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Abstract

The rational design of Ribonucleic acid (RNA) molecules is crucial for advancing therapeutic applications, synthetic biology, and
understanding the fundamental principles of life. Traditional RNA design methods have predominantly focused on secondary structure-
based sequence design, often neglecting the intricate and essential tertiary interactions. We introduce R3Design, a tertiary structure-
based RNA sequence design method that shifts the paradigm to prioritize tertiary structure in the RNA sequence design. R3Design
significantly enhances sequence design on native RNA backbones, achieving high sequence recovery and Macro-F1 score, and
outperforming traditional secondary structure-based approaches by substantial margins. We demonstrate that R3Design can design
RNA sequences that fold into the desired tertiary structures by validating these predictions using advanced structure prediction models.
This method, which is available through standalone software, provides a comprehensive toolkit for designing, folding, and evaluating
RNA at the tertiary level. Our findings demonstrate R3Design’s superior capability in designing RNA sequences, which achieves around
44% in terms of both recovery score and Macro-F1 score in multiple datasets. This not only denotes the accuracy and fairness of the
model but also underscores its potential to drive forward the development of innovative RNA-based therapeutics and to deepen our
understanding of RNA biology.
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Introduction
The pivotal role of Ribonucleic acid (RNA) in biological systems
is underscored by its diverse functions, from encoding genetic
information to catalyzing biochemical reactions and regulating
gene expression [1–3]. Notably, non-coding RNA strands fold into
complex three-dimensional structures that are crucial for their
biological functionality [4, 5]. The design of RNA molecules with
specific structures and functions has profound implications for
therapeutic development, synthetic biology, and the elucidation
of life’s molecular underpinnings [6, 7]. The intricate geometries
intrinsic to RNA molecules equip them with unique capabilities
[8], enabling them to perform irreplaceable roles in vital cellular
operations, including but not limited to mRNA translation [9],
RNA splicing [10–12], and gene regulation [13]. These processes
are foundational to cellular biology, underscore the critical nature
of RNA’s contributions to life sciences, and highlight the poten-
tial impact of mastering RNA design on future biomedical and
biotechnological advancements.

Despite the crucial role of RNA in myriad biological processes,
the ability to design RNA molecules that fold into specific three-
dimensional structures with high precision remains a significant
challenge. Traditional computational methods for RNA design

have predominantly focused on secondary structure predictions
[14–19]. Some more recent approaches not only focused on
developing reinforcement learning tools to enhance secondary
structure-based RNA sequence design [14], but also proposed a
standard protocol to integrate a 3D structure prediction model
with the system pipeline to promote a more realistic sequence
design [20], which accepts the designed sequence depending
on the quality of predicted 3D structures with that sequence.
However, while those methods are important and inspiring,
their reliance on RNA secondary structure offers an incomplete
view of RNA’s functional capabilities [21–25]. In particular,
algorithms for RNA secondary structure prediction have been
extensively developed, yielding impressive results through
leveraging large datasets of known secondary structures [26–29].
However, knowledge of RNA tertiary structures, which is crucial
for thoroughly understanding RNA functional mechanisms and
discovering RNA-targeted therapies [6, 30], remains limited [31].

The success of protein structure prediction approaches [32,
33] inspired similar advancements in RNA tertiary structure pre-
diction, leading to the development of RNA tertiary structure
folding algorithms such as DeepFoldRNA [34], RoseTTAFoldNA
[35], DRfold [25], trRosettaRNA [24], and RhoFold [36, 37]. While
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predicting RNA tertiary structures from primary sequences can
leverage abundant sequence data [36] by multiple sequence align-
ment or language models, its inverse problem, designing RNA
sequences that reliably fold into a specified tertiary structure, as
also proposed by recent approaches [38], remains largely under-
explored.

In this work, we propose a thorough pipeline aiming at data-
driven tertiary structure-based RNA design tasks. We introduce
R3Design, an RNA sequence design method that trained on
over two thousand representative RNA structures collected
from Protein Data Bank (PDB) [39] and RNASolo dataset [40].
R3Design builds a computational framework tailored to tackle
the complexity of RNA tertiary structures. Furthermore, R3Design
incorporates base pair prediction prior to guiding the RNA design
process, leveraging the correlation between RNA secondary and
tertiary structures. An iterative refinement strategy fine-tunes
the model’s outputs through cycles of prediction and adjustment,
facilitating nuanced adjustments that align with the complex
structural dynamics inherent to functional RNA molecules.
Benchmark evaluations underscore the efficacy of R3Design,
establishing a robust baseline for tertiary structure-based RNA
design and paving the way for future innovations in RNA-based
therapeutics and molecular biology.

Results
R3Design designs RNA sequences with high
sequence-level fidelity
We collected a non-redundant set of RNA structures from the PDB
[39] and RNASolo dataset [40] to train R3Design, which comprises
a total of 2218 representative RNA structures. This dataset was
initially derived from the representative RNA structures in the
RNASolo dataset with a resolution less than 4.0 Å. Then, their
sequences and structures were cleaned according to the corre-
sponding structures in the PDB database. Specifically, we excluded
the sequences longer than 500 nucleotides as they only occupy
4.21% in the whole original dataset, as shown in the Appendix. Our
dataset was curated to represent a broad range of RNA structural
types and complexities, ensuring a robust test of R3Design’s
capabilities. We divided the dataset based on structural similarity,
allocating 1774 for training, 223 for validation, and 221 for testing
purposes. The distribution and specific characteristics of this
dataset are detailed in the Appendix. To ensure the reliability
of our results, we conducted each experiment three times using
different random seeds and reported both the mean and standard
deviation of our metrics, providing insights into the consistency
and precision of R3Design.

Table 1 presents the sequence recovery rates achieved by
R3Design in comparison to established RNA design meth-
ods across three sequence length categories: Short (0–50
nucleotides), Medium (50–100 nucleotides) and Long (more than
100 nucleotides). The recovery rate measures the percentage
of nucleotides in the designed sequence that exactly match
the target sequence, providing a direct indicator of fidelity.
Higher values indicate better performance. Notably, R3Design
demonstrates superior performance, particularly highlighted by
its consistency across varying complexities and lengths, which
underscores its robustness in handling the intrinsic variability of
RNA structures.

The Macro F1-score, presented in Table 2, evaluates the balance
between precision and recall achieved by each method across
different RNA sequence lengths. The score is multiplied by 100 for
better readability. A higher Macro F1-score indicates a method’s

efficiency in not only identifying correct nucleotides (precision)
but also in minimizing false negatives (recall). R3Design’s con-
sistently higher scores across all categories reflect its robustness
in sequence prediction, substantially enhancing both aspects of
prediction quality compared to other methods.

To test the generalizability of R3Design, we further evaluated
its performance on external benchmark datasets, including Rfam
and RNA-Puzzles, which were compiled in [34]. These datasets
encompass a diverse array of RNA structures and complexities,
providing a robust framework for evaluating R3Design. We pre-
trained the R3Design model on our benchmark dataset, explicitly
excluding RNA structures that were similar to those in the exter-
nal datasets to prevent data leakage and ensure a stringent testing
protocol. Subsequently, we assessed the model’s performance on
these benchmarks directly, without any additional training or
fine-tuning.

The results, presented in Table 3, demonstrate that R3Design
not only adapts well to new RNA structures but also consis-
tently outperforms all baseline methods in terms of recovery and
Macro F1-scores. R3Design achieved the highest recovery scores of
43.27% on Rfam and 45.41% on RNA-Puzzles, significantly outper-
forming the nearest competitor, eM2dRNAs, which scored 33.34
and 37.10%, respectively. This metric directly reflects the ability
of R3Design to accurately reproduce target RNA sequences from
their tertiary structures. Similarly, R3Design’s Macro F1 scores
were 41.37% on Rfam and 44.74% on RNA-Puzzles, substantially
higher than those of all other methods. The closest scores were by
eM2dRNAs, at 24.80% on Rfam and 26.91% on RNA-Puzzles. These
results highlight R3Design’s ability to generalize from its training
dataset to new, previously unseen RNA structures. These findings
affirm R3Design’s robust capability to model RNA sequences with
high fidelity across varying structural complexities and datasets.
The notable improvements in sequence recovery and Macro F1
scores underline not only its precision but also its reliability and
effectiveness.

For better visualization and to provide a clearer comparison
of the distribution of the sequence-level metrics, we present a
violin plot in Fig. 1. These results underscore R3Design’s capability
to accurately model RNA sequences with high fidelity across
different structural complexities and datasets. The improvements
in sequence recovery and Macro-F1 scores not only highlight its
precision but also its reliability and effectiveness for practical
applications in RNA-based therapeutics.

The designed sequence can fold into desirable
secondary structure
Achieving high sequence-level fidelity is crucial for the accurate
synthesis of RNA molecules; however, the functional competence
of these molecules also critically depends on their ability to adopt
correct secondary structures. This ability is pivotal not only for
the structural integrity of RNA but also for its functionality in
biological processes such as catalysis, regulation, and interac-
tions with other biomolecules. To evaluate R3Design’s efficacy,
we investigate its capacity to ensure that sequences it designs
accurately fold into their native secondary structures. For our
analyses, secondary structures are represented using the dot-
bracket notation, which provides a visual and statistical means
to assess folding accuracy.

Specifically, we leverage ModeRNA [41] to convert the tertiary
structures of each RNA molecule into their corresponding dot-
bracket representations. These representations served as the
ground truth in our subsequent analyses. For the RNA sequences
designed by R3Design, we employed RNAfold, a component of the
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Figure 1. Violin plot on the sequence-level metrics across our benchmark, Rfam, and RNA-Puzzles datasets. (A) The first row shows the recovery rate
comparison on the benchmark dataset with short, medium, and long splits. (B) The second row shows the Macro F1 comparison on the benchmark
dataset with short, medium, and long splits. (C) The third row shows the recovery rate comparison on the complete benchmark dataset, Rfam, and
RNA-Puzzles datasets. (D) The fourth row shows the Macro F1 comparison on the complete benchmark dataset, Rfam, and RNA-Puzzles datasets.
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Table 1. The recovery on the benchmark dataset. The best results are highlighted in bold.

Method Recovery (%) ↑

Short Medium Long All

SeqRNN (h=128) 26.52±1.07 24.86±0.82 27.31±0.41 26.23±0.87
SeqRNN (h=256) 27.61±1.85 27.16±0.63 28.71±0.14 28.24±0.46
SeqLSTM (h=128) 23.48±1.07 26.32±0.05 26.78±1.12 24.70±0.64
SeqLSTM (h=256) 25.00±0.00 26.89±0.35 28.55±0.13 26.93±0.93
StructMLP 25.72±0.51 25.03±1.39 25.38±1.89 25.35±0.25
StructGNN 27.55±0.94 28.78±0.87 28.23±1.95 28.23±0.71
GraphTrans 26.15±0.93 23.78±1.11 23.80±1.69 24.73±0.93
PiFold 24.81±2.01 25.90±1.56 23.55±4.13 24.48±1.13
R3Design 39.66±2.30 47.04±0.39 47.42±0.93 44.27±0.62

Table 2. The Macro-F1 on the benchmark dataset. The score is multiplied by 100 for aesthetics.

Method Macro F1 (×100) ↑

Short Medium Long All

SeqRNN (h=128) 17.22±1.69 17.20±1.91 8.44±2.70 17.74±1.59
SeqRNN (h=256) 12.54±2.94 13.64±5.24 8.85±2.41 13.64±2.69
SeqLSTM (h=128) 9.89±0.57 10.44±1.42 10.71±2.53 10.28±0.61
SeqLSTM (h=256) 9.26±1.16 9.48±0.74 7.14±0.00 10.93±0.15
StructMLP 17.46±2.39 18.57±3.45 17.53±8.43 18.88±2.50
StructGNN 24.01±3.62 22.15±4.67 26.05±6.43 24.87±1.65
GraphTrans 16.34±2.67 16.39±4.74 18.67±7.16 17.18±3.81
PiFold 17.48±2.24 18.10±6.76 14.06±3.53 17.45±1.33
R3Design 41.48±0.32 45.16±2.28 42.80±3.65 44.44±0.85

Table 3. The overall recovery and Macro-F1 scores on the Rfam and RNA-Puzzles datasets.

Method Recovery (%) ↑ Macro F1 (×100) ↑

Rfam RNA-Puzzles Rfam RNA-Puzzles

SeqRNN (h=128) 31.05±0.51 31.51±0.05 11.92±0.17 12.11±0.03
SeqRNN (h=256) 31.04±0.50 31.53±0.04 11.93±0.16 12.12±0.02
SeqLSTM (h=128) 30.28±0.20 31.35±0.26 12.36±0.15 12.40±0.15
SeqLSTM (h=256) 31.45±0.08 31.79±0.44 11.76±0.09 12.07±0.00
StructMLP 26.77±3.38 27.06±3.81 16.22±2.43 16.72±2.53
StructGNN 20.81±1.42 20.68±0.70 14.54±1.11 12.70±2.60
GraphTrans 27.50±4.15 25.69±4.34 20.66±2.51 20.17±0.14
PiFold 22.55±4.13 23.78±6.52 16.08±2.34 16.20±3.49
MCTS-RNA 31.74±0.07 32.06±1.87 23.82±4.60 24.12±3.47
LEARNA 31.92±2.37 30.94±4.15 24.02±3.73 22.75±1.17
aRNAque 30.01±3.26 31.07±2.32 22.84±1.70 23.30±1.65
eM2dRNAs 33.34±1.02 37.10±3.24 24.80±3.88 26.91±2.32
R3Design 43.27±0.56 45.41±1.95 41.37±1.27 44.74±0.71

ViennaRNA [42], to predict their secondary structures. RNAfold
is renowned for its accuracy and efficiency in determining RNA
secondary structures from sequence data, using thermodynam-
ically optimized algorithms to predict the most stable structural
configuration under given conditions. By inputting the designed
sequences, we can obtain a predicted secondary structure in
the dot-bracket notation for each sequence, which we then
compare against the ground truth. We use accuracy to measure
the percentage of nucleotides in the designed RNA sequence that

correctly matches the secondary structure predicted by RNAfold.
A higher percentage indicates a more accurate prediction of the
RNA’s secondary structure. It is important to note that RNAfold
may not always successfully predict a secondary structure for
certain sequences. Therefore, we also calculated the ’recovered
sequence rate’, which reflects the percentage of designed
sequences that RNAfold could successfully fold into secondary
structures. A rate of 100% indicates that all input sequences were
successfully predicted.
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Figure 2. Performance comparison of R3Design and other baseline models on folding secondary structure. The accuracy is the predicted secondary
structure based on the designed sequences, and the recovered sequence rate is the foldable sequence rate. (A) The metrics on the Rfam dataset. (B) The
metrics on the RNA-Puzzles dataset.

We summarize the performance in designing RNA sequences
that correctly fold into their predicted secondary structures in
Fig. 2. On the Rfam dataset, R3Design stands out with an accuracy
of 77.46%, which is significantly higher than the other methods,
all while maintaining a 100% recovered sequence rate. Methods
like MCTS, LEARNA, and EM2DRNA show perfect accuracy but
their usability is limited by lower recovered sequence rates, sug-
gesting that while they are highly precise, they are not as versatile
or generalizable. Similar to the Rfam dataset, R3Design again
provides a superior balance of high accuracy (74.04%) combined
with a 100% recovered sequence rate on the RNA-Puzzles dataset,
affirming its effectiveness and reliability in RNA sequence design
across diverse datasets.

The designed sequence can fold into desirable
tertiary structure
We evaluate the capability of R3Design to design RNA sequences
that accurately fold into their desired tertiary conformations,
using several advanced RNA tertiary structure prediction models
for validation. To assess the tertiary folding of RNA sequences
designed by R3Design, we employed three prominent RNA ter-
tiary structure prediction models: DRfold [25], trRosettaRNA [24],
AlphaFold3 [43], and RoseTTAFoldNA [35]. For each model, we
first predicted the structures of native sequences as a baseline
and then applied the models to sequences designed by R3Design.
The Root Mean Square Deviation (RMSD) from the ground-truth
structures served as the primary metric for evaluating the folded
RNA tertiary structures.

We selected a set of RNA molecules that were unseen dur-
ing the training of R3Design and are representative of diverse
RNA structural types and complexities. Each molecule’s native
sequence, along with the sequence redesigned by R3Design, was
analyzed to compare their ability to fold into tertiary structures
as predicted by the aforementioned models (Fig. 3).

Low RMSD cases (3AKZ-E and 3WQY-C)
For the RNA molecules 3AKZ-E and 3WQY-C, despite the

designed sequences being markedly different from their native
counterparts, the tertiary structures predicted by DRfold and
trRosettaRNA closely resembled the native structures, as
indicated by their low RMSD values. This suggests that R3Design

can effectively design functionally equivalent RNA structures,
even with significant sequence changes, maintaining structural
integrity as evaluated by these models.

Moderate RMSD cases (5X6B-P and 6O3M-QV)
In cases such as 5X6B-P and 6O3M-QV, although the tertiary

structures predicted from the R3Design sequences appeared visu-
ally similar to the ground-truth structures, they exhibited rela-
tively higher RMSD values. Notably, DRfold consistently outper-
formed other models, indicating the combination of DRfold and
R3Design is promising in in-silico tertiary structure-based RNA
sequence design.

High RMSD cases (1GAX-C and 7KGA-A)
For molecules like 1GAX-C and 7KGA-A, the predicted struc-

tures displayed higher RMSD values yet maintained a similarity
to the native structures in terms of overall spatial conformation.
These instances underscore the challenges in RNA design, partic-
ularly in cases where maintaining exact native-like structures is
crucial. Despite these challenges, the results affirm that R3Design
possesses the capability to design RNA sequences that generally
fold into their desired tertiary structures with high structural
fidelity.

An RNA tertiary structure-based design software
for in-silico designing and screening
The R3Design software represents a computational platform
specifically tailored for the in-silico design and analysis of RNA
sequences. By leveraging the inherent tertiary structure data
provided by input PDB files, this software enables the RNA
sequence design to meet desired structures. This innovative
tool integrates sequence redesign, and comprehensive structural
evaluations, making it a useful resource for researchers in the
field of synthetic biology and therapeutic development.

As illustrated in Fig.4, the R3Design web software orchestrates
the in-silico RNA design process through a streamlined, three-
component pipeline: RNA sequence design using R3Design, com-
prehensive evaluations, and the delivery of final outputs. This
platform begins by ingesting an RNA’s tertiary structure through a
PDB file, setting the stage for RNA sequence design. We first utilize
the R3Design model to design RNA sequences based on input
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Figure 3. Comparative analysis of tertiary structure predictions for RNA sequences designed by R3Design. For each RNA molecule, we display both the
native sequence and the sequence designed by R3Design. Tertiary structures predicted from these sequences using DRfold, trRosettaRNA, AlphaFold3,
and RoseTTAFoldNA are shown. RMSD values are calculated to assess the accuracy of the predicted structures relative to the actual native tertiary
structures. We highlight the different bases in the designed sequences in red.

tertiary structures. Following the sequence design, the sequences
undergo meticulous evaluations across three structural dimen-
sions—sequence, secondary, and tertiary levels:

• Sequence-level evaluation: this initial assessment focuses on
sequence integrity, employing metrics like the recovery rate
and Macro F1-score to quantify the similarity between the
designed and native sequences.

• Secondary structure-level evaluation: the accuracy of the
predicted secondary structures is then verified, which is

essential for understanding the RNA’s structural feasibility
and the likelihood of it achieving the correct fold.

• Tertiary structure-level evaluation: we compare the pre-
dicted structures, obtained using advanced models like
RoseTTAFoldNA, with the original tertiary structures from
the PDB input. This comparison is crucial as it highlights the
structural fidelity and functional viability of the designed
RNA sequences, offering insights into the effectiveness of the
R3Design modifications.
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Figure 4. The detailed modular architecture of the R3Design software. The pipeline comprises three main components: (i) RNA sequence redesign using
R3Design, based on the input tertiary structure, (ii) comprehensive evaluations at the sequence level, secondary structure level, and tertiary structure
level, and (iii) the final output, which includes the optimized RNA sequences along with their corresponding evaluation metrics.

The software outputs the designed RNA sequences that are
capable of folding into the desired tertiary structures. Accom-
panying the designed sequences are detailed evaluation metrics
that provide insights into the structural accuracy at multiple
levels (tertiary, secondary, and sequence). Each metric serves as
a critical component of the RNA sequence design process, eluci-
dating successes and pinpointing areas that may require further
optimization.

This R3Design software marks a significant advancement in
tertiary structure-based RNA sequence design, offering a powerful
platform for the in-silico design and evaluation of RNA molecules.
By systematically redesigning RNA sequences based on the given
tertiary structures and providing exhaustive multi-level struc-
tural evaluations, this software aids researchers in synthesizing
RNA molecules with enhanced properties and confirmed struc-
tural integrity. Its comprehensive output, including optimized
sequences and detailed metrics, ensures that researchers are
well-equipped to pursue further experimental validations and
applications in synthetic biology.

Discussion
We developed R3Design, a tertiary structure-based RNA sequence
design model, diverging from the traditional secondary structure-
based models commonly used in RNA design. We evaluate
R3Design across three critical aspects to ensure its effectiveness
and superiority over existing methods: sequence-level fidelity,
secondary structure folding, and tertiary structure folding. At
the sequence-level and secondary structure-level evaluations,
R3Design significantly outperforms protein design baselines
and secondary structure-based RNA design models. Namely, it
effectively extracts RNA structural features through an RNA-
specific modeling approach and introduces secondary structure
constraints to help refine the designed sequence. R3Design also
shows more stable performance than secondary structure-based
RNA design models since most models are unable to output a
conserved sequence for a large portion of RNA structure inputs in
our dataset, as shown in Fig. 2. At the tertiary structure level,
R3Design proves its capability to design RNA sequences that
accurately fold into the desired tertiary structures, as validated
by three advanced structure prediction models. Despite the

designed sequences differing significantly from their native
sequences, the resulting structures exhibit high similarity to
the target structures. The comprehensive evaluations across
multiple datasets underscore the robustness and generalizability
of R3Design, establishing it as a powerful tool for RNA sequence
design. The standalone R3Design software not only extends its
utility but also stands out as the first comprehensive tool to
tackle the entire RNA inverse folding problem. The software
pipeline begins by accepting an RNA tertiary structure as
input. It then proceeds with sequence design via the R3Design
model and concludes by predicting the tertiary structure of the
designed sequence, employing RosettaFoldNA [35] for the final
output. Furthermore, the software allows for rigorous testing and
evaluation of the functionalities and outcomes of each module
within the model. It can generate secondary structures from
the input tertiary structure in dot-bracket notation, assess the
accuracy of the designed sequences, and compare the structural
similarity between the input and the output predicted RNA
tertiary structures. As a multifunctional tool, R3Design addresses
each phase of the RNA inverse folding process. It not only
promotes the development of similar in-silico models but also
provides critical insights for experimental validation.

One limitation of R3Design is that it was trained using RNA
sequences shorter than 500 nucleotides to enhance computa-
tional efficiency. However, as detailed in Supplementary Sec-
tion A, a substantial 95.79% of sequences within the represen-
tative RNA chains are below this 500-nucleotide threshold, with
longer sequences sporadically ranging between 500 and 4000
nucleotides. This distribution ensures that R3Design is applicable
to the vast majority of RNA structures encountered in current
databases, though its utility for exceptionally long RNA molecules
remains constrained.

Another significant limitation is R3Design’s current inability
to account for interactions between RNA and other molecules,
such as proteins or small molecular ligands. This considera-
tion is critical for the design of RNA molecules that function
within complex biological systems, such as riboswitches or RNA
aptamers that specifically bind to target molecules. Future iter-
ations of R3Design could integrate these molecular interactions,
employing more complex modeling frameworks that simulate the
intermolecular forces and binding dynamics involved in these
systems.
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Methods
Preliminaries
For an RNA molecule, its primary structure consists of a sequence
of nucleotide bases, which can be succinctly described by the
following:

Nucleotides := {A (Adenine), U (Uracil), C (Cytosine), G (Guanine)},
SN = {si ∈ Nucleotides | i ∈ [1, N] ∩ Z}, (1)

where N represents the total number of nucleotides in the RNA
sequence. The formation of the tertiary structure involves the
three-dimensional folding of this sequence, which involves spe-
cific atomic positions and can be denoted as

Atoms := {P, O5′, C5′, C4′, C3′, O3′},
XN = {xω

i ∈ R
3

∣∣ i ∈ [1, N] ∩ Z, ω ∈ Atoms},
(2)

where Atoms specifies the six atoms that typically comprise the
backbone of the RNA structure, necessary for the integrity of its
three-dimensional form.

Additionally, the secondary structures are incorporated using
the dot-bracket notation, which efficiently marks paired and
unpaired nucleotides:

AN = {ai ∈ { . , ( , )} ∣∣ i ∈ [1, N] ∩ Z}, (3)

where ai is ’.’ if the nucleotide at position i is unpaired, and ’(’ or ’)’
if it is part of a base pair. This notation is particularly useful in
identifying and categorizing structural motifs that are crucial for
the RNA’s function.

The core challenge of tertiary structure-based RNA sequence
design is to formulate the mapping from the tertiary structure
back to a corresponding primary structure, ideally preserving
functionally important elements:

F� : XN �→ SN, (4)

whereF� represents a learnable mapping function parameterized
by �. This function essentially aims to predict the primary RNA
sequence (SN) that is capable of folding into a given tertiary
structure (XN).

Graph-based RNA tertiary structure modeling
In this study, we develop a local coordinate system for each
nucleotide in the RNA’s tertiary structure to facilitate precise
structural modeling. The local coordinate system, denoted as Q i

for the ith nucleotide, is constructed as follows:

Q i = [bi, ni, bi × ni], (5)

where bi is the negative bisector of angles between the rays of
contiguous coordinates (xi−1,P, xi,P) and (xi+1,P, xi,P), and ni is a unit
vector normal to that plane. Formally, bi and ni are

ui = xi − xi−1

‖xi − xi−1‖ , bi = ui − ui+1

‖ui − ui+1‖ , ni = ui × ui+1

‖ui × ui+1‖ . (6)

Constructing the local coordinate system involves calculating
the bond vectors between successive P atoms and using these to
determine the bisector bi and normal ni. This local coordinate
system is crucial as it provides a stable frame of reference for

each nucleotide, invariant to the overall rotations and translations
of the RNA molecule, thereby allowing for consistent intra- and
inter-nucleotide measurements.

Unlike proteins where the backbone geometry can often be
sufficiently modeled using only the Cα atoms, RNA molecules
exhibit a diversity of backbone conformations and base-pairing
interactions that are more complex. To effectively capture this
complexity, we propose modeling the RNA tertiary structure as
an attributed graph G = (V, E), where V and E represent the node
and edge attributes, respectively:

V ∈ R
N×fn , E ∈ R

N×K×fm , (7)

with each node i connected to K nearest neighbors in three-
dimensional space, forming a set denoted by N (i, K). Here, fn and
fm represent the dimensionalities of the node and edge attribute
vectors, respectively. By default, we select K = 30 to balance
computational efficiency with structural detail capture.

We outline the attributes used in our modeling approach
along with their corresponding illustrations in Table 4, which
includes two levels of attributes: (i) intra-nucleotide level
attributes describing the local geometry of each nucleotide as
the node attribute V, and (ii) inter-nucleotide level attributes
describing the relative geometry between nucleotides as the edge
attribute E.

Intra-nucleotide level
(1) The dihedral angles, shown as red arrows in Fig. 5B, are

calculated. We represent the dihedral angles of the RNA backbone
using sin and cos functions. (2) The spatial distances between
the other intra-nucleotide atoms and the atom Pi are encoded into
radial basis functions (RBFs). (3) The directions of the other intra-
nucleotide atoms relative to the atom Pi are calculated with
respect to the local coordinate system Q i.

Inter-nucleotide level
(1) An orientation encoding q(·) is calculated from the quater-

nion representation of the spatial rotation matrix QT
i Q j. (2) The

spatial distances between inter-nucleotide atoms from neighboring
nucleotides and the atom Pi are encoded into RBFs. (3) The direc-
tions of the other inter-nucleotide atoms relative to the atom Pi

are calculated.

The R3Design framework
With the graph-based RNA tertiary structure modeling in place,
we introduce the R3Design framework as shown in Fig. 5, which is
structured around two principal components: a backbone encoder
and a sequence decoder.

The backbone encoder is designed to transform the complex
RNA tertiary structure into a comprehensive latent representa-
tion. It utilizes three layers of PiGNN, an adaptation from the
PiFold protein design model [44]. This encoder processes the
graph representation of the RNA tertiary structure meticulously,
capturing not just the structural intricacies but also the crucial
spatial relationships between nucleotides. Through its multilay-
ered architecture, the backbone encoder effectively distills the
essential features from the tertiary structure into a condensed
form, setting the stage for accurate sequence prediction.

The sequence decoder is tasked with designing the correspond-
ing RNA sequence from the latent representation provided by
the encoder. The sequence decoder employs a linear layer opti-
mized for this purpose, ensuring that the transition from struc-
tural data to nucleotide sequence is both smooth and accurate.
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Table 4. The feature construction of RNA tertiary structure modeling.

Level Feature Illustration

Intra Dihedral Angle
{

sin, cos
} × {

αi, βi, γi, δi, εi, ζi
}

Distance
{
RBF(‖ωi − Pi‖)

∣∣∣ ω ∈ {O5′, C5′, C4′, C3′, O3′}
}

Direction
{
QT

i
ωi−Pi‖ωi−Pi‖

∣∣∣ ω ∈ {O5′, C5′, C4′, C3′, O3′}
}

Inter Orientation q(QT
i Q j)

Distance
{
RBF(‖ωj − Pi‖)

∣∣∣ j ∈ N (i, K), ω ∈ {O5′, C5′, C4′, C3′, O3′}
}

Direction
{
QT

i
ωj−Pi

‖ωj−Pi‖
∣∣∣ j ∈ N (i, K), ω ∈ {O5′, C5′, C4′, C3′, O3′}

}

Figure 5. Overall framework of R3Design. (A) The overview of the R3Design pipeline. (B) The graph-based RNA tertiary structure modeling. (C) The
secondary structure auxiliary task. (D) The model architecture of the backbone encoder and the sequence decoder. (E) The iterative sequence refinement
process.
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This layer is intricately conditioned on the latent representation of
the RNA tertiary structure, ensuring that structural information
captured by the backbone encoder is effectively translated into
the designed RNA sequence.

With the graph-based RNA tertiary structure modeling in place,
we introduce the R3Design framework, which comprises two pri-
mary components: a backbone encoder and a sequence decoder.
The backbone encoder is responsible for encoding the RNA ter-
tiary structure into a latent representation, while the sequence
decoder generates the corresponding RNA sequence from this rep-
resentation. The backbone encoder is implemented using three
layers of PiGNN [44], which is adapted from the protein design
model PiFold. It processes the graph representation of the RNA
tertiary structure, capturing the structural intricacies and spatial
relationships between nucleotides. The sequence decoder, on the
other hand, is a linear layer that predicts the RNA sequence based
on the learned representation. It is conditioned on the latent
representation of the RNA tertiary structure.

Secondary structure constraint
To ensure that the learned representations robustly encap-

sulate the functional intricacies of RNA sequences, particularly
with respect to their secondary structures, we have incorporated
a secondary structure constraint into our model. This constraint
is operationalized through an auxiliary task that focuses on pre-
dicting the RNA’s secondary structure in the dot-bracket notation,
which serves as a critical intermediary step in understanding RNA
folding patterns. As shown in Fig. 5C, The auxiliary prediction
task involves the use of the dot-bracket notation, a conventional
method for denoting the secondary structure of RNA molecules.
In this format, unpaired nucleotides are represented by dots (’.’),
and paired nucleotides are bracketed together with matching
parentheses (’(’ and ’)’), indicating base pairs in the RNA structure.
This task is integrated into the main learning process to ensure
that the secondary structural features are effectively captured
in the RNA representation model. We implement a Transformer
layer [45] to predict the secondary structure by giving the latent
representation of the RNA tertiary structure. This Transformer
layer is trained to predict the secondary structure of the RNA
molecule, ensuring that the model captures the essential struc-
tural features of the RNA sequence. The secondary structure
constraint is employed by the cross-entropy loss between the
predicted secondary structure and the ground-truth secondary
structure:

Lsec = −
N∑

i=1

∑
j∈{.,(,)}

a∗
i,j log ai,j, (8)

where a∗
i,j and ai,j are the ground-truth and predicted probabilities

of the jth secondary structure type at the ith position, respectively.
Iterative sequence refinement
We initialize the model with a uniform probability distribution

across the four nucleotide types (Adenine, Uracil, Cytosine, Gua-
nine) for each position in the nucleotide sequence. Formally, this
initialization can be described as follows:

P0 = {pi,j = 0.25 | i ∈ [1, N] ∩ Z, j ∈ {A, U, C, G}} (9)

where P0 represents the initial probability distribution, N is the
length of the RNA sequence, and pi,j is the probability of the jth
nucleotide type at the ith position, with each type having an equal
probability of 0.25 initially.

The input to the model consists of this distribution of
nucleotides, P0, combined with the graph-based representation
of the RNA’s tertiary structure, G. The model is trained to
adjust its parameters to predict the probability distribution of
the nucleotide sequence that aligns with the actual biological
sequence observed. The predicted distribution of the k-iteration,
Pk, is refined through iterative training to closely approximate
the ground-truth distribution, P∗. The training objective is
to minimize the cross-entropy loss between the predicted
probability distributions and the ground-truth distribution across
all K iterations:

Lsup = −
K∑

k=1

N∑
i=1

∑
j∈{A,U,C,G}

p∗
i,j log pk

i,j, (10)

where p∗
i,j and pk

i,j are the ground-truth and predicted probabilities
of the jth nucleotide type at the ith position at the k-iteration,
respectively. We set the number of iterations K = 3 in default.

The overall training objective is the linear combination of the
secondary structure constraint loss and the iterative sequence
loss:

L = Lsup + Lsec. (11)

The architecture of the R3Design model is depicted in Fig. 5D,
which illustrates the integration of the backbone encoder,
sequence decoder, and iterative refinement.

Key Points

The main messages we would like to express in the paper are
listed as follows:

• This work introduces R3Design, a method designed to
design RNA sequences based on their tertiary structures,
trained on over two thousand RNA structures from the
Protein Data Bank (PDB).

• The method uses base pair prediction to improve accu-
racy by connecting RNA secondary and tertiary struc-
tures.

• R3Design uses an iterative refinement process, which
adjusts its predictions over multiple cycles to better
match the complex structure of RNA.

• This method is integrated into standalone software with
another structure prediction approach, providing a com-
prehensive toolkit for designing, folding, and evaluating
RNA at the tertiary level.
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