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Background: Diagnosis is jeopardised when limited biopsy material is available or histological quality compromised. Here we
developed and validated a prediction algorithm based on microRNA (miRNA) expression that can assist clinical diagnosis of lung
cancer in minimal biopsy material to improve clinical management.

Methods: Discovery utilised Taqman Low Density Arrays (754 miRNAs) in 20 non-small cell lung cancer (NSCLC) tumour/normal
pairs. In an independent set of 40 NSCLC patients, 28 miRNA targets were validated using qRT–PCR. A prediction algorithm
based on eight miRNA targets was validated blindly in a third independent set of 47 NSCLC patients. The panel was also tested in
formalin-fixed paraffin-embedded (FFPE) specimens from 20 NSCLC patients. The genomic methylation status of highly
deregulated miRNAs was investigated by pyrosequencing.

Results: In the final, frozen validation set the panel had very high sensitivity (97.5%), specificity (96.3%) and ROC-AUC (0.99,
P¼ 10� 15). The panel provided 100% sensitivity and 95% specificity in FFPE tissue (ROC-AUC¼ 0.97 (P¼ 10� 6)). DNA methylation
abnormalities contribute little to the deregulation of the miRNAs tested.

Conclusion: The developed prediction algorithm is a valuable potential biomarker for assisting lung cancer diagnosis in minimal
biopsy material. A prospective validation is required to measure the enhancement of diagnostic accuracy of our current clinical
practice.

Lung cancer accounts for almost a quarter of cancer-related deaths
and often presents at an advanced stage, which hinders effective
treatment (Jemal et al, 2010; Jack et al, 2011). Early detection of
lung cancer is a widely recognised unmet healthcare need and is
expected to reduce mortality by allowing more effective therapies
at earlier stages. However, implementation of early detection will

inevitably lead to testing smaller lesions, which poses diagnostic
challenges. In addition, modern pathology is often called on to
provide histo-molecular rather than histological diagnoses. There-
fore, the availability of molecular biomarkers with high efficiency
in minute biopsy material becomes increasingly important in
aiding pathological diagnosis in confirming resection margins,
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testing indeterminate nodules from CT scans and provide
phenotypic information for therapeutic stratification purposes.

MicroRNAs (miRNAs or miRs) are short, non-coding RNAs
that regulate expression of multiple genes by affecting stability and
translational rate of messenger RNA (Garzon et al, 2009).
MicroRNAs may offer great promise as biomarkers, for diagnostic,
prognostic or therapeutic use (Liloglou et al, 2012). Their increased
dynamic range compared with mRNA improves their diagnostic
potential in samples with low percentage of cancer cells. In
addition, their short (22nt) length and their association with
nucleoproteins, confers greater stability (Jung et al, 2010) and thus
extended life post sampling. Therefore, they are more tolerant to
the standard clinical sample processing and storage conditions (Xi
et al, 2007).

Lung-cancer-related miRNA expression patterns have been
previously reported demonstrating a potential for detection in
surrogate tissue (e.g. sputum, plasma) (Xing et al, 2010; Yu et al,
2010; Boeri et al, 2011). Besides the alterations of genomic miRNA
copy numbers and modifications of the miRNA processing
machinery, miRNA deregulation can also be due to epigenetic
changes, such as the methylation status of miRNA loci (Yanaihara
et al, 2006; Bandi et al, 2009; Farazi et al, 2011; Heller et al, 2012).
Examples of methylated miRNA loci in non-small cell lung cancer
(NSCLC) include members of the miR-34 family, hsa-miR-200c,
hsa-miR-9, hsa-miR-124a and hsa-miR-126 (Lujambio et al, 2007;
Gallardo et al, 2009; Ceppi et al, 2010; Wang et al, 2011; Heller
et al, 2012; Watanabe et al, 2012).

In this study, we aimed to identify and validate a miRNA
signature able to discriminate tumour from normal lung tissue
with high sensitivity and specificity. We then further demonstrated
the applicability of this panel in small fixed biopsy material. In
addition, we investigated the role of DNA methylation in the
deregulation of the miRNAs which demonstrated the most
frequently aberrant expression patterns in this data set.

MATERIALS AND METHODS

Patients and samples. Frozen tumour and/or normal samples
from 112 NSCLC patients were obtained from Liverpool Heart and
Chest Hospital. The demographic and clinical characteristics of the
cancer patients are summarised in Table 1. Tissues were dissected
within 30 min from surgical resection and were immediately stored
at � 80 1C. Formalin-fixed paraffin-embedded (FFPE) material
was also available for the same tissues. The study protocol was
approved by the Liverpool Research Ethics Committee and all
patients provided written, informed consent in accordance with the
Declaration of Helsinki and all local regulations.

RNA isolation. For frozen tissue, total RNA containing small
RNA was extracted from five sections of 10 mm each for tumours
and 10 sections for normal tissue, using a miRNeasy Mini Kit
(Qiagen, Crawley, UK). For FFPE tissue, four sections of 10mm
each were first deparaffinized with xylene and then total RNA was
extracted using the miRNeasy FFPE kit (Qiagen). The purity and
concentration of RNA were determined by OD260/280/230 readings
using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Hemel Hempstead, UK). The RNA integrity was
determined by capillary electrophoresis using the RNA 6000 Nano
Lab-on-a-Chip kit and the Bioanalyzer 2100 (Agilent Technologies,
Warrington, UK).

miRNA profiling. MicroRNA profiling was performed using
TaqMan Low Densitiy Arrays (TLDAs) (Applied Biosystems,
Warrington, UK). The TaqMan Array Human microRNA Card Set
v3.0 was used enabling accurate quantification of 754 human
miRNAs. Briefly, 900 ng of total RNA was first reverse-transcribed
using Megaplex Primer Pools, Human Pools Set v3.0 (Applied

Biosystems) and then quantified by PCR on TLDA cards using an
Applied Biosystems 7900HT Real-Time PCR system.

Raw data for the analysis were extracted using the Sequence
Detection System (SDS) Software v2.3 (Applied Biosystems). Each
amplification curve was checked and optimal thresholds for each
miRNA assay were defined using the RQ Manager Software
(Applied Biosystems). Ct values 435 were considered undeter-
mined, whereas those o10 were defined as unreliable. Valid data
was imported into the HTqPCR package (Dvinge and Bertone,
2009) for visualisation, quality assessment, normalisation and
testing for statistical significance in Ct values between different
features. geNorm was used to determine the best set of normalisers,
which were shown to be hsa-miR-26a, hsa-miR-140-5p, hsa-miR-195
and hsa-miR-30b.

MicroRNA quantitative RT–PCR. The identified miRNAs were
evaluated in two independent validation sets from frozen tissue
and a further test set from FFPE tissue by quantitative RT–PCR
(qRT–PCR) using TaqMan miRNA assays (Applied Biosystems).
Ct values of the target miRNAs were normalised in relation to that
of the four reference identified by geNorm analysis. All assays
were performed in duplicate, and no-template real-time controls
were carried along in each experiment. MicroRNA expression
levels (relative quantity, RQ) were calculated using the
comparative Ct method (2-ðCt SAMPLE -Ct MEAN CONTROLÞ) as previously
described and fold change (FC) was computed as
2-ðDCt TUMOUR -DCt NORMALÞ (Livak and Schmittgen, 2001).

Table 1. Clinical characteristics of non-small cell lung carcinoma patients
in this study

TLDA
set

Validation
set 1

Validation
set 2 Total

N 20 45 47 112

Age

mean (s.d.) 65.6 (1.5) 66.4 (1.2) 67.8 (1.3) 67.0 (8.0)

Gender

Male:Female 14 : 6 20 : 25 27 : 20 61 : 51

Histology

Adenocarcinoma 6 13 27 46
Squamous 14 32 20 66

pT stage

1 0 4 12 16
2 18 37 28 73
3 2 4 6 12
4 0 0 1 1

pN stage

0 8 26 31 65
1 7 16 9 32
2 5 3 7 15

Clinical stage

IA 0 4 10 14
IB 8 21 18 47
IIA 0 0 2 2
IIB 6 15 9 30
IIIA 6 5 8 19

Abbreviation: TLDA¼TaqMan Low Densitiy Array.

miRNA-based lung cancer diagnosis BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2013.623 2405

http://www.bjcancer.com


DNA methylation analysis. DNA was isolated from frozen lung
tumour and paired normal tissue using the DNeasy blood and
tissue kit (Qiagen) and quantified using Picogreen (Invitrogen,
Paisley, UK). One microgram DNA was bisulphite converted using
the EZ-96 DNA Methylation-Gold Kit (ZymoResearch, Irvine, CA,
USA). DNA methylation analysis was performed by pyrosequen-
cing (Qiagen) as previously described (Shaw et al, 2006). The
primers and PCR annealing temperatures (Ta) for pyrosequencing
analysis are provided in Supplementary Table 1. The thermal
profile for preparing the pyrosequencing templates was 95 1C for
5 min, followed by 40 cycles consisted of 94 1C for 30 s, Ta
(Supplementary Table 1) for 30 s, 72 1C for 30 s and a final
elongation at 72 1C for 10 min. Hyper/hypo-methylation cut-off
points were calculated using 95% reference range (mean±2� s.d.)
of the normal sample’s methylation values. MicroRNAs � 96,
� 182 and � 183 are clustered sharing the same promoter thus a
single pyrosequencing assays was designed for them.

Statistical analysis

Statistical analysis of the TLDA cards and further biological
validations. Statistical analysis of the TLDA cards and qRT–PCR
data were conducted using statistical computing environment R
(http://www.r-project.org/). For the analysis of the TLDA cards,
significant miRNA differential expression between groups was
classified utilising empirical Bayes moderated t-statistics with the
limma package (http://www.bioconductor.org/). All reported
P-values are adjusted by Benjamini–Hochberg procedure. We
selected miRNAs with X4-fold difference between lung tumour
and normal and adjusted Po0.05 (HTqPCR package). Those
markers showing the highest differential expression between
tumour and normal tissues were selected for further biological
validation. In addition, we validated two miRNAs (hsa-miR-27b
and hsa-miR-34a), with a statistically significant 43-FC, and
which are currently under investigation in our laboratory owing to
their involvement in the mitotic spindle checkpoint process. Both
paired and non-paired t-test (two-tailed) were used to determine
whether a statistically significant change was present in expression
of validated miRNAs between the tumours and adjacent tissues.

Data modelling. A two-step classification scheme to discriminate
tumour samples from normal tissue based on miRNA expression
was implemented using the R packages e1071 (Dimitriadou et al,
2009) and CMA (Slawski et al, 2008). The scheme involved
(i) feature selection and hyperparameter tuning using a combined
Random Forest selection and support vector machine (SVM)
classification approach with accuracy determined using five-fold
cross-validation of validation set 1 (see the Results), and
(ii) training an 8-miRNA linear SVM model on the validation
set 1 using the package e1071. The latter model was validated in
two independent test sets (based on the RNA from frozen and
FFPE tissue, respectively) with performance assessed through
receiver-operating characteristic (ROC) curve analysis using the R
package epiR.

RESULTS

Discovery of aberrant miRNA signatures in NSCLC. We used
miRNA TLDA cards to profile expression signatures of mature
miRNAs on NSCLC tissues and control normal lung tissue (taken
distant to the tumour on the resected lobe). The tumour samples
used in the discovery phase of this study (Table 1) included
adenocarcinomas and squamous cell carcinomas, which are the
most frequent types of NSCLC.

At a significance level of Po0.05 (adjusted for multiple testing)
and a X4-FC cut-off, 73 miRNAs were classified as over-expressed

and 8 were under-expressed in the cancer group. Two major
clusters of samples were observed containing (i) all the normal
tissues and three tumours and (ii) the remaining tumour samples
(Supplementary Figure 1). Twenty-two over-expressed and six
underexpressed miRNAs were selected for further validation, based
on the high expression difference between tumour and normal
tissues.

Validation of differentially expressed miRNA biomarkers for
NSCLC detection. Validation of the 28 miRNAs identified in the
discovery phase, was undertaken by qRT–PCR (Supplementary
Table 2) in an independent cohort of frozen surgical tumour and
normal paired samples from 45 NSCLC patients (validation set 1,
Table 1). As in the discovery phase, internal normalisation was
performed using the average of the four control miRNAs (hsa-
miR-140, hsa-miR26a, hsa-miR-195 and hsa-miR-30b) which were
also assayed individually. All the targets tested were significantly
differentially expressed in lung tumours compared with paired
normal lung (Supplementary Table 2).

Construction of a diagnostic miRNA signature. The data set
consisting of normalised DCT values for 28 miRNA markers
analysed in validation set 1 was used to construct a miRNA-based
diagnostic classifier. Five-fold cross-validation was used to select
the number of miRNA variables, the cost hyperparameter and the
specific miRNAs used in an SVM-based classifier. Random-Forest-
based variable selection implemented in the R package CMA,
revealed that the value of having additional miRNAs in the
classifier decreases significantly after including the top 10 miRNAs.
Consequently, SVM models were constructed containing 4–10
miRNAs, with Random Forest feature selection used to select the
most informative miRNA variables. Sensitivity and specificity for
the resulting models (using the above cross-validation scheme) was
highest with eight miRNAs, the selected diagnostic variables being:
hsa-miR-96, hsa-miR-450a, hsa-miR-183, hsa-miR-9, hsa-miR-
577, hsa-Let-7i, hsa-miR-27b and hsa-miR-34a (sensitivity, 1;
specificity, 0.978; misclassification rate, 0.011). Together with the
four control miRNAs, this constitutes a 12-miRNA panel. The final
SVM model, trained using the eight diagnostic miRNAs and the
whole of validation set 1 was constructed for use in a second round
of validation.

Second validation of the eight miRNA signature. The diagnostic
performance of the constructed algorithm was assessed on a
second independent set of tumour–normal sample pairs, composed
of 40 tumours, 47 normal lung samples taken distal to the tumour
site and 7 samples of histologically normal lung immediately
adjacent to the tumour (validation set 2, Table 1). For this
validation step, tumour and normal samples were entered blindly
into the discriminatory model in order to determine sensitivity and
specificity.

The resulting ROC curve (Figure 1A) has an AUC of 0.989 (95%
CI 97.4–100%, P¼ 10� 15). Using a prediction score cut-off that
maximised the sum of sensitivity and specificity on the data (0.75),
the panel of the markers produced 97.5% sensitivity and 96.3%
specificity for NSCLC in the independent validation cases. The
corresponding positive predictive value was 95.1% and negative
predictive value was 98.1%. The distribution of prediction scores
and the optimum cut-point defined are shown in Figure 1B; the
prediction scores fall largely below 0.32 for normal and above 0.75
for tumour. Thus only 1/40 tumour samples and 2/54 normal
samples were misclassified. The distance between the two groups of
scores is indicative of the veracity of the prediction score (ranging
from 0.51–0.75 all giving the same predictive values).

All the miRNAs in this panel showed significantly higher
expression levels in the NSCLC tumours compared with the
normal (Table 2, Figure 2). Notably, despite a clear separation
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between normal and tumour for prediction score, individually each
miRNA displayed some overlap.

In order to experimentally establish the lowest proportion of
cancer cells for positive identification with the current algorithm,

we applied the method to a two-fold dilution series of tumour in
normal RNA. We used two tumour samples with 75% tumour
content as estimated by histopathology, and a pool of three normal
tissue RNAs. In both dilution series, the diagnostic algorithm
produced a sigmoidal response being able to correctly classify the
dilutions with X18.8% of tumour RNA (Supplementary Figure 1).

Validation of marker panel in FFPE tissue samples. In order to
test the discriminatory efficiency of the prediction score model in
FFPE tissue, normal and tumour FFPE samples from 22 patients in
discovery or validation sets were also assessed (Supplementary
Table 3). The prediction score threshold was lower (0.0026) for
FFPE in comparison to frozen tissue (0.75). Although the
prediction score distributions differed, there was still a clear
separation between tumour and normal FFPE samples (Figure 3B)
and using the optimal FFPE cut-point all tumour samples were
correctly identified and only 1 of the 22 normal samples was
misclassified. The ROC analysis showed that the panel performed
well, giving an AUC of 0.974, (P¼ 10� 6, Figure 3A), with a
sensitivity of 100% and specificity of 95%.

It is of note that the percentage of tumour cells in some of these
samples was as low as 18%, as determined by histopathological
analysis, and that the prediction score was independent of the
percentage of tumour cells in tumour samples. Prediction scores
for both frozen and FFPE tissue were highly correlated (r¼ 0.83,
P¼ 10� 10) (Figure 3C).

1

1
1-Specificity

S
en

si
tiv

ity

P
re

di
ct

io
n 

sc
or

e

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0

1

0.8

0.6

0.4

0.2

0

0

Distant normal Tumour

Optimal cut-pointAdjacent normal

AUC=0.989, P=10–15

Figure 1. Evaluation of the prediction score for tumour/normal status
utilising the validation set 1 data. (A) ROC curve. (B) Distribution of
prediction scores for tumour samples (þ ), normal samples distant to
tumour (� ) and normal samples adjacent to tumour (circles).

Table 2. Comparison of expression levels (FC) of the validated eight
miRNAs between frozen tumours and normal samples (validation set 2)
and FFPE tissues

Frozen samples
(validation set 2) FFPE samples

FC t P FC t P
hsa-Let-7i 2.4 �3.9 o0.001 2.67 � 4.59 o0.001

hsa-miR-183 16.4 �4.89 o0.001 6.98 � 8.32 o0.001

hsa-miR-27b 2.2 �5.41 o0.001 1.67 � 5.62 o0.001

hsa-miR-34a 0.61 �6.59 o0.001 2.25 � 3.83 o0.001

hsa-miR-450a 3.55 �2.76 o0.01 4.59 � 7.16 o0.001

hsa-miR-577 22.2 �4.37 o0.001 12.51 � 5.83 o0.001

hsa-miR-9 39.6 �2.3 o0.05 10.76 � 5.18 o0.001

hsa-miR-96 16.3 �4.41 o0.001 9.17 � 9.237 o0.001

Abbreviations: FC¼ fold change; FFPE¼ formalin-fixed paraffin-embedded.
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Correlation between clinical data and the expression of the
miRNAs in the model. The expression levels of the miRNAs in
the model are independent of the age, gender and tumour stage.
Only the tumour size demonstrated a statistically significant
correlation with RQ-hsa-miR-96 (Po0.008) and RQ-hsa-miR-
450a (Po0.018).

We also found that the expression of hsa-miR-9, hsa-miR-96
and hsa-miR-577 was significantly higher in squamous
carcinomas than in adenocarcinomas while the opposite
relationship was found for hsa-miR-34a. Nonetheless it should
be noted that the discriminatory power of the model is good
regardless the histology of the tumour as each of the miRNAs in
the model is highly overexpressed in all the tumours compared
with normal tissue.

Kaplan–Meier analysis demonstrated no statistically significant
association between the expression of the miRNAs in the model
and the patients’ prognosis.

Methylation of miRNA loci in NSCLC patients. Eleven out of
the 28 miRNAs found to be deregulated in NSCLC in this study
harbour a high/medium CpG content in their promoter (Table 3).
We therefore examined their methylation status by pyrosequencing
in 39 pairs of primary NSCLC tumours and corresponding normal
lung tissues from the first validation set. Furthermore, we have
evaluated LINE-1 hypomethylation, a surrogate marker of global
DNA hypomethylation (Daskalos et al, 2009).

Hypermethylation in NSCLC tissue was observed for hsa-miR-
34a (83%), hsa-miR-9.2 (45%) and hsa-miR-9.3 (46%), while
hypomethylation was detected in the tumours for hsa-miR-27b
(51%), hsa-miR-182 (31%), hsa-miR-24.1 (39%), hsa-miR-23b
(28%), hsa-miR200b (23%), hsa-miR-486 (44%) and hsa-miR-338
(74%) (Table 3). Hypomethylation in the tumours was also
detected for LINE-1 (77%) while hsa-Let-7i was not methylated in
either the tumour or normal tissue. LINE-1 methylation levels
correlated with those of hsa-miR-27b (r¼ 0.52, P¼ 1� 10� 6),
hsa-miR-338 (r¼ 0.65, P¼ 2� 10� 10) and hsa-miR-486 (r¼ 0.53,
P¼ 7� 10� 7), while it inversely correlated to that of hsa-miR-34a
(r¼ –0.66, P¼ 3� 10� 10). The criteria for these Spearman’s
correlations were set to r40.5, Po10� 4 to adjust for multiple
testing. In addition, the methylation levels of hsa-miR-27b
correlated to that of hsa-miR-23 (r¼ 0.56, P¼ 1.2� 10� 7) and
hsa-miR-24.1 (r¼ 0.50, P¼ 1.9� 10� 5), which belong to the same
cluster.

Upon comparing the miRNA expression in relation to the
methylation levels of their corresponding loci, we found that the
expression of hsa-miR-27b was higher 1.8-fold (RQ: 0.093±0.06)
in the hypomethylated tumours compared with the non-
hypomethylated ones (RQ: 0.053±0.026, Mann–Whitney,
P¼ 0.026). For the remaining miRNAs, the trends noted between
methylation and expression did not reach statistical significance.

On the other hand, hypomethylation in miR-96/182/183
locus was associated with lower expression of hsa-miR-96
(hypomethylated: RQ¼ 0.021±0.019; non-hypomethylated:
RQ¼ 0.041±0.025, P¼ 0.019) and hsa-miR-183 (hypomethylated:
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Table 3. Methylation levels in tumour and normal tissues

Methylation level
(mean±s.d.) T-test

miRNA locus Tumour Normal P-value
% hyper/

hypomethylation

hsa-Let-7i 0±0 0.1±0.4 0.2 0

hsa-miR-96/182/183 89.4±2.5 90.4±0.9 0.04 31

hsa-miR-23b 75.8±11.7 81.6±2.3 0.002 28

hsa-miR-27b 84.8±13.2 93.9±2.2 7�10� 5 51

hsa-miR-24.1 80.7±15 87.2±3.9 0.005 39

hsa-miR-200b 83.9±11.2 88±2 0.03 23

hsa-miR-338 48.4±13.9 67.6±3.3 1�10� 9 74

hsa-miR-34a 76.2±14.6 57.4±5.3 5�10� 8 83

hsa-miR-486 89.1±7.4 93.4±1 0.0007 44

hsa-miR-9.2 10.8±13.5 1.8±1.6 0.0002 45

hsa-miR-9.3 12.7±10.2 7.4±2.2 0.001 46

LINE-1 55.4±8.2 68.6±2.1 2�10� 12 77

Significant P-values are highlighted in bold.
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RQ¼ 0.06±0.04; non-hypomethylated: RQ¼ 0.04±0.04, P¼ 0.028).
Notably, in this case the relationship of decreased miRNA
expression with genomic DNA hypomethylation was only true
for tumours, as normal tissue still had lower expression than
tumours with non-hypomethylated miR-96/182/183 locus
(Supplementary Figure 2).

DISCUSSION

Histology is the cornerstone of pathological analysis for lung
cancer diagnosis, but can be challenging for a number of reasons
including limited sample availability (as for needle biopsies of
CT-detected indeterminate nodules) and ambiguous microscopic
appearance (close to resection margins, or when quality is
compromised by technical artefacts). There is a growing reliance
on molecular diagnosis, especially for identification of clinically
relevant histo-molecular subgroups. Cancer-specific miRNA
expression patterns have been previously reported in lung cancer
raising the question of clinical utility (Xing et al, 2010; Yu et al,
2010; Boeri et al, 2011). Here we examine miRNA suitability for
molecular diagnosis in NSCLC.

In this study, we developed a miRNA panel based on an
unbiased, systematic way, and evaluated its diagnostic efficiency
through a multi-stage independent validation series. Further-
more, we confirmed the applicability of this panel in FFPE tissue,
demonstrating the potential to use in CT-assisted diagnostic
biopsies. We applied a systematic approach by using different
technical platforms in three independent patient groups to
discover and validate miRNA biomarkers for lung squamous cell
carcinoma and adenocarcinoma, which comprise the large
majority of NSCLCs. The similarity in the principle of TLDA
cards (discovery) and qRT–PCR technology (validation) certainly
contributed to successful downstream validation of all the
miRNA candidates selected in discovery phase. A biomarker
panel of eight discriminatory miRNAs and four normalisation
control miRNAs has been assembled, demonstrating high
sensitivity and specificity of delineation of normal lung and
NSCLC tumour samples.

It should be noted that none of the miRNAs identified as
significantly up-regulated in tumour tissue would be individually
used as diagnostic biomarkers; Figure 2 clearly indicates that
despite significant differential expression, there is overlap in
expression levels. This is due to the significant variability between
tumours in terms of expression levels and the admixture of cell
types. However, by modelling the eight miRNA markers, a robust
discriminatory tumour prediction score is achieved, which adds
further support to the use of multi-locus biomarker panels for
optimum sensitivity and specificity, as has been seen for other
molecular alterations such as DNA methylation (Nikolaidis et al,
2012).

The prediction model built on the first validation data set was
subsequently blindly tested in a second independent set of frozen
tissue samples, resulting in a sensitivity and specificity of 496%.
It is important to note that the efficiency of this panel proved to
be uniform across pathological and clinical stages of lung cancer
in our data set, indicating that it is very efficient from the early
stages of the disease. However, having in mind its ultimate
clinical use, it was imperative that we tested this panel in small
FFPE samples as these are the standard pathology specimens to
be utilised in CT-screening studies. The prediction model was still
valid in this alternative sample type (sensitivity of 100%,
specificity of 95%, ROC-AUC value of 0.97). It is of note the
275 ng of total RNA used in these assays represented on average
only 8% of a single 10 micron FFPE section. This underlines the
feasibility of using this panel in NSCLC diagnostic applications

when limited amounts of material are available, for example, FNA
or biopsy samples taken to identify indiscriminate nodules
detected by CT screening.

The lowest proportion of tumour material in the clinical
samples assayed in this study was B18%. Moreover, we
determined experimentally that the lowest fraction of tumour cells
required for correct classification by this algorithm using two
dilution series of frozen tumour into normal tissue RNA was
18.8%. This demonstrates that the potential analytical sensitivity of
this method is just below 20%, thus being tolerant to significant
contamination by normal tissue material. Of course, certain
diagnostic biopsies may contain even lower fractions of tumour
cells. In such cases, diagnosis in NSCLC biopsies can be also
facilitated by specific immunohistochemical markers (Kayser et al,
2013). It is likely that a combination of the two methods may
significantly complement each other, resulting in a highly accurate
diagnostic test. The ability to detect significant miRNA patterns in
small samples, containing a variety of proportions of tumour
tissue, as exemplified by the FFPE results, may be partly due to a
proportion of this miRNA expression resulting from tumour-
reactive stroma. The relatively high prediction scores, of two of the
normal adjacent sections compared with tumour-distant normal
samples supports this suggestion. An additional question that has
to be addressed following this study is the predictive accuracy of
this panel in preneoplastic lesions, in other words the ability to
predict lung preneoplastic associated with malignant transforma-
tion. This will significantly boost the early detection potential of
the method.

Our miRNA profiling revealed significant increase of
hsa-miR-183 and hsa-miR-96 expression in lung cancer tissue
compared with normal tissue, being in agreement to previous
reports (Cho et al, 2009; Miko et al, 2009; Ma et al, 2011; Zhu et al,
2011). The miR-183 family members (hsa-miR-96, hsa-miR-182
and hsa-miR-183) are involved in the regulation of a wide range of
cellular processes including cell proliferation (Segura et al, 2009;
Lin et al, 2010), senescence (Li et al, 2009), cell migration (Lowery
et al, 2010; Sarver et al, 2010) and metastasis (Segura et al, 2009).
Hsa-miR-183 expression has demonstrated a potential oncogenic
role by targeting EGR1 and PTEN (Sarver et al, 2010), but opposite
results have also been found in a highly metastatic human
pulmonary giant cell line, in which up-regulation of hsa-miR-183
repressed invasion and migration through targeting Ezrin, thus
indicating that it also has a metastasis suppressor role (Wang et al,
2008). Hsa-miR-96 down-regulates both RAD51 and REV1
(involved in the homologous recombination and repair of DNA)
and it might have a critical role in inhibition of DNA repair and
chemosensitivity (Wang et al, 2012).

In our study, hsa-miR-27b was found to be markedly up-
regulated in lung cancer tissues. The miR-27b/miR24.1/miR-23b
cluster was significantly hypomethylated, and this hypomethyla-
tion significantly correlated with the overexpression of hsa-miR-27b,
thus indicating the potential epigenetic deregulation of this miRNA
in lung cancer. Down-regulation of hsa-miR-27b has been reported
in lung cancer tissue (Yanaihara et al, 2006; Hirota et al, 2012) and
in serum from NSCLC patients (Hennessey et al, 2012). Hsa-miR-
27b expression levels have also been previously correlated with
invasiveness of breast cancer (Wang et al, 2009) and with
regulation of angiogenesis (Kuehbacher et al, 2008).

Hsa-miR-9, which represses the expression of E-cadherin
promoting cell motility and invasiveness (Lu et al, 2012), was
found to be over-expressed in NSCLC in our study. miR-9.2 and
miR-9.3 loci were hypermethylated in 44.7% and 46.2% of NSCLC
tumours examined. The hypermethylation of miR-9.3 has been
previously reported (Heller et al, 2012) (Kitano et al, 2011). In our
study, hypermethylation of miR-9.2/9.3 did not correlate with
expression of miR-9, thus indicating that miR-9 might be regulated
through other mechanisms; for example, regulated by PROX1
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(a homeobox transcription factor) as has recently been reported
(Lu et al, 2012).

miR-34a was overexpressed in most of the tumours in this
study and hypermethylation of miR34a was a frequent alteration
(83.3% of the tumours), but this aberrant methylation was not
related to miR-34a expression. This is in agreement with previous
reports showing no direct correlation between miR-34
methylation status and miR-34 expression levels (Corney et al,
2010; Tanaka et al, 2012) but contrasts one study reporting that
methylation of this promoter region suppresses miR-34a
expression in lung cancer (Gallardo et al, 2009). The miR-34
family includes three processed miRNAs that are encoded by two
different genes: miR-34a is encoded by its own transcript,
whereas miR-34b and miR-34c share a common primary
transcript. The promoter regions of both loci include a
p53-binding site (He et al, 2007), and it has been shown that
the miR-34 gene family members are downstream transcriptional
targets of p53.

In this study, we have observed a very diverse degree of
deregulation (up- and down-) of many miRNAs between normal
lung and tumour tissue. The reduction of Dicer expression in a
fraction of NSCLCs (Karube et al, 2005) might imply an overall
reduction of miRNA levels which has not seen in our data set. This
is not surprising as miRNA expression regulation is a complicated
process and Dicer is only a part of this. Nevertheless the inclusion
of multiple endogenous controls in our reactions would normalise
values for such an overall reduction and thus would not affect the
algorithm.

Overall, our results confirm that DNA methylation has a minor
role in regulating the expression of these miRNAs in the diagnostic
panel validated in this study. DNA hypomethylation may be
responsible for the up-regulation of mature hsa-miR-27b, but
conversely may have a role in the decreased expression of hsa-miR-96
and hsa-miR-183 in some tumours. Moreover, the correlations
observed in methylation levels of the miR-27b cluster stresses the
importance of cistronic expression regulation whereby deregula-
tion of one member of the cluster is accompanied by similar
deregulation of other cluster members.

In conclusion, we have developed a panel of miRNAs that can
be reliably utilised in both frozen and FFPE lung tissue to assist
clinical diagnosis of NSCLC with high sensitivity and specificity.
This panel could enhance the diagnostic efficiency by either
complementing histological diagnosis or assessing tumour
margins; it certainly seems to be most relevant to the emerging
importance of CT-detected lesions, where it might be applied to
minimal biopsies of indeterminate nodules. The full clinical
potential for this miRNA biomarker panel needs to be tested in a
prospective setting, expanding the lung cancer types (small cell,
large cell, etc.) to be included and also testing preneoplastic
lesions.
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