
A B C

Supplementary Figure 1: Pairs of proteins that physically interact have higher topological 
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overlap in gene coexpression networks than randomly selected pairs
Comparison of mean topological overlap (TO) for interacting protein pairs versus mean TO for randomly selected pairs in (a) CTX, (b) 
CN, and (c) CB.  A set of experimentally validated interacting human protein pairs was obtained from ref. 26.  Mean TO was calculated 
in each brain region for all expressed, interacting protein pairs (CTX = 5,980 pairs; CN = 4,901 pairs; CB = 5,347 pairs).  For genes 
represented by multiple probe sets, the average was taken.  The mean TO for interacting protein pairs was then compared to the mean 
TO for randomly selected pairs of probe sets in each network (n = 50,000).  Data were highly skewed and log-transformed.  
Significance was assessed using the Kruskal-Wallis test.



Supplementary Figure 2: Module summaries
Summaries for all modules from CTX (a–s), CTX_95 (t–aj), CN (ak–bg), and CB (bh–cc).  Top left: heat map of gene expression 
levels for all genes assigned to the module in Fig. 1 (red = increased expression; black = neutral expression; green = decreased
expression).  Genes were ranked from top to bottom by the absolute value of module membership (MM).  Bottom left: barplot of the
module eigengene (ME; i.e. the first principal component following singular value decomposition).  The ordering of samples in heat 
maps and ME barplots is identical for all modules in each network.  Sample labels appear on the x-axis of the ME barplot (H1 = Human 
1, etc.; BA = Brodmann area).  Note that many samples from CTX, CN, and CB were taken from the same individuals (as denoted by 
sample labels).  Right: log2-transformed expression levels for the top 10 genes selected by |MM| (note: kme = MM).  Some genes are 
represented by multiple probe sets.
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Supplementary Figure 3: Module membership is correlated in multiple human brain datasets 
(additional conserved modules)
Comparison of module membership between networks for M4 (a), M18 (b), and M19 (c).  Data are presented as described in Fig. 3 of 
the journal article.  Note that for smaller modules (e.g. M4), most genes were not significantly correlated with the module eigengene. 
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Supplementary Figure 4: Module visualizations
150 pairs of genes with the highest topological overlap in each module are depicted for CTX (a–s), CN (t–ap), and CB (aq–bl) 
(Supplementary Methods).  Genes with expression levels that were negatively correlated are connected by black lines.  Where gene
symbols are unknown, Affymetrix probe set IDs are shown (e.g. 214903_at).  Numbers appended to gene symbols denote the rank 
|module membership| (RMM) for the corresponding probe set (some genes are represented by multiple probe sets).  For example, 
KIAA0103 exhibited the strongest membership of any gene for M10A (j).  Genes with >= 20 depicted connections appear as large 
nodes, followed by genes with 10–19 connections that appear as medium nodes, followed by genes with < 10 connections that appear as 
small nodes.
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Supplementary Figure 5: In situ hybridization confirms cellular/regional specificity of gene 
coexpression modules
Mouse in situ hybridization (ISH) data for genes from M6D (a–j) and M13C (k–t).  ISH data were downloaded from the Allen Brain 
Atlas31 (ABA) for available genes with the strongest membership for each module.  Juxtaposed for each gene are the ISH image and
corresponding expression level analysis (as calculated by the ABA).  For genes in M6D, expression was strongest and most consistent 
in Purkinje neurons.  For genes in M13C, the highest and most consistent expression levels in caudate nucleus were found in or near the 
subventricular zone.
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Supplementary Figure 6: Module eigengene networks and comparisons between brain regions
Pearson correlation coefficients and corresponding p-values for all module eigengene (ME) comparisons in CTX (a), CTX_95 (b), CN 
(c), and CB (d).  Red and green denote positive and negative correlations, respectively.  MEs in each network were ordered to facilitate 
visual interpretation of the networks (Supplementary Methods).  ME network comparisons between CTX and CN (e), CTX and CB (f), 
and CN and CB (g) were restricted to conserved modules and performed as described in Supplementary Methods. 
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Supplementary Figure 7: Relationships between modules in cortical networks are highly 
reproducible
Heat maps depicting Pearson correlation matrices (PCMs) of module eigengenes (MEs) for modules found in both CTX (a) and 
CTX_95 (b).  Red and green denote positive and negative correlations, respectively.  MEs in each network were ordered to facilitate 
visual interpretation of the networks (Supplementary Methods).  (c) Correlation preservation for each pair of MEs (1 = perfect 
preservation; Supplementary Methods).  (d) Average linkage hierarchical clustering of MEs based on the average of the PCMs depicted 
in (a) and (b).  Three main clusters were evident in the consensus dendrogram, corresponding to modules that were primarily glial, 
synaptic/membranal, or neuronal in nature.
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Supplementary Methods 

Michael C. Oldham, Steve Horvath, Genevieve Konopka, Kazuya Iwamoto, Peter Langfelder, 

Tadafumi Kato, and Daniel H. Geschwind 

"Functional Organization of the Transcriptome in Human Brain" 

 
Term Definition 

Coexpression network 
 

A coexpression network is defined as an undirected, weighted 
network in which nodes correspond to genes and edges are based 
upon the pairwise Pearson correlations between measured expression 
levels.  Pearson correlations are weighted by raising their absolute 
value to a power (a process known as "soft thresholding"), thereby 
emphasizing strong correlations at the expense of weak correlations. 

Topological overlap 
 

Topological overlap (TO) is a quantity that describes the similarity 
of a pair of genes by comparing their weighted correlations with all 
other genes in the coexpression network.  TO is converted to a 
measure of dissimilarity (1-TO) in order to identify modules of 
coexpressed genes via unsupervised hierarchical clustering. 

Module 
 

A module is a group of genes with high TO.  Genes within a module 
have expression levels that are much more highly correlated (or anti-
correlated) with each other than they are with genes outside the 
module. 

Module eigengene 
 

A module eigengene (ME) is defined as the first principal 
component of a given module.  The ME summarizes the 
characteristic expression pattern of a module. 

Module eigengene network 
 

A module eigengene network (ME network) is defined as the 
Pearson correlation matrix for all of the MEs in a coexpression 
network.  The ME network describes the higher-order structure of 
gene coexpression networks by quantifying relationships between 
modules. 

Module membership 
 

Module membership (MM) is defined as the Pearson correlation 
between the expression level of a given gene and a given ME.  This 
quantity describes the extent to which a gene "belongs" to a module.  
When referencing individual genes in the text, a gene's rank |MM| 
(RMM) is reported. 

Differential network analysis 
 

Differential network analysis refers to the comparison of two or 
more gene coexpression networks.  With this approach, genes are 
compared between groups not on the basis of mean expression 
levels, but rather on the strength of membership for identified 
modules. 

     Table 1: Glossary of WGCNA terminology. 
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Microarray data processing 

Microarray data generated from control samples of human cerebral cortex, caudate nucleus, and 

cerebellum were gathered from nine published studies1-9.  Four datasets were assembled.  Gene 

coexpression analyses are particularly sensitive to the presence of outlier samples and systematic 

biases in microarray data.  Therefore, rigorous quality control procedures were implemented to 

ensure the highest possible level of quality for each dataset.  First, non-specific and mis-targeted 

microarray probes were masked prior to generating expression values10.  Second, outlier samples 

were identified and removed from each dataset.  Third, data were normalized to eliminate 

systematic biases introduced by combining data from different studies ("batch effects")11. 

Prior to removal of outlier and duplicate samples, dataset 1 ("CTX") consisted of 104 

samples from various cortical areas3,4,8, dataset 2 ("CTX_95") consisted of 82 samples from 

various cortical areas1,2,5-7,9, dataset 3 ("CN") consisted of 32 samples from the head of the 

caudate nucleus3, and dataset 4 ("CB") consisted of 27 samples from cerebellar hemisphere3.  To 

eliminate non-specific and mis-targeted probes prior to generating expression values, mask files 

were obtained for both microarrays (http://masker.nci.nih.gov/ev/)10 and applied to the raw data 

using GCOSv1.2 or the R package "ProbeFilter" 

(http://arrayanalysis.mbni.med.umich.edu/MBNIUM.html#ProbeFilter)12.  After applying the 

mask files, only probe sets with at least seven (HG-U133A) or ten (HG-U95A/v2) remaining 

probes were retained for further analysis (n = 18,631 and n = 10,553, respectively). 

 Expression values for CTX, CN, and CB were generated using GCOSv1.2.  All arrays 

were scaled to the same average intensity (200).  For CTX_95, expression values were generated 

in R using the "expresso" function of the "affy" package (http://www.bioconductor.org/)13 with 

"mas" settings and no normalization, followed by scaling of arrays to the same average intensity 
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(200).  Scaled expression values were imported into R for outlier detection and removal prior to 

normalization.  A detailed supplement containing all of the relevant R code and corresponding 

figure images that were used to guide our decisions to remove outlier samples in each of the four 

datasets analyzed in this study is available on our web page 

(http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/HumanBrainTranscriptome/).  

For each dataset, samples were correlated with one another using expression levels for all probe 

sets.  These inter-array correlations (IACs) were averaged for each array and compared to the 

resulting distribution of IACs for the dataset.  In general, samples with an average IAC < 2.0 

standard deviations below the mean IAC for the dataset were removed.  Samples were also 

hierarchically clustered using average linkage and 1-IAC as a distance metric to identify outliers.  

This process was repeated for each dataset until no outliers were evident.  This approach 

constitutes an unbiased method for the identification and removal of samples with aberrant gene 

expression levels.  In practice, such samples often possess long postmortem intervals or low pH 

values, which have been shown to alter the expression levels of certain classes of genes14.  

However, these variables are not perfect predictors of sample quality15, and in many cases the 

underlying causes of aberrant gene expression levels are unknown.  The number of samples 

identified as outliers in each dataset was as follows: 14 (CTX), 36 (CTX_95), 5 (CN), and 3 

(CB).  Following outlier removal, technical replicates were averaged (CTX_95).  For CTX, 

additional samples were removed to account for the fact that many samples from refs. 4,8 were 

taken from the same individuals.  23 pairs of such samples were identified; for each pair, the 

sample with the lower average IAC was removed from the dataset.  These samples were removed 

from CTX to ensure a 1:1 ratio of samples to unique individuals for this dataset, which was also 

the case for CN and CB.  However, an interesting biological question concerns the extent to 
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which gene coexpression patterns are preserved across cortical areas within the same individual.  

It would have been difficult to interpret the extent of such preservation in CTX had these 

samples been retained, since a) each unique individual would have been represented by no more 

than two cortical areas, and b) the effect of regional variability would have been confounded by 

potential batch effects.  However, the composition of the dataset from ref. 6 presented a tractable 

opportunity to explore this question in CTX_95, as each individual from this study was 

represented by six cortical areas. 

 Following outlier removal, quantile normalization16 was performed for each dataset in R.  

Average linkage hierarchical clustering using 1-IAC as a distance metric revealed that most 

samples clustered by study (data not shown), indicating the presence of significant batch effects 

in the data.  To eliminate batch effects, additional normalization was performed using the R 

package "ComBat" (http://statistics.byu.edu/johnson/ComBat/)11 with default parameters.  

Within each dataset, each study was assigned a single batch number with the exception of ref. 3, 

which was assigned two batch numbers (samples from this study exhibited a batch effect that 

reflected country of origin [U.S. vs. New Zealand; data not shown]).  ComBat successfully 

eliminated batch effects in each dataset as evidenced by hierarchical clustering and significant 

improvement of mean IAC (data not shown).  Negative expression values introduced by ComBat 

(~0.01% of all expression values) were replaced with the median for the corresponding probe set. 

 Following microarray data processing, CTX consisted of 67 samples from 67 individuals 

representing four cortical areas (mean inter-array correlation [IAC] = 0.970), CTX_95 consisted 

of 42 samples from 32 individuals representing six cortical areas (mean IAC = 0.975), CN 

consisted of 27 samples from 27 individuals (mean IAC = 0.972), and CB consisted of 24 

samples from 24 individuals (mean IAC = 0.975).  Combined, these datasets comprised 160 
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samples from 106 individuals (CTX, CN, and CB samples from ref. 3 often represented the same 

individual).  Additional sample information can be found in Supplementary Table 1.   

 

Choice of genes for network analysis 

For each dataset, WGCNA was performed on all expressed genes.  (Note: although some genes 

are represented by multiple probe sets and other probe sets are not fully annotated, for 

consistency we refer to probe sets as "genes" throughout the journal article, unless otherwise 

noted.)  A gene was considered expressed if it was called "present" or "marginal" in at least half 

of all samples in a given dataset.  In CTX, a gene was also considered expressed if it was called 

present or marginal in at least three quarters of all samples from one cortical area.  Finally, genes 

that were consistently called present or marginal in either males or females were also included in 

the analysis.  Present/marginal/absent calls were determined using GCOSv1.2 (CTX, CN, and 

CB) or the "mas5calls" function (Bioconductor "affy" package) in R (CTX_95).  The total 

number of expressed probe sets in each dataset was as follows: 10,865 (CTX), 5,392 (CTX_95), 

9,363 (CN), and 9,714 (CB).  These "brain-expressed" probe sets are indicated in the "BE" 

column of Supplementary Tables 3-6 (1 = expressed, 0 = not expressed). 

 

Weighted gene coexpression network construction and module detection 

Several alternative network approaches have been proposed for analyzing microarray data17-23.  

For example, graphical Gaussian models have been proposed for inferring gene association 

networks24-27.  A comparison of these alternative methods is beyond the scope of this article, but 

will be important for future development of network approaches. 
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The use of weighted networks constitutes an improvement over unweighted networks 

produced by dichotomizing the Pearson correlation matrix, since a) the continuous nature of gene 

coexpression information is preserved, and b) the results of weighted network analyses are 

highly robust with respect to the choice of the parameter β (where connection strength = 

|correlation|β), whereas unweighted networks display sensitivity to the choice of cutoff28.  Gene 

coexpression networks, like many other types of biological networks, have been found to exhibit 

an approximate scale-free topology28-30.  Zhang and Horvath28 proposed a scale-free topology 

criterion for choosing β.  Here, a power of β = 4 was chosen for both CTX and CTX_95, while 

slightly higher powers were chosen for CN (β = 6) and CB (β = 5) due to the smaller sizes of 

these datasets. 

Unlike correlation, which considers each pair of genes in isolation, topological overlap 

(TO) considers each pair of genes in relation to all other genes in the network.  TO thus serves as 

a filter to exclude spurious or isolated connections during network construction (see Figures S1 

and S2 from ref. 31).  Due to the large number of genes analyzed, we performed an additional 

step to enrich each network with genes with high TO.  A dynamic tree-cutting algorithm32 was 

used to "cut" each dendrogram and define an initial set of modules for each network (the 

minimum module size was arbitrarily set to ten probe sets).  This algorithm uses the structure of 

a dendrogram to iteratively decompose and combine branches until the number of clusters 

stabilizes32.  The density of the resulting modules (defined as the average intramodular TO) was 

compared to the density of modules of equivalent size selected randomly from the network (n = 

5,000 permutations).  Density p-values were determined for each initial module by calculating 

the percentage of trials in which the density of the "random" modules exceeded the density of the 

initial module.  Modules for which this p-value exceeded 0.01, along with genes that were not 
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assigned to any initial modules, were removed from the network.  This filter reduced the number 

of probe sets in each network to 5,549 (CTX), 3,203 (CTX_95), 4,050 (CN), and 4,029 (CB).  

Using only these probe sets, a new TO matrix was calculated for each network and average 

linkage hierarchical clustering was performed to group genes based upon the TO dissimilarity 

measure.  The dynamic tree-cutting algorithm32 was again used to identify modules in each 

network.  To ensure the consistency of coexpression patterns within modules, the algorithm was 

tuned to first identify small modules, which were then progressively merged based on similarities 

in gene expression profiles.  To assess similarities in gene expression profiles, singular value 

decomposition (X = UDVT) was performed for all modules and the values of the module 

eigengenes, V1 (i.e. the first principal components), were correlated with one another.  In 

general, modules with highly correlated eigengenes (Pearson correlation >= 0.8) were merged.  

This process was performed iteratively until merging was no longer necessary.  Small modules 

that consisted primarily of probe sets for a single gene (e.g. protocadherin, hemoglobin) were 

removed.  Lastly, modules with a final density P > 0.1 (calculated as described above, but using 

random samples from the second [filtered] TO matrix instead of the first) were also removed.  

Genes belonging to each of the remaining modules were labeled by color (one color per module), 

while genes from modules that were removed and genes that were not assigned to modules were 

denoted with the color grey.  Following these steps, the number of modules identified in each 

network was as follows: 19 (CTX), 17 (CTX_95), 23 (CN), and 22 (CB).  Summaries of all 

modules are presented in Supplementary Figure 2. 
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Topological overlap of interacting protein pairs 

To assess whether proteins that physically interact have higher TO in gene coexpression 

networks than proteins that do not, we downloaded a database of experimentally validated 

interacting protein pairs from EBI (European Bioinformatics Institute)/IntAct 

(http://www.ebi.ac.uk/intact/site/index.jsf)33.  Analysis was restricted to interacting human 

protein pairs for which both gene symbols were known.  After excluding self-self and duplicate 

interacting pairs, a total of 17,540 interacting human protein pairs were obtained.  Using the TO 

matrices for all expressed genes in CTX, CN, and CB, we calculated the mean TO of all 

interacting protein pairs for which both members were present in the matrix (CTX = 5,980 pairs, 

CN = 4,901 pairs, and CB = 5,347 pairs).  For genes represented by multiple probe sets, the 

average was taken.  The mean TO for interacting protein pairs was then compared to the mean 

TO for randomly selected pairs of probe sets in each network (n = 50,000). 

 

Module comparisons between networks 

The overlap and corresponding significance for all pairwise comparisons of networks and 

modules can be found in Supplementary Table 2, and all of the information necessary for the 

calculation of the hypergeometric p-values can be found in Supplementary Tables 2-6.  The 

"Module" column of Supplementary Tables 3-6 denotes the module assignments of all probe sets 

used to construct the networks depicted in Figure 1; probe sets that were not used for network 

construction are denoted by NA ("not available").  For example, 5,549 probe sets were used to 

construct the CTX network (Supplementary Table 3) and 4,050 probe sets were used to construct 

the CN network (Supplementary Table 5).  Intersecting these lists identifies 2,542 probe sets 

common to CTX and CN network construction.  Comparing M4 (purple), we find 30 probe sets 
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assigned to this module in CTX (Supplementary Table 3), 22 of which were represented among 

the probe sets used for CN network construction (Supplementary Table 5); in CN, we find 62 

probe sets assigned to this module (Supplementary Table 5), 38 of which were represented 

among the probe sets used for CTX network construction (Supplementary Table 3).  In total, 19 

probe sets were shared in M4 between CTX and CN (Supplementary Table 2).  The statistical 

significance of the reported overlap for this example corresponds to a one-sided p-value of 

1.39e–34.  After correcting for multiple comparisons, the adjusted p-value is 3.19e–33 

(Supplementary Table 2). 

 

Defining a measure of module membership (kME) 

In our study, we defined the module membership for each gene with respect to each module as 

the Pearson correlation between the expression level of the gene and the ME34.  This quantity, 

which we refer to here as kME, is a natural summary of the extent to which a gene conforms to the 

characteristic expression pattern of a module.  However, we note that other summary measures 

are possible.  One advantage of using the ME is that it satisfies an optimality criterion: by 

definition, it provides the best summary of variation in gene expression within a module.  The 

ME also has an intuitive interpretation when it is juxtaposed with the more familiar "heat map" 

depicting the expression levels of genes within a module (Supplementary Figure 2).  On the other 

hand, the ME is not a real gene; it is a centroid of a module.  Because modules have varying 

extents of heterogeneity in gene expression, not all modules are represented equally well by the 

ME.  Summaries of such modules may benefit from the use of additional components. 
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Module characterization 

Modules were characterized using several complementary approaches.  One primary approach 

involved cross-referencing gene sets describing pertinent cellular or functional phenotypes with 

module composition.  Lists of genes known to be preferentially expressed in mouse 

oligodendrocytes, astrocytes, and neurons were obtained from Tables S4-S6 of ref. 35 and Table 

S1 of ref. 36.  For data from ref. 35, analysis was restricted to genes with at least threefold 

enrichment in a given cell type.  A third list of astrocyte markers was obtained from Table S7 of 

ref. 37, and a list of markers for Purkinje cells was obtained from Table 3 of ref. 38.  We also 

generated a list of genes with increased expression in differentiated rat oligodendrocytes relative 

to oligodendrocyte precursors by analyzing data from ref. 39.  Raw data (.CEL files) were 

obtained from Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5940) for nine samples (five 

precursor, four differentiated) analyzed on Affymetrix, Inc. RAE230A microarrays.  Data were 

imported into R and processed as described above but without probe masking or batch 

normalization.  To identify differentially expressed (DE) genes, a Bayesian t-test was applied 

using the R package "bayesreg"40 with the following parameters: betaFit = 1, bayes = TRUE, 

winSize = 101, conf = 10.  Genes with higher expression in differentiated oligodendrocytes 

relative to oligodendrocyte precursors and a posterior probability of differential expression 

(PPDE) > 0.999 were used for cross-referencing.  Similarly, lists of genes up-regulated in mouse 

glutamatergic cortical neurons, GABAergic cortical neurons, or layer 4-6 interneurons were 

obtained by analyzing data from ref. 41.  Raw data (.CEL files) were obtained from Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2882) for 42 

 10



Oldham et al.                                                Functional Organization Human Brain Transcriptome 

samples analyzed on Affymetrix, Inc. MG-430A microarrays.  Non-specific and mis-targeted 

probes were masked using the R package "ProbeFilter"12 prior to generation of expression values 

and normalization in R as described above (no batch normalization was necessary).  DE genes 

were identified as described above.  All comparisons were restricted to cortical neurons.  For 

genes up-regulated in glutamatergic or GABAergic cortical neurons, PPDE > 0.999 was chosen 

as the threshold for differential expression.  For genes up-regulated in layer 4–6 interneurons, a 

threshold of PPDE > 0.99 was chosen.  For cross-referencing with the synaptic proteome, a list 

of proteins enriched in the post-synaptic density was obtained from the Genes2Cognition 

Consortium42 (http://www.genes2cognition.org/cgi-

bin/browser?action=bydataset;proteomics_id=psp_member;proteomics_value=Y), while a list of 

proteins enriched in synaptic vesicles and the pre-synaptic membrane compartment was obtained 

from ref. 43 (Tables 1 and 2).  Finally, a list of genes with altered expression following ischemia 

and reperfusion in mouse hippocampus was obtained from Table 1 of ref. 44. 

 Gene symbols were used as unique identifiers to cross-reference each set of genes with 

all modules in each network in an unbiased manner.  For each module, these comparisons were 

restricted to genes with positive kME values (P < 0.001).  The significance of module enrichment 

was assessed using Fisher's exact test (one-sided).  To account for multiple comparisons, a 

Bonferroni correction was applied based upon the number of modules in the network.  Complete 

cross-referencing results can be found in Supplementary Table 7. 

 Another approach to module characterization involved searching for over-represented 

categorical systems using EASE45 (p-values cited in the journal article refer to EASE scores from 

Supplementary Table 8).  For module characterization using EASE, analysis was restricted for 

each module to genes with positive kME values (P < 0.001).  Population files were comprised of 
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probe sets retained following mask application (n = 18,631 [HG-U133A] and n = 10,553 [HG-

U95A/v2]).  All available categorical systems were searched.  To control for multiple 

comparisons, the global false discovery rate (FDR) was calculated for all systems in each module 

(1000 iterations).  Categorical systems with a global FDR < 0.05 were deemed significantly 

enriched and are reported in Supplementary Table 8. 

Modules were also characterized by correlating MEs with available sample information 

such as age, gender, and cortical area (Supplementary Table 1).  For example, to determine 

whether any MEs in CTX_95 were significantly correlated with expression in primary visual 

cortex, an indicator variable was created (1 = primary visual cortex samples, 0 = all other 

samples).  This indicator variable was then correlated (Pearson) with all MEs.  A Bonferroni 

correction was applied based on the number of modules in the network.  Finally, modules were 

also characterized through visual inspection using VisANT46. 

 

Module visualization 

Visualizations of all modules from CTX, CN, and CB are presented in Supplementary Figure 4.  

For each module, pairwise TO values were calculated for the top 1% of all probe sets based on 

|kME|.  A second filter was applied to select only those gene pairs for which both members 

exhibited higher |kME| for the module in question than for any other module in the network.  

From this list, 150 pairs of genes with the greatest TO were depicted using VisANT 

(http://visant.bu.edu/)46.  The "Spring Embedded Relaxing" layout algorithm was used to confer 

partial network structures, which were then manually adjusted for clarity.  In these visualizations, 

modular structure is defined by the connections between genes; distances are irrelevant.  Genes 

with expression levels that were negatively correlated are connected by black lines; all other 
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genes were positively correlated (except for the black module [M11], where red lines denote 

negative correlations).  Numbers appended to gene symbols denote the |kME| rank (i.e. RMM) for 

the corresponding probe set (some genes are represented by multiple probe sets).  Genes with >= 

20 depicted connections appear as large nodes, followed by genes with 10–19 connections that 

appear as medium nodes, followed by genes with < 10 connections that appear as small nodes. 

 

Module eigengene network comparisons 

To explore the higher-order structure of gene coexpression networks and the relationships 

between modules, module eigengene (ME) networks47 were created.  An ME network describes 

the relationships between modules based on the correlations between MEs47.  For each dataset, 

Pearson correlation coefficients were calculated for all pairwise comparisons of MEs.  

Comparisons of ME networks between datasets were restricted to conserved modules.  

Correlation preservation between MEs I,J in networks k1 and k2 was assessed using the following 

formula47: 

( )
1 2

1 2

( ) ( )
( , ) |1

2

k k
k k IJ IJ

IJ
R RCP −

= −
|           (1) 

where R(k1)
IJ is the ME Pearson correlation matrix for all conserved modules (labeled by indices 

IJ) in network k1, and similarly for network k2.  In addition, average linkage hierarchical 

"consensus" clustering of eigengenes in ME networks k1 and k2 was performed using the 

following dissimilarity measure47 (I,J again label eigengenes): 
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1 2
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( , ) 1

2

k k
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ME networks were depicted as heat maps using the "image.plot" function in R, with red 

corresponding to positive correlations and green corresponding to negative correlations 
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(Supplementary Figure 6).  To facilitate visual evaluation of ME network heat maps, MEs were 

ordered using average linkage hierarchical clustering with 1-correlation as the dissimilarity 

measure, followed by re-ordering of branches within the restrictions imposed by the dendrogram 

such that the correlation of adjacent MEs was maximized. 

 

Comparisons of module membership (kME) between brain regions 

Because kME is itself a correlation, comparisons of kME between networks (e.g. brain regions) is 

equivalent to assessing the significance of differences in correlations from samples of different 

sizes.  To compare kME values for probe set i relative to module j in network k, we first 

normalized these values using the Fisher transformation: 

( )
ijkME

ijkME

ijk k
k

z
−

+
=

1
1

log*5.0                (3) 

For comparison between networks k1 and k2, the difference between the resulting z scores for 

probe set i relative to module j was divided by the joint standard error: 

)3/(1)3/(1 21

21

−+−

−
=

nn

zz
zdiff ijkijk           (4) 

where zijk1 and zijk2 represent the normalized correlations for probe set i relative to module j in 

network k1 and network k2, respectively, and n1 and n2 represent the sample sizes.  This z-score 

was converted into a two-sided p-value based upon the normal distribution.  These p-values and 

their corresponding z-scores are reported for all probe sets for all pairwise comparisons of 

conserved modules between CTX, CN, and CB in Supplementary Table 11, along with mean 

expression levels and differential expression (DE) p-values.  To assess the significance of DE, 

scaled expression data from CTX, CN, and CB were pooled and normalized as described above.  

For batch normalization11, samples from each study were assigned to a single batch, with tissue 
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(CTX, CN, or CB) designated as a covariate.  DE p-values were calculated using a Bayesian t-

test from the R package bayesreg40 as described above. 

 

Immunohistochemistry 

Postmortem human brain tissue samples were obtained through the UCLA Pathology 

Department under the UCLA human subject guidelines.  Individuals did not have evidence of 

neuropathological conditions and four of five patients died from non-CNS complications; the 

fifth patient died from a brain infarct that did not compromise the area of interest.  Tissue was 

used from five individuals aged 51 to 81 y.o.  The region of the subventricular zone at the head 

of the caudate was excised from formalin-fixed brain under the direction of a neuropathologist.  

Tissue was embedded in paraffin and sectioned at 7 μM intervals.  Sections were rehydrated, 

boiled in citric acid buffer for antigen retrieval, and incubated in 0.3% hydrogen peroxide 

following standard procedures.  Non-specific binding was blocked using PBS containing 5% 

milk, 0.2% triton-X, and 2% normal goat serum at room temperature for 1h.  Tissue was 

incubated with primary antibody diluted in blocking solution at 4°C overnight.  The following 

antibodies and dilutions were used:  ALDH1L1 mouse monoclonal (Abcam, ab56777; 1:500), 

ASCL1 rabbit polyclonal (Abcam, ab38556; 1:50), CD24 mouse monoclonal (Abcam, ab19704; 

1:100), connexin 43 (GJA1) rabbit polyclonal (Santa Cruz, sc-9059; 1:100), DPYSL3 rabbit 

polyclonal (Chemicon, AB5454; 1:1500), GFAP rabbit polyclonal (Dako, Z0334; 1:10,000), 

PLTP rabbit polyclonal (Abcam, ab18990; 1:100), neuronal class III beta-tubulin (TuJ1) mouse 

monoclonal (Covance, MMS-435P; 1:5000).  Appropriate biotinylated secondary antibodies 

diluted in blocking solution were applied to slides for 1h at room temperature.  The chromagens 

3,3’-diaminobenzidine (DAB) or Vector® SG (Vector Laboratories) were used following the 
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manufacturer’s instructions (Vector Laboratories, VECTASTAIN ABC kits).  Substitution of 

either chromagen for each antibody gave similar results.  Due to the availability of a mouse 

monoclonal antibody for CD24, double labeling was performed for CD24 together with ASCL1, 

GJA1, or PLTP.  For double-labeling experiments, slides were processed with the first primary 

and secondary antibody and chromagen followed by the second primary and secondary antibody 

and contrasting chromagen.  Hematoxylin staining was conducted following standard procedures 

after the blocking step.  Most antibodies were used on two or more individuals and yielded 

similar expression patterns.  Two different antibodies for CD24 and GJA1 gave similar results.  

Omission of primary antibody did not result in detectable staining. 

 

Identification of candidate genes with expression patterns that distinguish SVZ astrocytes 

from mature astrocytes 

To identify candidate genes with expression patterns that distinguish SVZ astrocytes from 

mature astrocytes, we calculated the difference in membership for M13C and M15C (MMdiff) for 

all genes in CN (n = 18,631).  We limited our search to genes with strong membership for either 

module (MM > 0.7) and |MMdiff| > 0.4.  For genes meeting these criteria with MM15C > 

MM13C, we also required evidence of expression in astrocytes across brain regions (MM15 > 

0.5 in CTX and CB).  For genes meeting these criteria with MM13C > MM15C, we required 

evidence of absence of expression in astrocytes across brain regions (MM15 < 0.5 in CTX, CN, 

and CB). 
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Summary 

To provide further validation for the reproducibility of gene coexpression relationships across 

individuals and microarray platforms, we applied weighted gene coexpression network analysis 

(WGCNA)1 to a dataset ("CTX_ILMN") generated from human cerebral cortex samples using 

Illumina HumanRefseq-8 microarrays2.  The resulting gene coexpression network was compared 

with the "CTX" network, which was generated from human cerebral cortex samples using 

Affymetrix U133A microarrays and is described in detail in the journal article.  A summary of 

these datasets is presented in Table 1. 

 
  CTX_ILMN CTX 

Platform Illumina HumanRefseq-8 Affymetrix U133A 
# samples / # unique individuals 159 / 159 67 / 67 

Cortical areas ~ 3/4 temporal, ~1/4 frontal All frontal 
Avg. age 80 48 

Mean IAC^ 0.943 0.970 
# probe sets used for network construction 5,269 5,549 

Overlap^^ 31% 37% 
Table 1: Summary of CTX_ILMN and CTX datasets.  ^IAC = inter-array correlation.  ^^Overlap = 
the percentage of unique gene symbols in a given network that were present in the other network. 

 
In addition to the expected discrepancies in gene expression measurements introduced by 

differences in platform design between Illumina and Affymetrix microarrays, differences in the 

sample characteristics and representation of genes in the CTX_ILMN and CTX datasets also 

presented substantial heterogeneity (Table 1).  Despite this heterogeneity, a majority of gene 



coexpression modules identified in CTX in the journal article revealed significant evidence of 

overlap in CTX_ILMN, and vice versa.  We show that modules corresponding to the major cell 

classes of human cerebral cortex were present in CTX_ILMN, as they were in each of the four 

Affymetrix datasets analyzed in our study.  Furthermore, we show that membership for the same 

modules was highly correlated between CTX and CTX_ILMN, as was the case for comparisons 

between CTX and CTX_95 (Fig. 3 from the journal article).  These results are described below 

and provide additional evidence that conserved gene coexpression modules reflect consistent 

underlying sources of variation in microarray data generated from human cerebral cortex. 

 

Microarray data processing 

Because raw data from ref. 2 were unavailable, previously normalized expression values for 

5,269 transcripts that were detected in all 193 samples of the original study (and therefore had no 

missing values) were used as the starting point for this analysis (National Center for 

Biotechnology Gene Expression Omnibus: accession code GSE8919).  Beginning with these 

data, outlier samples in CTX_ILMN (n = 34) were identified and removed.  A detailed 

supplement containing all of the relevant R code and corresponding figure images that were used 

to guide our decisions to remove outlier samples in this dataset is available on our web page 

(http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/HumanBrainTranscriptome/).  

Briefly, inter-array correlations (IACs) were calculated by correlating samples with one another 

using expression levels for all 5,269 probe sets.  Samples were hierarchically clustered using 

average linkage and 1-IAC as a distance metric to identify outliers.  IACs were also averaged for 

each array and compared to the resulting distribution of IACs for the dataset, and samples with 

low average IACs relative to the distribution were removed.  This approach constitutes an 

 2



unbiased method for the identification and removal of samples with aberrant gene expression 

levels.  Following outlier removal, quantile normalization3 was performed in R, resulting in a 

mean IAC of 0.943 for CTX_ILMN.  Because raw data from ref. 2 were unavailable, no batch 

normalization was performed. 

 

Weighted gene coexpression network construction and module detection 

WGCNA was applied to CTX_ILMN using β = 6 as described in the journal article (Methods).  

A single topological overlap (TO) matrix (5,269 x 5,269) was constructed for CTX_ILMN and 

average linkage hierarchical clustering was performed to group genes based upon the TO 

dissimilarity measure.  Using a dynamic tree-cutting method4, 28 gene coexpression modules 

were identified (Fig. 1). 

 

 

 

 

 

 
 
         *    * M5 M4 * M12 M9     M2                          *              M11         *           M18                      M16            M10 M15       M7 

CTX_ILMN

 

 

Figure 1: Illumina human cerebral cortex (CTX_ILMN) gene coexpression network.  Dendrogram 
produced by average linkage hierarchical clustering of genes based upon topological overlap (see 
Methods from journal article).  28 modules of coexpressed genes in CTX_ILMN were assigned colors as 
indicated by the horizontal bar beneath the dendrogram.  Modules with the most significant overlap 
between CTX_ILMN and CTX (corrected hypergeometric p-value < 0.05) were assigned the same colors 
and numbers as in the CTX network, with asterisks denoting modules with less significant overlap.  
CTX_ILMN consists of data from Illumina HumanRefseq-8 microarrays measuring expression levels in 
159 human cortical samples with 5,269 probe sets. 
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Cross-platform validation of gene coexpression relationships 

To determine whether modules from CTX and CTX_ILMN were composed of the same genes, 

we calculated the overlap and corresponding hypergeometric probability for each possible pair of 

modules in the two networks (using gene symbols as unique identifiers; see Methods from the 

journal article).  As seen in Figure 2, a majority of gene coexpression modules identified in CTX 

revealed significant overlap with modules identified in CTX_ILMN, with seven of these 

modules showing > 50% overlap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-value 

Figure 2: Gene coexpression modules in human cerebral cortex are preserved across 
individuals and microarray platforms.  Comparison of the 19 gene coexpression modules 
identified in CTX with modules identified in CTX_ILMN.  Modules with significant overlap 
(corrected hypergeometric p-value < 0.05) are depicted by horizontal colored bars.  For example, 
M1 did not show significant overlap between CTX and CTX_ILMN, but M2 overlapped 71% with a 
module found in CTX_ILMN (P = 5.9e–09).  Numbers in parentheses at right indicate the 
maximum possible number of shared genes per pair of modules (i.e. the denominator used to 
calculate percent overlap).  NS = not significant. 
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 Module membership values were calculated for all genes relative to all modules in 

CTX_ILMN as described in the journal article (Methods).  To explore the reproducibility of 

module membership for individual genes between CTX and CTX_ILMN, we directly compared 

this quantity between the two networks for conserved modules (Fig. 3). 

 

 
 
 
 
 
 
 

 

 

Figure 3: Module membership in human cerebral cortex is highly correlated across individuals 
and microarray platforms.  Comparison of module membership (MM) between CTX and CTX_ILMN for 
M9 (left), M15 (middle), and M16 (right).  For each module, the correlation (Spearman) between MM for 
CTX and CTX_ILMN was assessed.  MM was correlated for the intersection of all genes used to construct 
the CTX and CTX_ILMN networks (1,598 genes). 

As we observed in comparisons between Affymetrix microarray platforms (U133A 

[CTX] vs U95A/v2 [CTX_95]; Fig. 3 from the journal article), module membership in human 

cerebral cortex was remarkably consistent between Affymetrix U133A (CTX) and Illumina 

HumanRefseq-8 (CTX_ILMN) microarray platforms (M9: rho = 0.65, P = 1.6e–191; M15: rho = 

0.73, P = 5.0e–264; M16: rho = 0.61, P = 3.0e–162; Fig. 3), despite substantial heterogeneity 

between these datasets (Table 1).  These results validate the reproducibility of module 

membership values for individual genes and indicate that conserved gene coexpression modules 

reflect consistent underlying sources of variation in microarray data generated from human 

cerebral cortex. 
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Additional module characterization 

Gene coexpression modules were characterized using five complementary approaches, as 

described in the journal article.  To normalize comparisons across networks, module membership 

is reported below in terms of its rank (RMM = rank |module membership|).  We focused 

primarily on characterizing modules with evidence of significant overlap across networks, but 

also characterized some modules found in only one network. 

 

Interneurons: M6A, M23, M17 

We observed that PVALB, a canonical marker of interneurons, exhibited strong membership for 

M6A (RMM = 8, P = 5.3e–15; Supplementary Table 3), M17A (RMM = 105, P = 2.0e–06; 

Supplementary Table 3), M17B (RMM = 4, P = 1.5e–11; Supplementary Table 4), and M23 

(RMM = 17, P = 3.2e–07; Supplementary Table 4).  These observations suggested that these 

modules might distinguish genes that are preferentially expressed in PVALB+ interneurons 

relative to other cell types in cerebral cortex.  The two strongest members of M6A were NEFH 

and VAMP1 (Supplementary Table 3 and Supplementary Fig. 4f), both of which were expressed 

significantly higher in a PVALB+ interneuron relative to pyramidal neurons in a single-cell 

microarray analysis of rat hippocampal CA11.  Using raw data from ref. 2, we identified genes 

with higher expression in layer 4–6 interneurons relative to other neuronal cell types isolated 
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from adult mouse forebrain.  Both M6A (P = 7.7e–03) and M23 (P = 8.7e–04) were significantly 

enriched with genes from this list (Supplementary Table 7).  Genes in M23 also showed 

increased expression in primary visual cortex relative to other cortical areas (r = 0.57, P = 1.3e–

03; Supplementary Fig. 2y), as did genes in M17B (r = 0.71, P = 2.5e–06; Supplementary Fig. 

2w).  Collectively, these data support the conclusion that gene coexpression in these modules 

reflects the relative abundance of certain classes of PVALB+ interneurons in samples from 

different cortical areas.  

 

Purkinje neurons: M6D 

M6A also showed significant overlap with a module identified in cerebellum (M6D; 

Supplementary Table 2).  The strongest members of M6D were PVALB and CALB1 

(Supplementary Table 6 and Supplementary Fig. 4as), both of which are highly expressed in 

Purkinje neurons in cerebellum3.  These observations suggested that M6D might consist of genes 

that are preferentially expressed in Purkinje neurons relative to other cell types in cerebellum.  

Consistent with this hypothesis, Purkinje cell protein 4 (PCP4), considered a marker for Purkinje 

neurons, also exhibited strong membership for M6D (RMM = 9, P = 5.9e–09; Supplementary 

Table 6 and Supplementary Fig. 4as).  In situ hybridization (ISH) data from adult mouse brain 

revealed elevated and often exclusive expression in Purkinje neurons for nine out of ten genes 

with the strongest membership for this module (Supplementary Fig. 5a–j).  We also obtained a 

list of genes expressed in Purkinje neurons with significantly reduced expression levels in 

cerebella from Purkinje cell degeneration (pcd3J) mice relative to wild-type littermates4.  M6D 

was highly enriched with these genes (P = 6.1e–23, Supplementary Table 7).  These results 
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indicate that M6D is comprised of genes that are preferentially expressed in Purkinje neurons 

relative to other cell types in cerebellum. 

 

Microglia: M4, M5 

EASE indicated that the gene ontology (GO) biological process "immune response" was 

significantly over-represented in M4 (P = 2.6e–56 [CTX]; P = 8.4e–09 [CTX_95]; P = 1.3e–24 

[CN]; P = 1.5e–11 [CB]), along with numerous related categories such as "defense response", 

"response to wounding", and "response to stress" (Supplementary Table 8).  Among those genes 

with the strongest membership for M4A were several members of the major histocompatibility 

class II complex, including HLA-DRA, HLA-DPA1, and HLA-DMA, as well as several members 

of the classical complement pathway, including C1QA, C1QB, and C3 (Supplementary Table 3 

and Supplementary Fig. 4d).  In the brain, expression of these genes reflects the activation of 

microglia, the resident immune cells of the central nervous system5.  M5 was also enriched for 

genes involved in the GO biological process "immune response" (P = 9.8e–42 [CTX]; P = 5.6e–

11 [CTX_95]; P = 4.7e–04 [CN]), as well as numerous related categories (Supplementary Table 

8).  Expression levels of many genes with strong membership for M5A have been shown to 

increase significantly in microglia in response to activation with interferon-gamma6, including 

PSMB9, SERPING1, STAT1, and CASP1 (Supplementary Table 3).  These data indicate that 

coexpression in M5, like M4, likely reflects activation of microglia in response to an 

immunogenic event.  Consistent with this interpretation, coexpression in these modules was 

driven by a small number of individuals, some of who were represented by multiple brain 

regions (e.g. H46 in Supplementary Fig. 2d,al,bt), suggesting a global neuroimmunological 

response possibly related to cause of death. 
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Meningeal cells: M43 

We observed that M43 was significantly enriched with genes encoding structural molecules (P = 

9.1e–05), cell adhesion molecules (P = 3.7e–04), and components of the extracellular matrix (P 

= 1.5e–06) (Supplementary Table 8).  In the cerebellum, meningeal cells are known to produce 

many components of the interstitial matrix and basement membrane7, including fibronectin, 

which possessed the strongest membership of any gene for this module (Supplementary Fig. 4bh 

and Supplementary Table 6).  Many other genes with strong membership for M43 are known to 

be highly expressed in meningeal cells, including PTGDS8, VIM9, and BGN10 (Supplementary 

Table 6).  Other genes that encode components of the extracellular matrix and exhibited strong 

membership for M43 included DCN, MGP, COL6A2, DSP, FBLN1, FBLN5, COL18A1, and 

COL6A3 (Supplementary Tables 6 and 8).  These data suggest that M43 consists of genes that 

are preferentially expressed in meningeal cells relative to other cell types in cerebellum. 

 

Hypoxia: M12 

We observed that many of the genes with the strongest membership for M12A encode 

transcription factors and immediate early genes, including FOS, JUN, JUNB, MAFF, and FOSB 

(Supplementary Table 3).  EASE confirmed that the GO category "transcription regulator 

activity" was significantly over-represented in M12 for both CTX (P = 5.8e–07) and CB (P = 

4.1e–03) (Supplementary Table 8).  In addition, EASE identified a BBID pathway11 related to 

brain ischemia as significantly over-represented in M12 for CTX (P = 1.3e–04) and CB (P = 

9.7e–06) (Supplementary Table 8).  Like M4 and M5, coexpression in M12 was driven by a 

small number of individuals (Supplementary Fig. 2l,bi).  These observations suggested that 
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coexpression in this module might represent a CNS transcriptional response to hypoxia.  To test 

this hypothesis, we obtained a list of genes with altered expression levels following ischemia and 

reperfusion in mouse hippocampus12.  M12 was significantly enriched with genes from this list 

in both CTX (P = 5.6e–13) and CB (P = 2.3e–08) (Supplementary Table 7).  These results 

provide evidence that coexpression in M12 reflects a response to hypoxia in the human brain. 

 

Gender: M1 

We observed that M1 was highly enriched with genes from chromosome Y in CTX (P = 4.8e–

21), CN (P = 4.8e–16), and CB (P = 7.4e–19) (Supplementary Table 8).  Among the genes with 

the strongest membership for M1 was XIST, which is expressed in females and mediates X 

chromosome inactivation13.  This gene was negatively correlated with the ME for M1 in all brain 

regions (Supplementary Tables 3, 5, and 6).  These observations suggested that M1 might 

distinguish genes that are differentially expressed between male and female brains.  To test this 

hypothesis, we correlated the ME for M1 with gender status for all samples from each brain 

region.  Gender status was highly correlated with the ME for M1 in CTX (r = 0.93, P < 2.2e–16), 

CN (r = 0.94, P = 2.2e–13), and CB (r = 0.98, P < 2.2e–16).  These results indicate that 

coexpression in M1 reflects differences in gene expression between male and female brains.  

Interestingly, CD24, which exhibited extremely strong membership for M13 in CN and CTX, 

also possessed strong membership for M1 in cerebellum (RMM = 4, P = 2.3e–14; 

Supplementary Table 6).  Expression of this gene in CB was significantly higher in the brains of 

males compared to females (Supplementary Fig. 2bh).  Although most of the genes with the 

strongest membership for M1 are located on the sex chromosomes, some autosomal genes also 

revealed strong membership for this module.  In CN, these included the glucocorticoid receptor 
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NR3C1 and the progesterone receptor subunit PGRMC2 (Supplementary Table 5), both of which 

were expressed higher in males. 

 

Synaptic function: M10, M14 

We observed that M10A was highly enriched with genes encoding synaptic proteins (P = 5.3e–

18 and P = 6.9e–12), neuronal markers (P = 9.8e–06), and genes up-regulated in glutamatergic 

cortical neurons (p = 1.1e–06) (Supplementary Table 7).  A similar pattern was observed for 

M10B and M10D, including enrichment of genes encoding synaptic proteins (M10B and M10D) 

and genes up-regulated in glutamatergic cortical neurons (M10B) (Supplementary Table 7).  

Consistent with these observations, EASE identified numerous over-represented categories in 

M10 related to synaptic function, including "synaptic vesicle" (P = 2.4e–07), "synapse" (P = 

1.9e–05), and "transmission of nerve impulse" (P = 1.7e–03) (Supplementary Table 8).  These 

results support the conclusion that gene coexpression in M10 is related to glutamatergic synaptic 

function.  Interestingly, DICER1 exhibited very strong membership for M10A, but was 

negatively correlated with the ME for this module (Supplementary Table 3 and Supplementary 

Fig. 4j), suggesting a link between RNA interference14 and glutamatergic synaptic function in 

cerebral cortex. 

Analysis of M14A also revealed enrichment for genes encoding synaptic proteins (P = 

1.6e–20 and P = 1.1e–13), neuronal markers (P = 2.2e–08), and genes up-regulated in 

glutamatergic cortical neurons (P = 1.1e–09), while M14D also exhibited significant enrichment 

for synaptic proteins (P = 1.2e–03) (Supplementary Table 7).  EASE identified enrichment in 

M14 for numerous categories related to synaptic function, including "transmission of nerve 

impulse" (P = 4.4e–12), "synaptic transmission" (P = 2.0e–11), and "synaptic vesicle" (P = 1.9e–
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05)  (Supplementary Table 8).  These results support the conclusion that gene coexpression in 

M14 is also related to glutamatergic synaptic function.  Although M10 and M14 possessed 

similar characteristics, some functional distinctions between these modules were evident.  For 

example, M10, but not M14, contained numerous over-represented EASE categories related to 

calcium channel activity, while M14 was enriched with many more EASE categories pertaining 

to signal transduction than M10 (Supplementary Table 8). 

 

Organellar composition and function: M7, M2 

We observed that M7 was highly enriched with genes comprising the GO cellular compartment 

"mitochondrion" for both CTX (P = 2.0e–16) and CB (P = 4.4e–07) (Supplementary Table 8).  

Other over-represented categories identified by EASE for M7 included "hydrogen ion transporter 

activity" (P = 2.2e–20 [CTX] and P = 2.7e–11 [CB]), "electron transport chain" (P = 5.5e–17 

[CTX] and P = 7.2e–10 [CB]), "oxidative phosphorylation" (P = 9.8e–16 [CTX] and P = 2.3e–

09 [CB]), and "energy metabolism" (P = 4.7e–11 [CTX] and P = 5.0e–07 [CB]) (Supplementary 

Table 8).  Genes with strong membership for M7A included many components of the electron 

transport chain, including NDUFA2, COX6B1, NDUFA13, COX5B, NDUFS8, ATP5H, 

NDUFB2, ATP5G1, and NDUFA7 (Supplementary Tables 3 and 8).  These results provide 

evidence that gene coexpression in M7 is related to mitochondrial function in the human brain.  

Interestingly, AQP4, which encodes a water-specific channel important for the regulation of cell 

volume15, was strongly negatively correlated with the ME for M7A (Supplementary Table 3 and 

Supplementary Fig. 4g), providing a previously unrecognized link between osmoregulation and 

energy metabolism in cerebral cortex. 
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EASE results indicated that another module, M2, was highly enriched with genes 

encoding ribosomal subunits (P = 2.3e–64) and elements of the KEGG pathway "translation" (P 

= 7.6e–48) (Supplementary Table 8).  Although most of the genes with the strongest membership 

for this module encode known structural constituents of the ribosome, for some (e.g. C6orf49 

and C10orf116; Supplementary Table 3), association with this structure has not been previously 

described.  The strong coexpression of these genes with so many components of the ribosome 

suggests that they are likely to be intimately involved with the function of this macromolecular 

complex and the process of translation. 

 

Genomic clustering of coexpressed genes 

EASE analysis revealed that for both CTX and CTX_95, the most significant over-represented 

category for M10, which was highly enriched with genes involved in glutamatergic synaptic 

function (see above), was chromosome 19 (P = 3.2e–18 [CTX] and P = 1.2e–14 [CTX_95]; 

Supplementary Table 8).  Significant enrichment was also observed for M10 on chromosome 16 

(P = 4.2e–07 [CTX] and P = 3.0e–03 [CTX_95]) and chromosome 22 (P = 1.1e–04 [CTX] and P 

= 1.2e–02 [CTX_95]) (Supplementary Table 8).  Another module that was highly enriched with 

genes involved in glutamatergic synaptic function (M14A; see above) also showed significant 

enrichment for genes found on the same chromosomes (chromosome 16: P = 3.2e–04; 

chromosome 22: P = 3.3e–03; chromosome 19: P = 7.2e–03; Supplementary Table 8).  These 

data provide evidence for genomic clustering of coexpressed genes related to glutamatergic 

synaptic function in human cerebral cortex. 

We observed that modules related to ribosomal and mitochondrial function (M2 and M7) 

were also enriched with genes encoding synaptic proteins (P = 5.5e–12 [M2] and P = 2.8e–12 
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[M7A]; Supplementary Table 7).  Like M10, these modules also showed significant enrichment 

for genes found on chromosome 19 (P = 4.3e–09 [M2] and P = 4.3e–12 [M7A]) and 

chromosome 16 (P = 8.9e–07 [M7A]) (Supplementary Table 8).  These results provide evidence 

for the existence of coordinated transcriptional programs in human cerebral cortex underlying 

synaptic function, energy metabolism, and protein synthesis.  Furthermore, our data indicate that 

this coordination may have resulted in part from genomic clustering of functionally related genes 

on chromosomes 16 and 19. 

 

Generation of novel functional hypotheses regarding human disease genes on the basis of 

module membership 

The characterization of gene coexpression modules provides an opportunity to generate novel 

functional hypotheses for thousands of genes expressed in the human brain, including genes 

involved in neurological or neuropsychiatric disease, through the principle of "guilt-by-

association".  For example, in CTX, FMR1 exhibited extremely strong membership for M17A 

(RMM = 11, P = 1.3e–10; Supplementary Table 3), a module with characteristics of PVALB+ 

interneurons.  This observation predicts that disruption of this gene, which results in fragile X 

mental retardation syndrome16, should preferentially affect the function of this neuronal subtype 

in the adult human brain.  Interestingly, a recent study identified major deficits in neocortical 

GABAergic inhibitory circuits in a mouse model of fragile X syndrome17.  Specifically, this 

study found a 20% reduction in the density of PVALB+ interneurons in somatosensory cortex of 

mutant mice relative to wild-type mice17.  Similarly, SCN1B, which encodes an auxiliary subunit 

of voltage-gated sodium channels and has been linked to generalized epilepsy with febrile 

seizures18, exhibited extremely strong membership in CTX for M6A (RMM = 4, P < 2.2e–16; 
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Supplementary Table 3), another module with characteristics of PVALB+ interneurons.  The 

protein encoded by this gene interacts with pore-forming subunits of voltage-gated sodium 

channels such as SCN1A, which has also been linked to generalized epilepsy with febrile 

seizures18.  Recently, expression of SCN1A was localized to the axon initial segments of 

PVALB+ interneurons in mouse neocortex19.  Like SCN1B, SCN1A also exhibited strong 

membership for M6A (RMM = 67, P = 9.3e–06; Supplementary Table 3).  Collectively, these 

observations predict that the epileptic phenotype associated with disruption of SCN1B may be 

mediated by altered neurotransmission in PVALB+ interneurons.  These examples illustrate how 

gene coexpression patterns within tissues can be used to generate novel functional hypotheses 

related to human disease genes. 

 

Sources of sample variation in cell quantity 

It is interesting to speculate on the potential sources of variation that may influence the quantities 

of specific cell types in different samples of brain tissue.  This variation may be influenced by 

technical factors.  For example, although samples analyzed in this study were extracted from 

gray matter, it is easy to imagine how different dissections might inadvertently introduce varying 

amounts of white matter "contamination".  A sample with relatively more white matter should 

exhibit a spike in the expression of oligodendrocyte-related genes, perhaps similar to that seen in 

individual H74 in M9D (Supplementary Fig. 2ca).  Because this spike applies to only a small 

subset of genes on the microarray, this sample was not identified as an outlier when considering 

all expressed genes.  However, in an analysis of differential expression between two groups, 

asymmetric representation of such samples might erroneously suggest functional differences 

where none exist.  Biological factors are also likely to contribute to differences in cell quantity 
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between samples.  For example, the relative densities of certain cell types in the brain may differ 

between individuals20,21.  In CTX_95 (the only dataset that included multiple samples from the 

same individual), expression of genes in M15B was relatively constant in cortical areas from the 

same individual when compared to cortical areas from different individuals (Supplementary Fig. 

2ae).  This observation is consistent with a role for biological factors in determining the number 

of astrocytes that are present in cortical samples. 
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