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Abstract

Complex systems modeling can provide useful insights when
designing and anticipating the impact of public health interven-
tions. We developed an agent-based, or individual-based, compu-
tation model (ABM) to aid in evaluating and refining implementa-
tion of behavior change interventions designed to increase physic-
al activity and healthy eating and reduce unnecessary weight gain
among school-aged children. The potential benefits of applying an
ABM approach include estimating outcomes despite data gaps, an-
ticipating impact among different populations or scenarios, and
exploring how to expand or modify an intervention. The practical
challenges inherent in implementing such an approach include
data resources, data availability, and the skills and knowledge of
ABM among the public health obesity intervention community.
The aim of this article was to provide a step-by-step guide on how
to develop an ABM to evaluate multifaceted interventions on
childhood obesity prevention in multiple settings. We used data
from 2 obesity prevention initiatives and public-use resources. The
details and goals of the interventions, overview of the model
design process, and generalizability of this approach for future in-
terventions is discussed.

Background

Researchers have called for the development of systems-science
models to study topics in public health (1-6) and evaluate inter-
ventions (7,8). Such models have made advances in infectious dis-
ease epidemiology (9,10) but have not been broadly used for
studying chronic disease prevention. Agent-based modeling
(ABM) is a promising computational tool for research on child-
hood obesity prevention (6). “Agents” are defined by the users:
they can be cellular organisms, people, companies, cities,
products, and so forth. In some fields, ABM is referred to as “indi-
vidual-based” modeling. The approach is especially useful when
detailed information about individual behavior exists, but the in-
fluence of an intervention on that behavior is uncertain (1). An
ABM starts by defining properties and behaviors of agents and
then simulates how agents change and interact over time. Using
ABMs to assess how heterogeneous agents respond to changes in
their environment provides a laboratory to examine outcomes
while accounting for pathways through which an intervention may
influence behavioral change.

Despite the potential of ABMs in examining how people may re-
act to an intervention, few articles have discussed the steps neces-
sary to create such models. This article aims to address this gap.
Using a case study approach, it explains the procedures followed
and the challenges arising in the process of designing an ABM to
inform interventions for preventing childhood obesity. The em-
phasis of this article is on process rather than findings — model-
ing results or empirical tests of the prototype model are not repor-
ted. The Tufts University Institutional Review Board approved the
interventions described in this article.
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Case Study

ChildObesity 180, based at Tufts University, is an organization
committed to reversing the trend of childhood obesity (www.chil-
dobesity180.org). The organization combines research and evalu-
ation, innovative strategies, multisector collaboration, and eventu-
al widespread promulgation of practices. The organization’s goal
is to use an evidence-based approach to develop initiatives with
long-term impact and to monitor and measure performance of the
initiatives against established goals. ChildObesity180 consists of 4
initial areas of intervention targeting school-aged children: healthy
school breakfast, quality physical activity in schools, healthy eat-
ing and active time during out-of-school programming, and health-
ier eating in restaurants. This article uses data from 2 Chil-
dObesity180 interventions: Active Schools Acceleration Project
(ASAP) and Healthy Kids Out of School (HKOS). ASAP
(www.activeschoolsasap.org) aims to increase daily moderate-to-
vigorous physical activity (MVPA) through 3 different school-
based physical activity programs. Program 1, a before-school pro-
gram; Program 2, a classroom-based program; and Program 3, a
walking/running program offered throughout the school day. The
goal of HKOS (www.healthykidshub.org/) is to create healthy out-
of-school-time (OST) programs in various environments. OST
programs adopt and implement 3 evidence-based principles: 1)
Drink Right: choose water instead of sugar-sweetened beverages;
2) Move More: boost movement and physical activity in all pro-
grams; and 3) Snack Smart: fuel up on fruits and vegetables (10).

Steps to Design an Agent-Based Model

One challenge in designing an ABM is to balance realism and
parsimony (11). A model that is too simple may fail to offer in-
sight into the particular problem, whereas one that is too complex
will be difficult to understand and interpret. Deciding how much
detail to include for any given problem is critical. A first step for
any modeling effort is to specify the goals and questions for the
model. This decision guides implementation choices.

The goals of our ABM were to 1) develop a mechanistic model of
the baseline context into which ChildObesity180 interventions are
introduced, as well as how each intervention functions (to im-
prove realism of impact estimates); 2) anticipate how each inter-
vention might work across diverse populations; and 3) provide a

computer platform to explore how the interventions could grow or
be modified to maximize impact. The questions driving the
model’s construction were the following: 1) how childhood body
mass index (BMI) changes over time and 2) how this change is af-
fected by decreased caloric intake or increased physical activity as
a result of the interventions. These questions drove each decision
to include or exclude a variable in the model design. Constructing
and testing the ABM followed a 5-step process.

Step 1. Characterize BMI dynamics of the simulated
agents

ABM requires the modeler to define the properties of each agent
and specify how the properties change over time. Two questions
must be answered for each property: 1) what the initial distribu-
tions are across the population and 2) what rules determine change
over time. For example, for our model, the outcome was change in
body mass index (BMI), and it has the properties of height and
weight. Agents in the model grow in height at an empirically de-
rived rate (estimated using the Centers for Disease Control and
Prevention’s [CDC’s] growth charts [12]) uncoupled from behavi-
or. The average rate of growth is conditional on age and sex,
which required the modeling of age and sex as agent properties.
These properties were assigned to agents based on empirical distri-
butions informed by US Census data (13): 51% boys with a uni-
form distribution over ages 6 to 12. Sex does not change, but age
increases linearly with time.

Multiple methodologies exist to specify body weight dynamics
(14-16). For this study, the ABM required a model of weight
change that 1) would apply to children aged 6 to 12, and 2) would
require just enough inputs to model reality while adhering to the
ABM parsimony design element. Based on these criteria, a hybrid
model was built that translated caloric intake, time spent in physic-
al activity, and physical activity intensity into changes in BMI.
The hybrid model computed energy balance (calorie intake minus
calorie expenditure) and assumed that a calorie surplus or deficit
translates into weight change at a rate of 7,700 calories per kilo-
gram.

Two final factors required initial distributions and trajectories be-
fore the BMI change property could be fully characterized: calorie
expenditure and calorie intake. Calorie expenditure was modeled
using the standard Schofield equation (14), which estimates rest-
ing metabolic rate (RMR) from height (H), weight (W), age, and
sex:

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. Department of Health and Human Services,

the Public Health Service, the Centers for Disease Control and Prevention, or the authors’ affiliated institutions.

2 Centers for Disease Control and Prevention ¢ www.cdc.gov/pcd/issues/2016/15_0414.htm



PREVENTING CHRONIC DISEASE

PUBLIC HEALTH RESEARCH, PRACTICE, AND POLICY

VOLUME 13, EO4
JANUARY 2016

For boys aged 3 to 10 years, RMR = 19.59W+ 1.303H + 414.9
For boys aged 10 to 18 years, RMR = 16.25W+ 1.372H+ 515.5
For girls aged 3 to 10 years, RMR = 16.969W+ 1.618H+ 371.2
For girls aged 10 to 18 years, RMR = 8.365W + 4.65H + 200.0

Calorie expenditure, in turn, was computed as the product of RMR
from the Schofield equations and a multiplier signifying the dura-
tion and intensity of daily physical activity.

Daily calorie intake was estimated using National Health and Nu-
trition Examination Survey (NHANES) 2003-2006 data (17,18);
when we designed our model, there were no models that predicted
food consumption for children aged 6 to 12 years. Using
NHANES data and controlling for anthropometric and demo-
graphic data, we regressed calorie intake on RMR. The resulting
regression coefficient defined children’s daily calorie intake
without the intervention. This assumption provided a baseline es-
timate from which the effects of interventions could be estimated
while also computing realistic growth patterns of the simulated

children (Figure 1).

Height

Figure 1. A visual representation of the agent-based model describing BMI
dynamics in each agent. Abbreviations: BMI, body mass index; PA, physical
activity; RMR, resting metabolic rate.

Step 2. Characterize the environments in which
agents live

To move from the individual-level model of BMI change to a pop-
ulation-level model of BMI change, each agent had to be assigned
an initial value for each key variable. Each assignment was drawn
from an empirical distribution.

Another important tension in the design of an ABM is the balance
between empirical fidelity to one context (for example, settings in
which ChildObesity180 is active and collecting data) and general-
izability. Balancing these goals requires close attention to the
stated design and questions. Because the central purpose of our
model was to assist ChildObesity180 in considering expansion and
modification of the interventions, an effort was made to preserve
generalizability by creating stylized settings (in other words,
“town types”) based on population-based survey data.

For example, weight and physical activity level vary according to
context. Our model defined 3 town types: town A (average child-
hood obesity rates), town B (higher than average childhood
obesity rates), and town C (lower than average childhood obesity
rates). In each town type, the initial BMI distribution was gener-
ated using the LMS method (12). The LMS method transforms a
standard normal random variable into a skewed normal random
variable, with given median (M), standard deviation (S), and
power in the Box—Cox transformation (L). The S and L paramet-
ers are drawn from the CDC’s growth charts, which are condition-
al on age and sex; M parameter varies based on town type (Table).

For town A and town B, the BMI median was computed from
NHANES 2003-2006 data (17,18). For town C, the BMI median
was equal to the median defined in CDC’s growth charts. The
BMI distribution for town A represented the average US com-
munity according to current childhood obesity rates (approxim-
ately 15% of children are obese). The BMI distribution in town B
shifted toward the right (ie, greater BMI) of the town A median by
0.5 units. Town C was stylized to represent a BMI distribution be-
fore the rise of the US childhood obesity epidemic.

The NHANES 2003-2006 data sets were chosen for our model be-
cause they include objective measures of physical activity, 24-
hour dietary recall data, and data on measured height and weight
for children aged 6 to 12. The data sets also allowed for an empir-
ically derived BMI distribution of the US population. To our
knowledge, no other publicly available, nationally representative
survey includes all of these features, not even the more recent
cycles of NHANES data. We also chose to use baseline data from
the same data set to the extent possible rather than merging data
from different sources.

In addition to estimating the BMI distribution across town types,
we defined 2 key behaviors: physical activity and dietary intake.
Physical activity was expressed in combinations of metabolic
equivalent of tasks (METs) and duration by time of day (ie, be-
fore school, during school, and after school). Town A physical
activity estimates were derived from NHANES 2003-2006 accel-
erometer data. To obtain data in the form required for the model
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— estimates of moderate to vigorous physical activity (MVPA) by
time of day — a novel methodology had to be developed (E.H. et
al, unpublished data, 2015). In town B, we assumed that no phys-
ical education took place in school but some physical activity took
place after school. In town C, we assumed that agents engaged in
the same amount of physical activity as town A during school but
slightly more physical activity after school. Using the Youth Com-
pendium of Physical Activity, we defined MVPA as a MET value
of 6.0 (19). Sleep (10-hour duration) was assigned a MET value of
1.0. Sleep duration was estimated from national recommendations
on healthy sleep for children (20) and other research (21) because
the NHANES data sets did not allow for this estimation. Time
spent in sedentary activity was assigned a MET value of 1.5.

The model simulated each agent’s physical activity at minute in-
crements during 24 hours and then converted these estimates into
time-weighted average physical activity levels (PALs). The
agent’s total energy expenditure (TEE) for that day equals its
RMR multiplied by its PAL. For dietary intake, we assumed that
town A agents consumed a multiple of their RMR daily and the
data had a normal distribution derived from NHANES data. Diet-
ary intake in town B was the same as that in town A, but in town
C, the RMR multiplier was lower (by 0.01), reflecting healthier
eating habits.

Step 3. Characterize agent movement between
home, school, and community

Next, the model was designed to follow this population of simu-
lated children across 3 contexts: home, school, and community. In
each community, a proportion of agents attend an after-school pro-
gram; the proportion was based on national attendance at after-
school programs, approximately 15% of the US child population
(22). The model assumed the same distribution of after-school
program attendance across town types because we could not find a
data source that would explain whether this parameter would dif-
fer by town type. The model simulated energy intake and energy
expenditure for each agent on each day in each context.

Time. Time was divided into 1-hour segments (or “ticks”). Agents
moved between contexts according to time. At 08:00 all agents
move from home to school. At 15:00 all agents leave school and
move home or to community. At 19:00 all agents who are not
already at home return home. Energy intake and expenditure were
recorded hourly and then summed for the day at midnight to pro-
duce a calorie-gap estimate. The model ran for a period of 1 calen-
dar year (365 days).

Environment. The environment consisted of 56 homes, 12 schools,
and 3 community locations. The average elementary school has
400 students. These values were stylized identically for each town
type; varying them would have no effect on the underlying dy-
namics of the model.

Step 4. Characterize environmental change
(intervention exposure)

The next step was to define and operationalize the interventions
(ASAP and HKOS) to which the simulated agents would be ex-
posed.

ASAP. Data were collected in spring 2013 by direct observation of
physical activity performed by 100 children attending 6 ASAP ele-
mentary schools in California, New York, and Massachusetts (un-
published data, ChildObesity180, 2013). Dose was defined as the
amount of MVPA delivered by each ASAP program. The step-
wise process for estimating dose was the following:

Step 4a: Estimate RMR using the Schofield equation.

Step 4b. Estimate intervention energy cost (eg, time-weighted
MET level) for each program.

Step 4c. Estimate energy expenditure from RMR and interven-
tion data using inputs from Step 4a and 4b by sex, age, day, and
program.

Reach was defined as the percentage of the student population
who received the program. Using our observational data and pub-
licly available program evaluation reports, we estimated that the
classroom-based ASAP program (Program 2) would reach 90% of
the student population, the before-school ASAP program (Pro-
gram 1) would reach 10%, and Program 3 would reach 75%. Re-
tention was defined as the percentage of the student population
who remained in the program at the end of the year. We estimated
that Program 1 and Program 2 would each retain 80% of the stu-
dent population and Program 3 would retain 90%.

HKOS. We assumed that the Drink Right component would result
in the intake of 60 fewer calories because agents would choose
water over a sugar-sweetened beverage (23). For Snack Smart, we
assumed that agents would consume 68.25 fewer kcals because
they would substitute a standard cup serving of fruit for a typical
energy-dense salty or sweet single-serve snack offered in an after-
school program environment; this exchange was extrapolated from
ChildObesity 180 HKOS survey data (24).
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The change in MVPA attributed to HKOS’s Move More compon-
ent was 4.5 METs, a standard cut-point for characterizing MVPA
(19). This cut-point was different from the cut-point used in
ASAP. Based on the observational data, we knew the types of
activities that were performed during ASAP (eg, Program 3 in-
volved walking or running or both), so those activities could be
modeled directly. With Move More, the physical activities of the
different after-school programs (eg, sports practice vs scout meet-
ing) varied; therefore a standard 4.5 MET definition was assumed.
The model assumed 80% retention for HKOS. The Table provides
a summary of the ABM properties, data inputs, and assumptions
described in Steps 1-4.

Step 5. Model implementation, refinement, and
testing

The ABM was constructed using NetLogo 5.1.0 (https://ccl.north-
western.edu/netlogo/5.1.0), a multi-agent programmable model-
ing environment (Figure 2).

Figure 2. Overview of the agent-based modeling Netlogo interface. Each
component of the model was programmed by the modeling team. Fields in the
left column indicate each intervention or intervention component. For Town-
Type (top of left column), users can select one of 3 town types (town A, town
B, or town C); here town type A is selected. Moving down the column, for the
Active Schools Acceleration Project (ASAP), each of 3 programs (Program 1,
Program 2, and Program 3) is represented by an on/off switch; each program
can be turned on or off independently of one another. For Healthy Kids Out of
School (HKOS), each of 3 programs (Drink Right, Move More, and Snack
Smart) is represented by an on/off switch; each program could be turned on
or off independently of one another, but generally HKOS is treated as 1
intervention with all components turned on. The setup button initializes the
simulation, creating agents according to assigned properties. The “go” button
instructs the agents to carry out their behaviors. Two fields display outputs for
the day and time reached by the simulation. A sliding scale for after-school
participation characterizes the proportion of children who participate in the
after-school program. At the bottom of the column, 2 fields show outputs of
the percentage of children who are overweight and obese, by sex. Users
select the “setup” then “go” buttons to allow agents to move, eat, and
exercise in real time (illustrated in the center screen). The right column
displays changes in agent or town properties (mean BMI, mean caloric intake,
mean daily energy expenditure, and average calorie surplus) over time.
Abbreviations: BMI, body mass index; DEE, daily energy expenditure.

We have not yet completed Step 5. Completion will involve fol-
lowing best practices (25) for testing the model (using outcome
data from the ChildObesity180 interventions, which are not yet
available), refining assumptions and parameters iteratively, and
conducting sensitivity analyses to establish the dependence of res-
ults on each assumption made. For instance, when we test the
model, we will use data from ASAP to seed the initial distribu-
tions instead of generating stylized distributions. Other testing will
involve using the intervention outcome data to determine how well
the model predicts BMI change. Model refinement will include al-
tering assumptions of the environment (eg, 365-day calendar vs an
academic calendar), agent properties (eg, differences in behavior-
al patterns between weekdays and weekends), and intervention
characteristics (eg, reach and retention estimates). Sensitivity ana-
lysis will systematically co-vary assumptions and parameters to
establish a comprehensive portrait of model behavior.

Conclusion

A model-based approach to intervention evaluation and design of-
fers several benefits. First, it forces the researcher to be explicit
about model assumptions. The model design process described in
this article makes clear all the steps required to develop the
model’s assumptions and the decision points at which the re-
searcher must accept those assumptions or refine them. Second,
knowledge from multiple sources can be leveraged. Our model
builds on studies of RMR; population-based, public-use survey
data; and primary source data. A quantitative model helps to con-
solidate this wide array of information to make it useful for predic-
tion and evaluation of intervention outcomes. Third, models can
be useful tools for communication: model assumptions must be
formalized, and the implications of those assumptions must fol-
low logically. As of this writing, no standard protocol exists for
describing system-science simulation models, which can make
them difficult to understand and duplicate. It is therefore import-
ant for the model builder to communicate clearly how the model
was constructed and implemented.

The modeling effort outlined here stopped short of testing explan-
atory or predictive power; nonetheless, the modeling process un-
covered important gaps in data and sparked new analysis to make
the best use of existing data. The iteration between model refine-
ment, data collection, and analysis can be a key contribution of
formal models in the context of public health.
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Table

Table. An Agent-Based Model® Designed for Two Childhood Obesity Prevention Interventions®: Properties and Data Inputs by Styl-

ized Town Type®

Stylized Town Type

Town A — Average Childhood

Town B — Higher Than Average

Town C — Lower Than Average

Characteristic Obesity Rates Childhood Obesity Rates Childhood Obesity Rates
Town
General Empirically derived US population Has a lower socioeconomic status, a Has a higher socioeconomic status,
average from NHANES 2003-2006 |larger proportion of racial/ethnic a smaller proportion of racial/ethnic
data minority residents, and a higher minority residents, and a lower
obesity rate than town A obesity rate than town A
Sex 51.1% boys, 48.9% girls; based on Same as town A Same as town A

empirical distributions informed by
US Census data (13) for children
aged 6-12y

Race/ethnicity

Estimates generated from NHANES
2003-2006 data

Higher than town A

Lower than town A

Socioeconomic status

Qualitatively assigned as Middle

Qualitatively assigned as Low

Qualitatively assigned as Upper

Agent
Age Uniform, random distribution of Same as town A Same as town A
children aged 6-12y
Sex Random distribution Same as town A Same as town A
Height An empirically derived rate estimated |Same as town A Same as town A
from CDC’s growth charts (12)
Weight Calculated from height Same as town A Same as town A
BMI BMI based on distribution analysis of |Distribution for town B is shifted 0.5 Generated from CDC growth charts
NHANES 2003-2006 data to BMI units to the right (ie, greater BMI) |to represent “ideal” or “fitter-than-
represent population average of of distribution for town A current-population-average”
childhood overweight/obesity distribution
RMR Determined according to Schofield Same as town A Same as town A
equations, which estimate RMR from
height (H), weight (W), age, and sex:
* Boys aged 3-10y, 19.59W +
1.303H + 414.9; boys aged 10-18Yy,
16.25W+ 1.372H + 515.5
* Girlsaged 3-10y, 16.969W +
1.618H + 371.2; girls aged 10-18Yy,
8.365W+ 4.65H + 200.0
Agent behavior

Abbreviations: BMI, body mass index; CDC, Centers for Disease Control and Prevention; MET, metabolic equivalent of tasks; NHANES, National Health and Nutri-
tion Examination Survey; RMR, resting metabolic rate.
@ There are various definitions of agent-based modeling, but from a practical standpoint, an agent-based model is an individual-based approach to computer mod-
eling in which agents (in this model, children aged 6-12), environments (in this model, the children’s community, or town), and the interventions (in this model, 2
obesity-prevention programs) are assigned properties; a computer simulation is run (in this model, agents move, eat, and exercise); and outcomes are generated

(in this model, changes in BMI).

P The 2 interventions are the Active Schools Acceleration Project and Healthy Kids Out of School Time, both implemented by Tufts University-based Chil-

dObesity180.

C Stylized towns represent potential “real world” communities in which ChildObesity180 interventions will be implemented.

(continued on next page)
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the Public Health Service, the Centers for Disease Control and Prevention, or the authors’ affiliated institutions.
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(continued)

Table. An Agent-Based Model® Designed for Two Childhood Obesity Prevention Interventions®: Properties and Data Inputs by Styl-

ized Town Type®

Characteristic

Stylized Town Type

Town A — Average Childhood
Obesity Rates

Town B — Higher Than Average
Childhood Obesity Rates

Town C — Lower Than Average
Childhood Obesity Rates

Daily physical activity
(energy expenditure)

Expressed in combinations of METs
and duration by time of day (ie,
before school, during school, and
after school). Estimates derived from
NHANES 2003-2006 accelerometer
data.

Lower levels than those in town A: No
physical education during school but
some physical activity after school

Same as town A during school; more
than town A after school

Daily dietary intake (energy
intake)

Town A agents consume a multiple of
their RMR daily; normal distribution
derived from NHANES 2003-2006
data.

Same as town A

Multiplier lower than town A (by
0.01)

Sleep

10 hours per night, according to
National Sleep Foundation (21) and
other research (22)

Same as town A

Same as town A

Movement of agents from
home to school and back
on each weekday

15% of agents stop in the community
to attend an after-school program on
their way home from school (23)

Same as town A

Same as town A

Time segment

School hours

8:00 am to 3:00 pm; assumption
based on extant literature

Same as town A

Same as town A

Home hours

Midnight to 7:59 am; 7:00 pm to
11:59 pm; assumption based on
extant literature

Same as town A

Same as town A

Community (after-school
program)

3:01 pm to 6:59 pm; assumption
based on extant literature

Same as town A

Same as town A

Environment

No. of homes in town

56 homes; assumption based on
modeling goals

Same as town A

Same as town A

No. of schools in town

12 schools; assumption based on
modeling goals

Same as town A

Same as town A

No. of communities in town

1 community; assumption based on
modeling goals

Same as town A

Same as town A

Intervention - Active Schools Acceleration Project

Dose: amount of moderate
to vigorous physical activity
delivered by program

Based on ChildObesity180
observational data:
* Program 1: 40 min @ 2.99 METs

Same as town A

Same as town A

Abbreviations: BMI, body mass index; CDC, Centers for Disease Control and Prevention; MET, metabolic equivalent of tasks; NHANES, National Health and Nutri-
tion Examination Survey; RMR, resting metabolic rate.
@ There are various definitions of agent-based modeling, but from a practical standpoint, an agent-based model is an individual-based approach to computer mod-
eling in which agents (in this model, children aged 6-12), environments (in this model, the children’s community, or town), and the interventions (in this model, 2
obesity-prevention programs) are assigned properties; a computer simulation is run (in this model, agents move, eat, and exercise); and outcomes are generated

(in this model, changes in BMI).

P The 2 interventions are the Active Schools Acceleration Project and Healthy Kids Out of School Time, both implemented by Tufts University-based Chil-

dObesity180.

C Stylized towns represent potential “real world” communities in which ChildObesity180 interventions will be implemented.

(continued on next page)

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. Department of Health and Human Services,

the Public Health Service, the Centers for Disease Control and Prevention, or the authors’ affiliated institutions.
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(continued)

Table. An Agent-Based Model® Designed for Two Childhood Obesity Prevention Interventions®: Properties and Data Inputs by Styl-
ized Town Type®

Stylized Town Type

Town A — Average Childhood Town B — Higher Than Average Town C — Lower Than Average
Characteristic Obesity Rates Childhood Obesity Rates Childhood Obesity Rates

* Program 2: 10 min @ 2.62 METs
* Program 3: 30 min @ 4.96 METs

Retention Based on ChildObesity180 Same as town A Same as town A
observational data and gray literature
describing programs:

* Program 1: 80%

* Program 2: 90%

* Program 3: 80%

Reach: the percentage of |Based on ChildObesity180 Same as town A Same as town A
the student population who |observational data and gray literature
received the program describing programs:

* Program 1: 10%
* Program 2: 90%
* Program 3: 75%

Intervention —Healthy Kids Out of School Time

Dose Based on ChildObesity180 Same as town A Same as town A
observational data:

Drink Right: decrease 60kcal; Move
More: increase 15 min @ 4.5 METSs;
Snack Smart: decrease 68.25 kcals

Retention 80%; assumption Same as town A Same as town A

Reach 15%; assumption Same as town A Same as town A

Abbreviations: BMI, body mass index; CDC, Centers for Disease Control and Prevention; MET, metabolic equivalent of tasks; NHANES, National Health and Nutri-
tion Examination Survey; RMR, resting metabolic rate.

@ There are various definitions of agent-based modeling, but from a practical standpoint, an agent-based model is an individual-based approach to computer mod-
eling in which agents (in this model, children aged 6-12), environments (in this model, the children’s community, or town), and the interventions (in this model, 2
obesity-prevention programs) are assigned properties; a computer simulation is run (in this model, agents move, eat, and exercise); and outcomes are generated
(in this model, changes in BMI).

P The 2 interventions are the Active Schools Acceleration Project and Healthy Kids Out of School Time, both implemented by Tufts University-based Chil-
dObesity180.

¢ Stylized towns represent potential “real world” communities in which ChildObesity180 interventions will be implemented.

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. Department of Health and Human Services,
the Public Health Service, the Centers for Disease Control and Prevention, or the authors’ affiliated institutions.
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