30 000 unique miRNA–gene target pairs. The multilayer sequence-based design 
enables the prediction of both host and virus-encoded miRNA interactions, providing for the first time up to 67% of direct genuine 
Epstein–Barr virus– and Kaposi’s sarcoma–associated herpesvirus–derived miRNA–target pairs corresponding to one out of four binding 
events of virus-encoded miRNAs. microT-CNN fills the existing gap of the miRNA–target prediction by providing functional targets 
beyond the canonical sites, including 3′ compensatory miRNA pairings, prompting 1.4-fold more validated miRNA binding events 
compared to other implementations and shedding light on previously unexplored facets of the miRNA interactome. 
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Introduction 
MicroRNAs (miRNAs) serve as central regulators of gene expres-
sion, associated with diverse cellular processes from growth and 
differentiation to disease progression [1]. Upon loading into Arg-
onaute (AGO) proteins, miRNAs orchestrate post-transcriptional 
gene regulation through target cleavage, degradation, or transla-
tional suppression [2]. Significant effort has been made over the 
past few decades to decipher the role of virally encoded miRNAs, 
their interactions with the host target, and their role in manipulat-
ing host gene expression to favor viral replication and the evasion 
of immune response [2, 3]. Importantly, given the miRNAs’ broad 
potential in diagnostic, prognostic, and therapeutic applications, 
deciphering their targets is paramount [3]. 

Over the past two decades, considerable efforts have been 
directed toward developing computational tools for predicting 
miRNA targets. Existing implementations take into account 
distinct characteristics [4, 5], including miRNA-seed (positions 2– 
8) pairing with full or partial target complementarity, employing 
diverse statistical and machine learning approaches, and 
trained/evaluated on diverse experimental data [6], including 
(in)direct specific or high-throughput techniques [6, 7]. The advent 

of high-throughput direct experimental techniques, such as 
AGO-CLIP-seq (Argonaute cross-linking and immunoprecipitation 
sequencing) and CLASH (Crosslinking, Ligation, And Sequencing 
of Hybrids), in the past decade has facilitated the thorough 
characterization of numerous AGO-binding regions. These 
advancements have illuminated functional non-canonical seed-
based, as well as 3′ compensatory miRNA-binding pairings within 
both the 3′ untranslated region (UTR) and coding regions (CDS), 
serving as invaluable resources for deploying miRNA target 
prediction models [6–8]. 

Targetscan [9], trained on 74 microarray datasets, is consid-
ered one of the state-of-the-art models and predicts canonical 
3′ UTR miRNA target sites with a cumulative context and/or 
an aggregated conservation score. On the other end, DIANA– 
microT-CDS [10] predicts miRNA–target pairs on CDS and 3′ UTR 
regions, while it was the first model to utilize both miRNA per-
turbation and AGO-PAR-CLIP (Photoactivatable-Ribonucleoside-
Enhanced Crosslinking and Immunoprecipitation) experiments to 
capture the functional potential of direct miRNA binding events. 
PACCMIT [11] and PACCMIT-CDS [12] are more recent algorithms. 
Based on an overrepresentation ranking system, they can predict 
seed-based miRNA target sites in the 3′ UTR and CDS regions,
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respectively. On the other end, MBSTAR [13] incorporates  >40 
characteristics, including sequence, structural, and energy fea-
tures, and mirMark [14] integrates an extensive list of site and 
UTR-relevant features. Both models were trained and evaluated 
on experimentally supported miRNA–gene targets derived from 
public repositories [15–18]. More recent prediction methods inte-
grate deep learning approaches, such as miRAW [19], cnnMirTar-
get [20], and TargetNet [19]. Many of the aforementioned models 
have primarily been trained using miRNA perturbation experi-
ments, which may under-represent the direct effect of predicted 
miRNA binding sites [6]. Few of them, including miRAW [20], 
cnnMirTarget [21], and DIANA-microT-CDS [22], have been trained 
only on a small number of AGO-CLIP-Seq experiments derived 
from specific cell types and tissues, thereby not comprehensively 
capturing the miRNA interactions [6, 23]. Most methods disregard 
miRNA binding sites with imperfect complementarity or those 
residing within coding regions to mitigate low performance, con-
sequently covering a limited number of genuine miRNA binding 
events [6, 23]. Notably, there is a lack of methods identifying 
interactions of virus-encoded miRNAs, primarily due to the only 
recent establishment of high-throughput direct techniques [7, 24]. 

Here, we introduce microT-CNN, a next-generation DCNN 
(Deep Convolutional Neural Network) framework that fills the 
existing gap of the multifaceted miRNA-targeting problem 
by providing functional (non-)canonical seed-based and 3′

compensatory miRNA binding events, leveraging the high-yield 
AGO-CLIP tissue-specific miRNA-binding accuracy, combined 
with the miRNA–target functionality from gene expression 
experiments (Fig. 1). The model encompasses a multilayered 
structure, mapping the exact miRNA binding location and the 
functional potential of the miRNA gene targets (Fig. 2). The first 
layer encompasses a sophisticated approach that integrates five 
expert “agents” that serve as independent modes, each following 
a CNN–gated recurrent unit (CNN-GRU) architecture (Fig. 2). The 
five independent modes learn miRNA binding patterns directly 
from (i) the raw extended MRE (miRNA Recognition Element) 
sequences, (ii) the combined chimeric miRNA and MRE sequences, 
and (iii) the miRNA-binding secondary structure hybrids, as 
well as the RNA-accessibility and conservation footprints of 
the extended miRNA binding region. The layer was trained on 
a unique set of miRNA binding events by integrating >60 000 
miRNA binding sites derived from the analysis of ∼130 AGO-
CLIP-seq experiments combined with ∼70 tissue-matched miRNA 
perturbation experiments. The ensemble multi-agent approach 
facilitates the extraction of informative, hidden patterns sepa-
rately in 3′ UTR and CDS regions and provides miRNA binding sites 
beyond the miRNA seed region, including 3′ compensatory miRNA 
pairings, previously disregarded, capturing the whole spectrum of 
interactions. MREs from 3′ UTR and CDS regions are aggregated in 
a gradient-boosted model (GBM) meta-learner, trained on ∼4000 
positive and negative miRNA interactions derived from miRNA 
transfection experiments to provide functional targets (Fig. 2). 

microT-CNN is the first model to be evaluated on ∼3000 
(q)CLASH-derived (quick crosslinking, ligation, and sequencing of 
hybrids) virally encoded miRNA interactions and to achieve high 
performance by accurately predicting ∼50% of genuine Epstein– 
Barr virus (EBV) and Kaposi’s sarcoma–associated herpesvirus 
(KSHV) miRNA targets, and up to 67% of miRNA binding sites 
corresponding to one out of four virally encoded MREs. 

microT-CNN is a next-generation in silico model providing >70% 
direct miRNA targets on a comprehensive test set of genuine 
MREs. Our model detects 1.4-fold more validated miRNA bind-
ing sites than leading implementations, marking a significant 

breakthrough in miRNA–target annotation and unveiling previ-
ously unexplored patterns of the miRNA interactome. 

To ensure compatibility and stability, microT-CNN is packaged 
as a Docker image and can be accessed on GitHub [https://github. 
com/dianalabgr/microT-CNN.git]. 

Materials and Methods 
Dataset collection 
microT-CNN was trained and tested against an extensive set 
of miRNA binding sites (Supplementary Tables 1–5) retrieved 
from the analysis of low-/high-throughput techniques across 
46 distinct cell types and tissues (Fig. 1). Specifically, miRNA-
targeted regions were extracted by combining AGO-CLIP-
seq libraries with tissue-matched miRNA perturbation gene 
expression data after specific miRNA transfection, silencing, 
or knockout (Supplementary Table 1). AGO-enriched regions 
derived from AGO-CLIP-seq data, 57 HITS-CLIP (High-Throughput 
Sequencing of RNA isolated by CrossLinking Immunoprecip-
itation), and 81 PAR-CLIP (Photoactivatable-Ribonucleoside-
Enhanced Crosslinking and Immunoprecipitation) libraries 
were coupled with differentially expressed mRNAs extracted 
from 49 miRNA-specific high-throughput experiments (42 
microarrays, 31 RNA-seq) across 26 different cell types and 
10 tissues (Supplementary Tables 1 and 6–8). This process 
enabled the formation of 8497 positive and 2305 negative MREs 
(Supplementary Tables 2 and 3). Two published non-RBP (FLAG-
GFP) background PAR-CLIP libraries, previously described [25], 
were incorporated into our pipeline to retrieve 8682 non-AGO-
bound miRNA binding sites. Potential MREs residing in negatively 
correlated miRNA–gene interactions from miRNA perturbation 
experiments, non-overlapping with AGO-enriched regions from 
CLIP-seq experiments, complemented the set of negative MREs 
(Supplementary Tables 2 and 3). A high-quality set of 14 366 
direct miRNA-MRE chimera fragments from CLASH and CLEAR-
CLIP (Covalent Ligation of Endogenous Argonaute-bound RNAs– 
Cross-Linking and Immunoprecipitation) experiments, indexed 
in DIANA-TarBase v8.0 [26] and DIANA-LncBase v3.0 [27] was uti-
lized for the training and evaluation of the model (Supplementary 
Tables 2 and 3). The retrieved miRNA binding sites were annotated 
against a reference set of coding and 3′ UTR exons. In cases of 
multiple transcript–gene associations, principal isoforms were 
selected according to APPRIS criteria [28] and the transcript with 
the longest 3′ UTR. An independent dataset of 2113 positive and 
2009 negative miRNA–gene interactions, derived from miRNA 
transfection RNA-seq experiments, was utilized to train the meta-
learner and the mRNA–target prediction (Supplementary Table 4). 

Analysis of high-throughput experiments 
High-throughput AGO-CLIP-seq libraries and miRNA perturbation 
experiments were analyzed following best practices [27]. In brief, 
raw AGO-CLIP-seq and RNA-seq libraries were quality-checked, 
preprocessed, and aligned against the reference human genome, 
GRCh38 [29], as previously described [25]. For the model training, 
the microCLIP framework [25] was utilized to detect AGO-enriched 
regions, and only those with microCLIP score >0.5 were retained. 
A modified parallelized version of the BBMap aligner [30] was  
utilized to retrieve potential MREs in the AGO-CLIP-seq peaks. 

RNA quantification was conducted at the transcript level, 
using Salmon quasi-mapping mode [31], followed by differential 
expression with Sleuth [31, 32]. Microarray-analyzed datasets 
were obtained from DIANA-LncBase v3.0 [27]. For both RNA-seq 
and microarray miRNA perturbation experiments, a threshold of
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Figure 1. Overview of miRNA-target positive/negative binding sites identified by different indirect/direct, low, and high-throughput experiments. miRNA-
targeted regions derived from miRNA perturbation datasets presented an overlap with AGO-bound enriched regions from at least one AGO-CLIP-seq 
library. Datasets have been combined under tissue-specific rules. No overlap between positive and negative miRNA–gene interactions and their related 
miRNA binding sites was allowed. 

1.5-fold change (FDR < 0.05 where applicable) was used to retrieve 
positive and negative miRNA targets. The retrieved MREs from the 
AGO-enriched regions were combined with the aforementioned 
miRNA transfection/knockout positive and negative targets in a 
tissue-specific way to obtain positive and negative MREs for the 
model training ( Supplementary Table 1). 

(q)CLASH interactions of virally encoded 
microRNAs 
Interactions between virally encoded miRNAs and host tran-
scripts experimentally supported via (q)CLASH experiments were 
extracted from DIANA-TarBase v9.0 [7]. Briefly, (q)CLASH methods 
directly assess miRNA binding via a ligation step to join each 
interacting miRNA and respective targeted RNA into chimeric 
fragments, which are then subjected to next-generation sequenc-
ing. In TarBase 9.0, Hyb workflow [33] and RNAup [34] were used  
to analyze (q)CLASH libraries de novo against tailored databases 
containing host miRNA/transcript sequences as well as the virally 
encoded miRNA sequences. MREs exhibiting a negative mini-
mum free energy (<0 kcal/mol) and supported by more than one 
chimeric read were retained. 

microT-CNN framework 
Description of the algorithm 
microT-CNN framework follows a two-layer approach and can 
accurately characterize miRNA interactions at the MRE and gene 
levels (Fig. 2). Users provide the miRNA sequences, the gene 

sequences, and conservation scores in a bigWig format, and 
the model predicts the miRNA–gene interactions and their exact 
miRNA-binding location on 3′ UTR and CDS transcript regions. 

microT-CNN operates on the raw transcript and miRNA 
sequences. The algorithm extracts (i) 150 nt-long raw MRE 
sequences (30 nt-long MREs and 60 nt-long upflank/downflank 
regions), (ii) 53 nt-long miRNA-MRE chimeric sequences (30 nt-
long MRE sequences, 23 nt-long miRNA sequences), (iii) miRNA– 
target duplex structure hybrids with a length of 60 in a dot-bracket 
notation, (iv) RNA folding of the 150 nt-long MRE sequences 
in a dot-bracket notation, and (v) the conservation phastCons 
scores of the extended 150 nt-long MRE regions. A sophisticated 
two-layer approach utilizes the extracted regions: (i) a CNN 
architecture combined with GRU to extract informative patterns 
hidden in the raw regions and to accurately score the putative 
miRNA binding sites and (ii) a meta-learner that combines 
the retrieved MRE scores from the 3′ UTR and CDS regions to 
characterize high-quality miRNA–gene interactions. 

The pipeline initially utilizes a modified, multithreaded version 
of the BBmap aligner [30] to scan the transcript sequences for 
putative miRNA binding sites. An extensive set of (non-)canonical 
binding sites is supported, including 6mer- to 9mer, centered, 
and 3′ compensatory sites, to capture the exact range of miRNA 
binding regions (Supplementary Table 5). miRNA–target hybrids of 
the putative sites and the RNA folding of the MRE region, extended 
to 60nts downflank and upflank regions, were calculated with 
RNAduplex and RNAfold, respectively, from the Vienna package

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data


4 | Zacharopoulou et al.

Figure 2. Overview of the microT-CNN framework. The framework follows a two-layer sophisticated approach. The first layer integrates two distinct 
models to predict miRNA binding sites on (top) 3′ UTR and (bottom) CDS regions separately. Each model is composed of five distinct “expert” branches, 
each designed to model different aspects of the input data: (a) 150 nt-long MRE-extended nucleotide sequences, (b) 53 nt-long miRNA-MRE chimeric 
sequences that capture the combined nucleotide sequence of the miRNA (23nts) and its target MRE (30nts), (c) miRNA-MRE duplex structure hybrids of 
length 60 that reflect the duplex structure in a dot-bracket notation formed by miRNA binding to its target, (d) RNA folding regions of 150 length in a 
dot-bracket notation that provide information on the secondary structural context and accessibility of the MRE region, and (e) phastCons conservation 
scores (range of 0–1) for the extended 150 nt-long MRE region. For feature branches a, b, c, and d, one-hot encoding was applied to convert nucleotide and 
dot-bracket sequences into a binary format compatible with the CNN-GRU model. The extracted features from the convolutional branches were utilized 
as an input in GRU classifiers and flattened, concatenated, and forwarded to the dense part of the architecture that produces the final prediction scores 
for the MREs. In the second layer, the top-scored MREs on 3′ UTR and CDS regions were aggregated in a GBM meta-learner to score the miRNA–gene 
interactions. 
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[35]. phastCons precomputed scores from genome-wide multi-
ple alignments were downloaded from the UCSC (University of 
California Santa Cruz) Genome Browser repository [36] in bigWig  
format and were utilized to deduce respective evolutionary rates. 
Conservation signals were retrieved from miRNA-targeted sites 
and their flanking regions (60nts upflank and downflank). 

MRE level 
The first layer integrates a hybrid CNN-GRU architecture built 
with TensorFlow and Keras [37]. The model was trained and 
evaluated separately on CDS and 3′ UTR regions using a 
high-quality set of 67 379 MREs (36 405 3′ UTR, 30 974 CDS, 
Supplementary Table 3). The architecture includes five distinct 
“expert” branches, each designed to model different aspects of the 
input data: (i) 150 nt-long MRE-extended sequences that represent 
extended nucleotide sequences (60nts downflank and upflank) 
surrounding the 30nts MREs, (ii) 53 nt-long miRNA-MRE chimeric 
sequences that capture the combined nucleotide sequence of the 
miRNA (23nts) and its target MRE (30nts), (iii) miRNA-MRE duplex 
hybrids with a length of 60 that reflect the duplex structure in 
a dot-bracket notation formed by miRNA binding to its target, 
(iv) 150 nt-long RNA folding regions (extended MRE regions, 60nts 
downflank and upflank) in a dot-bracket notation that provide 
information on the secondary structural context of the RNA, and 
(v) phastCons conservation scores (range [0–1]) for the extended 
150 nt-long MRE region. For the raw sequence data (branches a, 
b, c, and d), one-hot encoding was applied to convert nucleotide 
and dot-bracket sequences into a binary format compatible with 
the CNN-GRU model. 

The normalized extracted features from the convolutional 
branches were utilized as inputs for GRU layers, which capture 
sequential dependencies. The outputs from the GRU layers 
were then flattened, concatenated, and passed to the dense 
layers, which produced the final prediction scores for the MREs. 
Regularization techniques, including dropout and batch normal-
ization, were employed at each layer to improve generalization. 
A grid search was performed to optimize hyperparameters, 
such as learning rate, dropout rate, the number of filters in the 
convolutional layers, and the number of GRU units. 

Convolutional-Gated Recurrent Unit branches 
The model uses distinct specialized convolutional branches to 
extract meaningful biological information from different types 
of input sequences. Each branch is configured to maximize the 
model’s ability to capture relevant features: (i) the MRE branch, 
consisting of two convolutional layers with filter sizes of 35 and 50 
and strides of 2 and 3; (ii) the miRNA-MRE chimeric branch, using 
three convolutional layers with filter sizes of 16, 32, and 62 and 
strides of 2, 3, and 4; (iii) the miRNA-MRE duplex structure hybrid 
branch, containing three convolutional layers with filter sizes of 
16, 32, and 62 and strides of 2, 3, and 4; (iv) the RNA folding branch, 
using two convolutional layers with filter sizes of 35 and 50 and 
strides of 4 and 5; and (v) the conservation branch, which includes 
three convolutional layers with filter sizes of 20, 40, and 60 and 
strides of 3, 4, and 5. All branches use max-pooling with a pool 
size of 2 to focus on the most important features without applying 
padding, which ensures the extraction of contiguous patterns in 
the sequences. 

After feature extraction through the convolutional layers, the 
outputs are fed into GRU layers with 24 units. The GRU layers help 
capture sequential relationships in the data, and a dropout rate of 
0.1 is applied to prevent overfitting. 

Flattened model 
The outputs from all the CNN-GRU branches are combined into a 
single vector by flattening and concatenating them. This vector 
is then passed to the dense network, which consists of three 
layers with 90, 55, and 35 nodes, respectively. A dropout rate of 
0.1 is applied for regularization. The dense layers use Leaky ReLU 
activation functions, and the final output layer uses a sigmoid 
activation to produce the prediction probability for MREs. The 
model is trained over 200 epochs, with early stopping enabled 
(patience of 15 epochs) and a learning rate of 10−4. 

Metaclassifier—Gene level 
An independent dataset consisting of 2113 positive and 2009 
negative miRNA–gene interactions, derived from RNA-seq miRNA 
transfection experiments, was used to train microT-CNN at the 
gene level. The putative MREs and features from the first layer 
were calculated using the core microT-CNN algorithm to generate 
MRE scores for all possible miRNA binding sites. The maximum 
MRE score per interaction was calculated separately for the 3′ UTR 
and CDS regions in both the positive and negative sets, and these 
scores were used as features to train a GBM meta-learner (Fig. 2). 
MREs with a score >0.5 for the first layer were retained for the 
positive set, while those with a score <0.5 were retained for the 
negative set. Five-fold cross-validation was applied to the training 
data to evaluate model accuracy and finalize the learning archi-
tecture. The microT-CNN training and the required computations 
for model optimization were carried out using multithreading. 

Docker image 
A microT-CNN Docker image was generated, leveraging Docker 
version 24.0.7 [38] to ensure compatibility and stability. Adher-
ing to stringent specifications, precise version control of all 
packages was maintained to ensure consistency and repro-
ducibility in miRNA target prediction [https://hub.docker.com/ 
repository/docker/penny0lane/microt_cnn/general]. Our user-
friendly approach provides clear documentation, and the 
accompanying code is accessible on GitHub [https://github.com/ 
dianalabgr/microT-CNN.git]. 

microRNA interactions from de novo target 
prediction models 
To evaluate microT-CNN alongside other prediction algorithms 
(MBSTAR [13], miRAW [20], Targetscan v7 [9], cnnMirTarget 
[21], PACCMIT-CDS [12], microT-CDS [10], mirMark [14], and 
TargetNet [19]), we utilized a subset of chimeric fragments, 
AGO-PAR-CLIP, and microarray datasets from our test set 
(Supplementary Tables 2, 3, and 6–8). The models were evaluated 
using the corresponding sets of miRNAs and genes. Precalculated 
miRNA–target interactions were utilized for Targetscan v7 
and PACCMIT-CDS. Targetscan provided a Context++ score, 
where lower values indicate stronger miRNA–target interactions. 
PACCMIT-CDS provided canonical gene-level miRNA targets 
within 3′ UTR and CDS regions. We utilized two modes of the 
PACMIT-CDS model: one incorporating conservation scores and 
the other using binding energy scores. The respective miRNA 
binding site coordinates were converted to assembly hg38 and 
annotated to Ensembl v100 [39] and mirBase v22 [40]. 

For the remaining models, the input data were structured 
and run following developers’ instructions. The retrieved (non-) 
canonical MBSTAR miRNA binding sites resided solely on the 3′

UTR region, with a probability score of > 0.5. For mirMark, we 
executed the Docker image and retrieved 3′ UTR (non-)canonical
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miRNA binding sites with a probability score set at 0.5. TargetNet 
was executed using the publicly available code on GitHub, with 
the required conda environment installed as per the developers’ 
instructions. The model provided gene-level miRNA target predic-
tion probability scores ranging from 0 to 1, with a cutoff threshold 
set at 0.5. miRAW provided scores ranging from −1 to 1 for canon-
ical and non-canonical miRNA binding site predictions in the 3′

UTR region, while cnnMirTarget reported binding sites with scores 
exceeding 0.5. microT-CDS provided canonical and non-canonical 
binding site predictions, along with gene-level probability scores 
for both the 3′ UTR and CDS regions, with a probability cutoff 
score set at 0.5. To evaluate the models’ performance at the gene 
level, we aggregated the predicted MRE scores (sum of MRE scores) 
in cases where only miRNA binding site scores were available, 
specifically for MBSTAR, mirMark, miRAW, and Targetscan. 

Results 
A deep-convolutional approach for de novo 
microRNA target identification 
microT-CNN is a next-generation model that accurately predicts 
(non-)canonical miRNA binding events beyond the seed miRNA 
region, including 3′ compensatory miRNA pairing events, as well 
as functional miRNA targets in 3′ UTR and CDS regions. The 
model was deployed by (i) integrating an extensive set of >60 000 
miRNA binding sites and ∼30 000 tissue-matched unique func-
tional miRNA–gene interactions and (ii) adopting a multilayer 
sophisticated approach under a DCNN scheme (Figs 1 and 2). 

microT-CNN model performance was initially evaluated in 
an independent set of 830 miRNA binding sites (415 positive 
miRNA-chimeric fragments and 415 negative miRNA binding 
sites), corresponding to 131 miRNAs and 727 unique genes 
(Supplementary Tables 2 and 3). The model demonstrated high 
specificity, sensitivity, precision, and recall for both miRNA– 
target (Specificity: 0.86, Sensitivity: 0.8, Precision: 0.817, Recall: 
0.863) and MRE (Specificity: 0.86, Sensitivity: 0.85, Precision: 0.856, 
Recall: 0.863) detection. These metrics were achieved by applying 
optimal thresholds to the microT-CNN scores based on the 
Youden index (MRE prediction: 0.878, miRNA–target prediction: 
0.724). 

The model’s overall performance was robust, as reflected 
by the area under the curve (AUC) of 0.895 (95% CI: 0.874– 
0.916) for miRNA–target prediction and 0.922 (95% CI: 0.9–0.94) 
for MRE detection (Supplementary Fig. 1). Additional metrics 
demonstrated consistently high performance, with accuracy, 
F1 score, and area under the precision–recall curve (AUPRC) 
all exceeding 0.8 for both MRE detection and miRNA–target 
prediction (MRE prediction, Accuracy: 0.859, F1 score: 0.86, AUPRC: 
0.927; miRNA–target prediction, Accuracy: 0.836, F1 score: 0.839, 
AUPRC: 0.902). 

microT-CNN model architecture was further evaluated through 
ablation experiments on the same validation set. Distinct models 
were trained using each of the five “expert” branches incorporated 
into the microT-CNN core model individually to assess their spe-
cific performance. The highest performance was observed in the 
miRNA-MRE chimeric branch (AUC: 0.88), followed by the conser-
vation branch (AUC: 0.729) and the miRNA-MRE duplex structure 
hybrid branch (AUC: 0.696) (Supplementary Fig. 2a). To assess 
the robustness of the microT-CNN architecture, we evaluated dis-
tinct models by combining the top-performing feature branches 
(miRNA-MRE chimeric + conservation, miRNA-MRE chimeric + 
duplex structure) or by removing the lowest-performing branch 
(RNA folding). Although the models still achieved high perfor-
mance (AUC range: 0.898–0.918), microT-CNN outperformed all 

the others in accurately identifying genuine MREs (AUC: 0.922) 
(Supplementary Fig. 2b). 

microT-CNN identifies functional canonical and 
non-canonical interactions in 3′ UTR and coding 
regions 
To investigate the functional importance of the microT-CNN-
derived canonical and non-canonical miRNA binding sites in 3′

UTR and CDS regions, we utilized eight public high-throughput 
gene expression profiling datasets following transfection or 
knockdown of specific miRNAs corresponding to six distinct 
cell types (GEO accessions: GSE42823, GSE21132, GSE33538, 
GSE22790, GSE22143, GSE68424, Supplementary Table 6). In 
the conducted comparisons, we measured miRNA–target fold 
changes in three distinct groups: (i) canonical miRNA targets 
with at least one binding site with perfect complementarity, (ii) 
miRNA targets participating in interactions resolved only by 
non-canonical binding sites, and (iii) transcripts lacking sites 
for the examined miRNAs (Fig. 3a, Supplementary Data Table). 
In all miRNA perturbation experiments, we observed that the 
top-scored microT-CNN detected miRNA targets (n = 100) were 
significantly downregulated or upregulated upon transfection or 
knockdown of different miRNAs compared to transcripts having 
no miRNA binding site (range of P-values canonical miRNA 
targets: 2.22 × 10−16–34 × 10−5, P-values non-canonical miRNA 
targets: 5.9 × 10−14–12 × 10−3, two-tailed Wilcoxon rank-sum test, 
267 < nno-site < 2889). 

Due to the inherent limitations in identifying direct miRNA tar-
gets through functional experiments, we subsequently adopted 
an approach to assess the functional efficacy of direct microT-
CNN-derived (non-)canonical miRNA targets. We combined the 
AGO-enriched regions of two PAR-CLIP HEK293 libraries (GEO 
accessions: GSE21918, Supplementary Table 8) with three gene 
expression profiling datasets following miRNA knockdown (GEO 
accessions: GSE21577, GSE46039) or transfection (GEO accessions: 
GSE14537) (Supplementary Table 6). Fold changes of (non-
)canonical miRNA targets overlapping with AGO-enriched regions 
were evaluated against transcripts lacking sites for the examined 
miRNAs (Fig. 3b, Supplementary Data Table). In all comparisons, 
we observed that direct microT-CNN-detected targets were 
significantly downregulated or upregulated upon transfection or 
knockdown of different miRNAs compared to transcripts having 
no miRNA binding site (range of P-values canonical miRNA 
targets: 9.5 × 10−7–9 × 10−5, P-values non-canonical miRNA 
targets: 16 × 10−4–3.5 × 10−7, two-tailed Wilcoxon rank-sum test, 
29 < nno-site < 39). 

While addressing the efficacy of the canonical and non-
canonical miRNA binding sites is essential, an equally crucial 
aspect lies in deciphering the functional efficacy of miRNA– 
gene interactions retrieved from CDS regions. To this end, we 
utilized the aforementioned eight miRNA perturbation high-
throughput gene expression profiling datasets (GEO accessions: 
GSE42823, GSE21132, GSE33538, GSE22790, GSE22143, GSE68424, 
Supplementary Table 6, Supplementary Data Table) to investigate 
the functional importance of the microT-CNN-derived miRNA 
targets from 3′ UTR and CDS regions. We measured target 
fold changes in miRNA targets with at least one binding site 
in the 3′ UTR region and miRNA targets resolved only by 
the CDS region (Supplementary Fig. 3). In the majority of the 
experiments, we observed that the top-scored microT-CNN-
detected targets (n = 100) were significantly downregulated or 
upregulated upon transfection or knockdown of different miRNAs 
compared to transcripts having no miRNA binding site (range of 
P-values 3′ UTR miRNA targets: 3.6 × 10−10 − 0.2, P-values CDS

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
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Figure 3. Functional efficacy of microT-CNN-detected (non-)canonical miRNA targets. (a) The functional efficacy of the predicted targets was examined 
in eight public gene expression profiling datasets following miRNA transfection or knockdown, corresponding to seven cell types. Response of the top 100 
microT-CNN-scored targeted mRNAs to miRNA perturbation experiments was evaluated independently per tested cell type, experimental technique, 
and condition. Violin plots of mRNA fold changes in a log2 scale for miRNA targets comprising at least one predicted canonical MRE or supported only 
by non-canonical miRNA binding sites were compared to those that lack any site of the considered miRNAs. P-values for the differences in expression 
changes of the identified (non-)canonical miRNA targets compared to transcripts lacking any predicted miRNA binding site are portrayed (two-tailed 
Wilcoxon rank-sum test). (b) The functional efficacy of the predicted targets was examined in two AGO-PAR-CLIP HEK293 libraries combined with three 
gene expression profiling datasets following miRNA (left) knockdown or (right) transfection. The response of the microT-CNN-detected targeted mRNAs 
to the combined experiments was evaluated independently per miRNA. Boxplots of mRNA fold changes in a log2 scale for targets comprising at least one 
predicted canonical MRE or supported by only non-canonical miRNA binding sites were compared to those lacking any site of the considered miRNAs. 
P-values for the differences in expression changes of the identified (non-)canonical miRNA targets compared to transcripts lacking any predicted miRNA 
binding site are portrayed (two-tailed Wilcoxon rank-sum test). 
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Figure 4. Evaluation of virus-encoded microT-CNN-detected miRNA targets with (q)CLASH experimental data. The utilized validation set is composed 
of 2966 unique EBV and KSHV-encoded miRNA binding sites, corresponding to 2331 virus-encoded miRNA–target interactions derived from 23 EBV and 
KSHV miRNAs. (a) The number of correctly predicted interactions (microT-CNN score > 0.7) versus the total (q)CLASH retrieved target pairs is portrayed 
for the distinct EBV- and KSHV-encoded miRNA interactions. (b) Dotplot representing the number of correctly predicted virally encoded MREs (vMREs) 
versus the total (q)CLASH MREs. The size of the dot portrays the total (q)CLASH vMREs per miRNA. The top MRE score is displayed per distinct viral 
miRNA in a black-to-yellow color gradient. 

miRNA targets: 0.0048–0.66, two-tailed Wilcoxon rank-sum test, 
267 < nno-site < 2889). 

Across the various comparisons, regardless of the perturbation 
type and experiment, canonical and 3′ UTR miRNA targets showed 
a stronger association with more responsive genes. Still, a signifi-
cant number of functional non-canonical and CDS miRNA targets 
corresponding to diverse cell types were detected in most of the 
experiments. 

microT-CNN accurately identifies experimentally 
supported virus-encoded microRNA interactions 
Virus-encoded miRNA interactions are core elements by which 
viruses manipulate host gene expression to facilitate their repli-
cation, evade host immune responses, and promote viral patho-
genesis [2, 3]. We investigated the performance of microT-CNN to 
identify not only host miRNA interactions but also virus-encoded 
miRNA–host target interactions and their respective miRNA bind-
ing sites. We utilized for the first time a bona fide set of 2789 
EBV- and KSHV-derived (q) CLASH-supported miRNA binding sites 
(Materials and Methods, Supplementary Data Table), correspond-
ing to 2243 virus-encoded miRNA–gene interactions derived from 
23 viral miRNAs. 

microT-CNN accurately predicts ∼50% EBV-/KSHV-derived gen-
uine miRNA–host interactions (microT-CNN score > 0.5), 1145 in 
total, and 30% highly scored (microT-CNN score > 0.7), 700 in total, 
across all the 23 virus-encoded miRNAs, capturing up to 67% in 
specific cases (Fig. 4a). The model also performed well in investi-
gating the correct miRNA binding sites. Specifically, microT-CNN 
accurately identifies 204 out of the 846 provided viral miRNA–host 
MREs, detecting at least one per virus-encoded miRNA. In miRNA 
cases with few provided genuine MREs (<5), the model captures 
>70% miRNA binding sites (Fig. 4b). 

Evaluation of microT-CNN against other de novo 
models 
To assess microT-CNN accuracy and to estimate the information 
gained with the incorporation of non-canonical and CDS miRNA 

binding sites, we compared our model against state-of-the-
art de novo miRNA target models, including microT-CDS [10], 
Targetscan v7 [9], MBSTAR [13], mirMark [14], PACCMIT-CDS [12] 
(with and without conservation feature), and recent developed 
deep learning applications, miRAW [20], cnnMirTarget [21], 
and TargetNet [19]. A significant aspect of the de novo miRNA 
target models is their efficiency in correctly determining bona 
fide miRNA targets at a low number of total predictions per 
miRNA. Therefore, we evaluated the distinct models against a 
validation set of experimentally verified, direct miRNA targets 
derived from chimeric miRNA–target fragments. The validation 
set comprised 3743 unique miRNA binding sites corresponding 
to 3548 miRNA–target interactions derived from 153 miRNAs 
(Supplementary Table 2, Supplementary Data Table). The number 
of correctly predicted MREs per tested in silico method is compared 
against the total predictions per miRNA for different score 
thresholds, accompanied by the amount of correctly predicted 
targets for the top-scored predicted miRNA–target pairs per 
model (n = 100 000, Fig. 5a and b). Different cutoff thresholds were 
also applied for the top-scored predicted miRNA–target pairs 
(i.e. 5000, 10 000, and 50 000) to assess the robustness of our 
analysis (Supplementary Fig. 4). A separate comparison capturing 
algorithms’ efficiency to predict correct miRNA binding sites 
in the top-scored miRNA targets was also conducted (Fig. 5c, 
Supplementary Fig. 4). Only the models providing this level of 
information are included in this analysis. microT-CNN exhibits a 
greater ability to discriminate miRNA interactions at equivalent 
numbers of total predictions, providing 1.2–1.4-fold more miRNA– 
gene interactions and 1.07–1.4 more MREs, corresponding to a 
significantly higher sensitivity both at the gene and binding site 
level (Fig. 5b and c, Supplementary Fig. 4). 

A similar analysis was also performed in a separate valida-
tion set derived from the analysis of two AGO-CLIP-seq datasets 
(GEO/SRA accession: GSE59944, SRR359787, Supplementary Data 
Table) from two distinct cell types (C8166, hESC). The validation 
set comprised 13 357 miRNA binding events derived from 110 
miRNAs, corresponding to 12 343 unique miRNA–target pairs.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data


microT-CNN | 9

Figure 5. Evaluation of microT-CNN performance against state-of-the-art implementations. The utilized validation set comprises 3743 unique MREs, 
corresponding to 3548 miRNA–target interactions derived from 153 miRNAs supported by chimeric miRNA–gene fragments. (a) The number of correctly 
predicted miRNA targets for each implementation is plotted versus the mean predictions per miRNA at different cutoff thresholds for the different 
models. (b) The percentage of the correctly predicted miRNA–gene interactions versus the 100 000 top-scored predictions per model is displayed. The 
actual number of correctly predicted miRNA–gene interactions is displayed per model. (c) The percentage of the correctly predicted MREs at the 100 000 
top-scored miRNA–gene predictions per model is portrayed. The actual number of correctly predicted MREs is displayed per model. 

microT-CNN, Targetscan, MBSTAR, and microT-CDS performed 
similarly at the miRNA–gene level. Still, microT-CNN presented 
a significantly higher performance at the miRNA binding level, 
providing 10% more correctly predicted miRNA binding events at 
the top-scored targets (n = 100 000, Supplementary Fig. 5). 

A significant aspect of the de novo miRNA–target implementa-
tions, aside from their ability to accurately detect genuine miRNA– 
binding events with low false positive rates, is to provide func-
tionally relevant miRNA interactions. To this end, an extra evalu-
ation was implemented using eight public high-throughput gene 
expression profiling datasets following the transfection or knock-
down of specific miRNAs corresponding to seven distinct cell 
types (Fig. 6, Supplementary Table 6, Supplementary Data Table). 
To ascertain an impartial evaluation, cumulative distributions of 
fold changes were compared for equivalent sets of top 100 pre-
dicted targets, i.e. genes with one or more predicted MRE, against 
genes lacking any site(s) for the considered miRNAs. microT-CNN 
exerted significant differences in expression changes compared 
to transcripts lacking any predicted binding site (range of P-
values (a–h): 8 × 10−22–16 × 10−4, one-sided Kolmogorov–Smirnov 
test, 232 < nno-site < 2628).Compared to the other de novo imple-
mentations, microT-CNN displayed the greatest miRNA–target 

effectiveness in most cases (range of P-values (a–e, h): 1.5 × 10−7– 
2.4 × 10−22, one-sided Kolmogorov–Smirnov test; Fig. 6a–e, h). In 
Fig. 6f and g, it performed similarly to, or less favorably than, 
Targetscan and MBSTAR, respectively, and better than the rest of 
the implementations (range of P-values (f): 0.0001; 0.0016, range 
of P-values (g): 0.00024; 0.00046, one-sided Kolmogorov–Smirnov 
test). 

Discussion and Conclusion 
miRNAs are crucial post-transcriptional gene expression regu-
lators controlling various cellular processes in healthy and/or 
diseased states [1]. In addition to host miRNAs, efforts have been 
made to understand virally encoded miRNAs and their interac-
tions with host targets to elucidate their role in viral pathogenesis 
and replication [2, 3]. Deciphering miRNA targets is paramount to 
understanding their function, which now counts more than two 
decades of effort [6]. Several experimental techniques and compu-
tational tools have been developed in this endeavor; however, the 
complexity of the existing direct high-throughput experimental 
techniques and the low performance of most existing models 
leaves the miRNA interactome incomplete and miRNA functions

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae678#supplementary-data
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Figure 6. Evaluation of the functional efficacy of the microT-CNN-detected miRNA targets against state-of-the-art implementations. The response of 
targeted mRNAs to miRNA perturbation experiments was evaluated independently per tested cell type, experimental technique, and condition for the 
different models (a–h). Cumulative distributions of mRNA fold changes in a log2 scale for targets comprising at least one predicted MRE in the CDS or 
3′ UTR regions were compared to those that lacked any site of the considered miRNAs (one-sided Kolmogorov–Smirnov test). Functional efficacy was 
assessed for the top 100 predictions per model. Implementations that lack any target for the examined miRNAs were excluded from each comparison. 

partially elucidated [ 3]. By leveraging large-scale experimental 
data and recent advancements in machine learning, alongside 
computational docking for compatibility and stability, we can 
significantly improve the accuracy of miRNA–target interaction 
identification [41]. 

Here, we introduce microT-CNN, an avant-garde next-
generation DCNN framework designed to address the complexity 
of miRNA targeting and provide the whole miRNA interactome 
spectrum. By leveraging a multilayered CNN design and incor-
porating data from over 60 000 miRNA binding sites from direct 
AGO-CLIP-seq experiments, chimeric miRNA–target fragments, 
and >70 tissue-matched miRNA perturbation experiments, 
microT-CNN accurately identifies (non-)canonical miRNA binding 
sites, within the 3′ UTR and CDS regions. The multi-agent CNN 
framework learns hidden miRNA binding patterns within the MRE 

regions, the miRNA-binding structure, the RNA accessibility, and 
the conservation of the miRNA-targeted region. This approach 
facilitates the extraction of informative, hidden patterns sep-
arately in 3′ UTR and CDS regions and detects both canonical 
and non-canonical miRNA binding sites, including previously 
neglected 3′ compensatory miRNA pairings, capturing the whole 
spectrum of interactions. miRNA binding sites from 3′ UTR and 
CDS regions are aggregated in a GBM meta-learner, trained on 
miRNA targets derived from miRNA transfection experiments to 
predict functional targets. 

microT-CNN provides >70% direct miRNA targets on a bona 
fide test set of ∼3500 miRNA–target interactions, corresponding 
to up to 1.4-fold more validated miRNA targets and miRNA 
binding sites than leading implementations. The model’s 
ensemble multilayer design provides a robust and precise tool
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for predicting host and virus-encoded miRNA targets. microT-
CNN accurately detects up to 67% of genuine EBV- and KSHV-
derived miRNA–gene interactions and one out of four MREs 
of viral miRNAs when compared for the first time on ∼3000 
(q)CLASH-derived genuine viral-encoded miRNA interactions, 
holding promise for elucidating the role of viral-encoded miRNAs 
in modulating host gene expression. These represent significant 
breakthroughs in miRNA–target prediction, shedding light on 
previously unexplored facets of the miRNA interactome. In future 
directions, continuous advancements in high-quality, direct, high-
throughput experiments can be leveraged to retrain miRNA– 
target detection models, improving their accuracy in identifying 
functional miRNA targets beyond current implementations. 
Moreover, future model upgrades could integrate experiment-
specific expression data, allowing the framework to capture 
context-dependent miRNA activity and diverse regulatory 
networks across disease-, tissue-, and patient-specific contexts. 

Key Points 
• microT-CNN is a multilayer Deep Convolutional Neu-

ral Network framework that predicts functional (non-) 
canonical seed-based and 3′ compensatory miRNA bind-
ing events on 3′UTR and coding regions. 

• microT-CNN was deployed by integrating an extensive 
set of >60 000 miRNA binding events and ∼30 000 
tissue-matched functional miRNA–gene target interac-
tions across 26 different cell types from ∼130 AGO-CLIP-
seq experiments and ∼70 miRNA perturbation experi-
ments. 

• microT-CNN is the first model to be evaluated on ∼3000 
genuine virus-encoded miRNA binding sites, and it pre-
dicts up to 67% of miRNA binding events, corresponding 
to one out of four virus-encoded miRNA target sites. 

• microT-CNN provides >70% direct miRNA targets on a 
comprehensive test set of genuine miRNA binding events 
and detects 1.4-fold more validated miRNA binding sites 
than leading implementations. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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