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Abstract. The physiologically based pharmacokinetic (PBPK) model for liver transporter substrates has
been established previously and used for predicting drug–drug interactions (DDI) and for clinical
practice guidance. So far, nearly all the published PBPK models for liver transporter substrates have one
or more hepatic clearance processes (i.e., active uptake, passive diffusion, metabolism, and biliary
excretion) estimated by fitting observed systemic data. The estimated hepatic clearance processes are
then used to predict liver concentrations and DDI involving either systemic or liver concentration.
However, the accuracy and precision of such predictions are unclear. In this study, we try to address this
question by using the PBPK model to generate simulated compounds for which we know both systemic
and liver profiles. We then developed an approach to assess the accuracy and precision of predicted liver
concentration. With hepatic clearance processes estimated using plasma data, model predictions of liver
are typically accurate (i.e., true value is bounded by predicted maximum and minimum); however, only
for a few compounds are predictions also precise. The results of the current study indicate that extra
attention is required when using the current PBPK approach to predict liver concentration and DDI for
transporter substrates dependent upon liver concentrations.

KEY WORDS: identifiability analysis; liver transporter; physiologically based pharmacokinetic (PBPK)
model.

INTRODUCTION

Modeling and simulation of tissue pharmacokinetics
for new chemical entities are key tasks to support rational
drug design, candidate selection, and risk assessment in
preclinical animal studies and clinical studies. Tradition-
ally, assuming that the unbound drug concentration in a
non-clearance tissue is equivalent to the unbound systemic
plasma concentration, several empirical or mechanistic
approaches based on static or dynamic models have been
applied in simulating tissue pharmacokinetics (1). How-
ever, such an assumption is not valid for the compounds
with liver transporter-mediated disposition. This is partic-
ularly problematic in modern drug discovery where
medicinal chemistry efforts to reduce CYP-mediated
clearance or to design compounds specifically targeting

liver tissue have led to an increased prevalence of
transporter-mediated clearance. In an attempt to address
this challenge, physiologically based pharmacokinetic
(PBPK) models for liver transporter substrates have been
developed for preclinical animals and human (2,3).
Generally, these models have similar model structures,
where drug distribution in non-liver tissues are perfusion
limited, whereas distribution in liver is permeability
limited achieved by using liver blood and liver tissue
compartments incorporating active transport, passive dif-
fusion, metabolism, and biliary excretion.

Most PBPK models for liver transporter substrates
require in vivo hepatic clearance processes or empirical
in vitro–in vivo extrapolation (IVIVE) scaling factors esti-
mated from systemic plasma concentration profiles of a single
(4) or multiple compounds (5). The subsequent simulations
for pharmacokinetics, pharmacodynamics and drug–drug
interactions (DDI) within liver are made based on the
estimated hepatic clearance processes (2). Hence, it is very
important to know if the model can reasonably simulate the
liver pharmacokinetics, when the model is only trained with
observed plasma pharmacokinetics. However, due to the
challenge in acquiring data in tissues, particularly in human
tissues, the answer to this question is largely unknown.

In an attempt to answer this question, we first validated
the robustness of the current PBPK model structure using
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published rat liver and plasma data of 12 structurally diverse
compounds. The rat pharmacokinetic data are chosen to
validate the model because liver concentrations for most
compounds are only available in rat. The structural
identifiability of the model is analyzed. A case example is
then given to demonstrate how the PBPK model trained only
by systemic plasma data may confound simulated drug
concentration in the liver tissue and DDI. Finally, multiple
Bpseudo^ compounds with Bknown^ systemic and liver
profiles are generated with this model structure under
different scenarios. The hepatic clearance processes are
estimated using only systemic profiles and then used to
predict liver profiles. The predicted liver distribution is
compared with the known values.

METHODS

The Structural Model. The structure of the PBPK model (6)
and the values for physiological parameters for rat (7) have
been described before. To enable modeling enterohepatic
recirculation for compounds with biliary excretion, the bile
flow rate for a 250 g rat is fixed at 22.5 mL/day (8). The liver
is modeled with five sequential pairs of sub-compartments for
liver blood and tissue that mimic the acinar structure and
approximate the partial differential equation dispersion
model (3). The liver blood volume includes reported liver
plasma and blood cell volumes, while the tissue volume
includes reported liver cellular, interstitial, and endosomal
volumes (7). The compound distribution into non-liver tissues
is assumed to be driven by passive processes and predicted
using an in silico approach (9,10).

The values and references for pKa, logD7.4, fraction unbound
in the plasma (fu,p) and blood-to-plasma ratio (RBP) of the 12 real
compounds are given in the supplemental materials, Table S1. The
fraction unbound in the liver tissue (fu,t) is calculated using
Lukacova approach published in (11). Compound transport
between the liver blood and tissue compartments is mediated by
both unbound active uptake (CLact) and unbound passive diffusion
clearance (CLpass). The compound in the liver tissue compartments
is eliminated through unbound metabolism (CLmet) or unbound
biliary clearance (CLbile). To simplify the problem, all processes
are assumed to be linear. To validate the model structure is robust
enough to describe both liver and systemic concentration, the
hepatic clearance processes are estimated by simultaneously fitting
both observed liver and systemic concentration-time profiles, with
a numerical global optimizer as described before (6). The drug
concentration-time profiles in both liver and systemic plasma are
then simulated and plotted as overlays on the observations
digitized from publications and scaled to dosing 1 mg/kg body
weight (the sources of pharmacokinetic data are given in
Table S1).

The Structural Identifiability Analysis. To test if quantifica-
tion of three hepatic processes is possible from a given set of
ideal noise-free systemic data, we performed a structural
identifiability analysis, using DAISY (12). Because of the
high algebraic computational cost, in this analysis, we reduced
the full model to a simplified model that still contains the
essence of the problem. Briefly, all tissues except for liver,
gut, and spleen are merged into a single tissue compartment.
The gut and spleen are merged into the new gut

compartment. The venous and arterial blood compartments
are merged into the new blood compartment. The liver is
modeled as either one or two pairs of sub-compartments for
liver blood and tissue. For this analysis, the observation
(output in DAISY) is only available in the blood compart-
ment. Details about the reduced model and DAISY input file
are given in the supplemental material.

A Case Study. Systemic plasma concentration time course
(i.e., 10, 20, 30, 40, and 50 min, and 1, 2, 3, 4, 6, 9, and 12 h)
data are generated using the current PBPK model with
hepatic CLact, CLpass, and CLmet values of 10, 0.10, and
0.46 L/h, respectively. pKa, logD7.4, fu,p, RBP, and fu,t are fixed
at 4.5 (acidic), 1, 0.01, 0.7, and 0.0925. Hepatic CLact, CLpass,
and CLmet are then reestimated based on the generated
systemic data. Two sets of fitted clearance values that can
reasonably describe the systemic data (sum of squared error
in log space less than 0.13) are picked to simulate liver
pharmacokinetics and DDI. Biliary excretion is fixed at zero
here and below unless otherwise indicated. Active basolateral
efflux is fixed at zero for all modeling in this study.

Generating More Pseudo Compounds. Systemic plasma data
for pseudo compounds are generated using the following
approach. The hepatic clearance processes (i.e., CLact, CLpass,
and CLmet) are predefined with K possible values uniformly
distributed in a bounded log-transformed space (e.g., 10−3,
10−1.5, 100, 101.5, and 103 L/h for which K is 5). Hence, in total,
there are K3 permutation sets of hepatic clearance processes,
which are considered as Btrue^ values, and assigned to K3

pseudo compounds. For all compounds, pKa, logD7.4, fu,p,
RBP, and fu,t are fixed at 4.5 (acidic), 1, 0.01, 0.7, and 0.0925,
respectively, while biliary and renal clearances are assumed to
be zero. The systemic plasma concentrations after
intravenous bolus dosing (1 mg per 1 kg body weight) are
generated for each compound at 10, 20, 30, 40, and 50 min,
and 1, 2, 3, 4, 6, 9, and 12 h using the PBPK model, unless
otherwise indicated. With certain values of hepatic clearance
processes, the simulated concentration at later time points
may exceed the error tolerance of the differential equation
solver, leading to numerical errors; any pseudo compound
with such a value is dropped from the analysis. Prediction
intervals for the drug concentrations in the systemic plasma
are generated using Eqs. 1 and 2.

Y � SD�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

N

r
� t0:025;N ð1Þ

SD2 ¼
X N

i¼1
ni−1ð ÞISDi

2� �
X N

i¼1
ni−1ð Þ

ð2Þ

Y is the natural log-transformed systemic plasma concentration at
the specified time point. SD and SDi are population and individual
standard deviations of Y. The standard deviations digitized from
individual reports are usually given at normal scale. As such, SDi
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at natural log scale is approximated by using reported coefficients
of variation. SD is approximated as the pooled variance given in
Eq. 2, where ni is the number of replicates for a reported
concentration and N is the sum of ni. In each individual study,
along the time course profile, several different SDi values may be
reported, but we assume that they are all associated with the same
ni value. The SD estimated from observations is 0.297.

Reestimating Hepatic Clearance Processes of Pseudo
Compounds. CLact, CLpass, and CLmet for each compound
are reestimated from its plasma concentration-time profile,
using the following approach developed based on a previous
report (13). Values for CLact, CLpass, and CLmet are randomly
generated from a uniform distribution at log10 scale bounded
by their true values divided by 103 or multiplied by 103. The
systemic plasma concentration-time profiles are simulated
using randomly generated hepatic clearance processes values.
The sets of random values will be accepted only if they can
lead to plasma concentrations within the predefined predic-
tion intervals described above. The random value generation
will stop when 100 sets of random values are accepted.
However, if the computation time has been 1 h but there are
less than 100 sets accepted, and all the accepted values so far
are within the interval bounded by the true values divided by
102 and multiplied by 102, then the boundaries of uniform
distribution for random value generation will shrink to the
true values divided by 102 and multiplied by 102. Similarly, if
the number of accepted sets are still less than 100 at
computation time of 2 h, and all the accepted values are
within the interval bounded by the true values divided by 10
and multiplied by 10, then the boundaries of uniform
distribution for random value generation will further shrink
to the true values divided by 10 and multiplied by 10. The
random values will be generated in this final interval until 100
accepted values are identified. The protocol described here is
also presented in the flow chart (Supplemental Material
Fig. S1).

Calculate Pseudo Steady-State Unbound Liver Tissue to
Systemic Plasma Partition Coefficient (Kpuu). To simplify
the comparison between true and predicted liver profiles,
liver Kpuu (the ratio between free liver and free systemic
plasma concentrations after a single intravenous bolus
dosing), rather than a liver concentration-time course, is
simulated after constant intravenous infusion for 1000 h.
Because the systemic concentration is bounded by predefined
intervals, changes in Kpuu values largely reflect changes in
liver concentrations. The true Kpuu is generated with true
hepatic clearance processes, while 100 predicted Kpuu values
are generated from the accepted random hepatic clearance
processes. If the true value is bounded by the maximum and
minimum predicted Kpuu values, the predicted values are
considered to be accurate. If the ratio between maximum and
minimum predicted Kpuu values is less than 10, the predicted
values are considered to be precise. Accurate and precise
estimates of hepatic clearance processes are defined in the
same way.

Modeling with Human Parameters. Analyses are performed
using human physiological parameter values (6). For model-
ing rosuvastatin in humans, enterohepatic recirculation is

included in the model as described before (6), but with a
slightly different empirical absorption model (Eq. 3 to 6) to
better describe data after intravenous and oral dosing.

dAabsorption;1

dt
¼ Qbile � Cbile � Fabsorption;1−

ka;1
Fa � Fg

�Aabsorption;1 ð3Þ

dAabsorption;2a

dt
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� �
−
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Fabsorption,1 is the fraction of absorbed drug going to compart-
ment 1, ka,1 and ka,2 are absorption rates, and Fa is the total
fractional absorption. These parameters are estimated simulta-
neously with three hepatic clearance processes by fitting systemic
data. Fg is the fraction that escapes from metabolism or efflux in
the GI tract and assumed to be 1. Cbile, Ca, and Cgut are the
concentrations in the bile, arterial blood, and gut compartment.
Qbile is the liver bile flow, Vgut is the volume of gut, Qgut is the
blood flow, and Kpgut is the tissue to plasma partition coefficient.
Values of these parameters are given in the previous publication
(6). The mean plasma concentration is simulated using best fitted
hepatic clearance processes and absorption values mentioned
above. With Eqs. 1 and 2, the prediction interval of plasma
concentration is constructed using mean simulated concentration
and an observed average coefficient of variation of 0.333 (14). The
renal clearance is fixed at the observed value (14). Values of CLact,
CLpass, and CLbile are randomly generated within the predefined
intervals with width of 106 centered at the best fitted values,
while ka,1 and ka,2 are randomly generated within the
intervals with width of 102 centered at the best fitted values,
and Fabsorption,1 and Fa are bounded by 0.01 and 1.

RESULTS

The Model Structure and the Structural Identifiability
Analysis. When the model is properly parameterized, the
simulations can reasonably reproduce the observed drug
concentration-time profiles in both systemic plasma and liver
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tissue (Fig. 1). As such, the model structure is considered to be
robust enough for the purpose of generating systemic and liver
pharmacokinetic data for the pseudo compounds with known
parameter values. Using DAISY, the model with two pairs of
liver sub-compartments is determined to be structurally globally
identifiable (DAISY result file is given in the supplementary
material). The model with one pair of liver sub-compartments is
also structurally globally identifiable (data not shown).

A Case Example Where the PBPK Model Trained by
Systemic Plasma Data May Have Large Uncertainty in
Simulating Liver Concentration and DDI. In this example,
two sets of different values of hepatic clearance processes
(i.e., CLact, CLpass, and CLmet are 10.7, 0.103, and 0.411 L/h
for set 1, and 7.69, 0.100, and 55.3 L/h for set 2, respectively),
combined with the same values for all other model parame-
ters, can equally well describe systemic plasma time course
data generated with the parameters noted in the methods
(Fig. 2). On the other hand, these different values of hepatic

clearance processes lead to substantially different concentra-
tions in liver tissue with set 1 accumulating more free
compound in the liver compared to plasma and set 2
producing free liver concentrations lower than free plasma.
As such, for pharmacodynamic response and DDI (when the
compound is perpetrator) in the liver, the two sets of values
are likely to result in different predictions, depending on the
IC50 values. For DDI in the liver where the compound is the
victim, it is not straightforward to see if the two sets of values
will lead to different systemic profiles. We perform simple
simulations assuming that an inhibitor can lead to a 90%
inhibition of hepatic metabolic clearance constantly over the
time. In these simulations, with the same inhibitory effect, the
two sets of hepatic clearance processes values result in different
systemic profiles, as well as different liver profiles (Fig. 2).
Although the inhibitor changes liver profiles of both Set 1 and 2,
it only changes systemic profiles of Set 1. The systemic profile of
Set 2 is not significantly affected by the inhibitor.

Fig. 1. Observed and simulated rat systemic and liver concentration-time profiles. Red,
blue, and black represent systemic concentration after intravenous dosing, systemic
concentration after oral dosing, and liver concentration, respectively. The markers and
lines represent observations and simulations. The dosing amounts have been scaled to
1 mg/kg, assuming linear clearances
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Estimating Hepatic Clearance Processes and Predicting Kpuu
from Generated Plasma Data. The predefined hepatic
clearance processes include 10 possible values: 10−3,
10−2.33, 10−1.67, 10−1, 10−0.33, 100.33, 101, 101.67, 102.33, and
103 L/h, leading to in total 1000 permutation sets of
hepatic clearance processes ( i .e. , 1000 synthetic
compounds), within which 190 compounds are dropped due to
numerical error. Among the 810 surviving compounds, 12.7,
11.6, 12.7, and 4.4% have precise predictions on Kpuu, CLact,
CLpass, and CLmet, respectively. All estimates of hepatic
clearance processes and Kpuu predictions are accurate but may
not be precise. That is to say, the true values of hepatic clearance
processes or Kpuu are always bounded by the maximum and
minimum of the estimated values; however, the ratio between
estimated maximum and minimum may be greater than our
criterion (i.e., 10). As such, in the text below, when the word
Bprecise^ is used, it means precise and accurate.

Precise estimates of CLmet are very likely to result in the
precise prediction of Kpuu (Fig. 3), although to have a precise
prediction of Kpuu, it is not necessary to have precise estimate
of any hepatic clearance process. Hence, precise estimates of
CLmet may be used as an indicator for precise prediction of
Kpuu. No other obvious relation is identified among the
precision of estimated values for Kpuu, CLact, CLpass, and
CLmet. The relations between ratios of the true values of the

hepatic clearance processes and the precision of estimated
hepatic clearance processes and Kpuu are also analyzed
(Fig. 4). We find that compounds with large values of
CLpass/CLmet are more likely to have precise estimate of Kpuu.
There is no obvious correlation between the true value of
hepatic clearance processes and the intervals of their estimates,
although it seems that compounds with higher Kpuu are
slightly more likely to have precise prediction of Kpuu
(Fig. 5). Considering that the current PBPK model is more
likely to be applied to a compound with significant asymmet-
ric liver distribution, we reanalyze 164 compounds with Kpuu
greater than 10, where the percentage of compounds with
precise Kpuu, CLact, CLpass, and CLmet increased to 43.9, 31.1,
25.0, and 18.3%.

To make the hepatic clearance processes of pseudo compounds
more comparable to the real compounds (Table S1), during
compound generation, the possible values for clearances are
narrowed to 10−1, 10−0.67, 10−0.33, 100, 100.33, 100.67, 101, 101.33,
101.67, and 102 L/h for CLact and CLpass, and 10−2, 10−1.67,
10−1.33, 10−1, 10−0.67, 10−0.33, 100, 100.33, 100.67, and 101 L/h for
CLmet. However, this does not increase the percentage of
compounds with precisely estimated hepatic clearance
processes or Kpuu (data not shown).

All the results with 1000 permutation sets are very similar to
results with 125 permutation sets derived from a sparser grid

Fig. 2. Two simulated compounds result in similar plasma concentrations with different
liver concentrations that also are differentially altered by metabolic inhibition. Circles
represent synthesized data. Red solid and dashed lines represent simulated total and free
concentrations without metabolic inhibitor. Blue solid and dashed lines represent predicted
total and free concentrations with metabolic inhibitor, assuming that constant inhibitory
effect leads to hepatic clearance reduced to 10% of the control values
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Fig. 3. Scatter plots showing the relations among the widths of intervals (WI) of estimated values of CLact, CLpass, CLmet,
and Kpuu

Fig. 4. Scatter plots showing the relations between ratios of hepatic clearances and widths of prediction intervals (WI)
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over the same parameter range (the predefined hepatic clearance
processes include five possible values: 10−3, 10−1.5, 100, 101.5,
and 103 L/h); hence, in the analyses below, we only use 125
pseudo compounds to decrease computation time.

Predicting Kpuu with One Hepatic Clearance Process Fixed at
True Value. The result that compounds with precise
estimates of CLmet are more likely to have precise
prediction of Kpuu leads to a question: Can Kpuu be
more precisely predicted, when CLmet is fixed at its true
value? We perform the analysis with only CLact and
CLpass estimated by fitting systemic data, and predict
Kpuu. In this scenario, the number of compounds with
precise prediction of Kpuu is greatly increased to 63 (i.e.,
64.3% of 98 survived compounds). However, there are
still 35 compounds that do not have precise estimates of
Kpuu, among which the ratio between estimated maximal
and minimal CLact is always greater than 103, as is the
ratio between maximal and minimal CLpass.

We also fix CLact or CLpass at its true value, estimate the
other two hepatic clearance processes, and predict Kpuu by
fitting systemic data. The number of compounds that have
precise predictions of Kpuu is only 16 (16.3% of 98 survival
compounds) when CLact is fixed and 27 (27.5% of 98 survival
compounds) when CLpass is fixed. If CLmet can be estimated
precisely, the predicted Kpuu is more likely to be precise.

It is worth noting that if one hepatic clearance process is fixed
at a wrong value, then the estimates of the other two hepatic

clearance processes and predictions of Kpuu may be precise but
may not be accurate. As an example, we fix CLmet at values three
times greater than the true values, while CLact and CLpass are
estimated and Kpuu is predicted. There are four compounds (4.1%
of 98 survival compounds) for which no CLact and CLpass values
can be identified to reasonably describe systemic pharmacokinetic
data (i.e., no randomly generated CLact and CLpass values are
accepted according to the criteria described above). Among
compounds for which there are CLact and CLpass values that can
reasonably describe systemic data, 8 compounds (8.2% of 98
survival compounds) have true CLact values outside estimated
CLact intervals, 11 compounds (11.2% of 98 survival compounds)
have true CLpass values outside estimated intervals, and 41
compounds (41.8% of 98 survival compounds) have true Kpuu
values outside predicted intervals.

Predicting Kpuu Using Systemic Data Generated with Differ-
ent pKa and Lipophilicity Values. We performed similar
analysis with different pKa and lipophilicity (e.g., pKa of 9
(basic) and logD7.4 of 2 versus 4.5 (acidic) and 1 in the current
analysis), which govern the distribution into tissues except for
liver, but the results are similar (data not shown).

Predicting Kpuu with Decreased SD of Systemic Data. We
decreased SD of systemic data to some unrealistically low
values (i.e., 30 and 10% of original value). As such, the
intervals of systemic concentrations constructed as the
acceptance criterion are narrower than before. With smaller

Fig. 5. Scatter plots showing the relations between true values of hepatic clearances and Kpuu, and
widths of prediction intervals (WI)
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SD and narrower intervals, more pseudo compounds can
have precisely estimated clearances and precisely predicted
Kpuu, but the majority of the compounds still do not
(Table I). It indicates that for some compounds, the
unidentifiability of their clearances or Kpuu is more, if not
entirely, due to the shape of concentration-time course, rather
than the variability existing in data.

Human Implications. Assuming that the same model struc-
ture can also simultaneously describe the human systemic
and liver pharmacokinetics, similar analyses are performed
after changing physiological parameter values to values
for human (6), with 10 predefined values for CLact,
CLpass, and CLmet (i.e., 10−1, 10−0.33, 100.33, 101, 101.67,
102.33, 103, 103.67, 104.33, and 105 L/h), leading to 925
compounds that do not have numerical error. Among
these compounds, 6.59, 7.78, 7.03, and 0.865% have
precise predictions on Kpuu, CLact, CLpass, and CLmet,
respectively. Results of other analyses are similar to the
analyses performed with rat physiological values (data not
shown).

We further analyzed uncertainty in estimating human hepatic
CLact, CLpass, and CLbile and predicting liver tissue concentration
based on human systemic pharmacokinetic data of rosuvastatin, a
compound that is heavily used to test PBPK models for transporter
substrates. Values of CLact, CLpass, CLbile, and parameters for
enterohepatic recirculation (Table II) are initially estimated by
numerically fitting systemic pharmacokinetic data (Fig. S2) (6).
We collect one thousand sets of parameter values (with maximum
and minimum given in Table II) which can generate systemic
concentration-time profiles within the prediction intervals. These
values are then used to predict liver concentrations (Fig. 6) and
calculate Kpuu (Table II).

DISCUSSION

When a PBPK model is only trained with systemic
plasma data but is used to simulate liver profiles, a key
question we need to address is how much confidence we have
in the prediction. In this study, we try to address the question
by generating pseudo compounds for which we know both
systemic and liver profiles. We then developed an approach to
assess the accuracy and precision of predicted liver concen-
tration. We find that in all scenarios, after training with
plasma data, model predictions of liver are always accurate
(i.e., true value is bounded by predicted maximum and
minimum); however, only for a few compounds are predic-
tions also precise. Although this study does not cover the
entire space of hepatic clearance processes, and the real
compounds may not be uniformly distributed in the space we
defined, the results here still indicate that, one should not
assume that the hepatic clearance processes or liver concen-
tration can always be precisely estimated using a PBPK
model calibrated using exclusively plasma data. Uncertainty
in estimating hepatic clearance and liver concentration will be
carried into DDI prediction in the liver, as shown in the case
example. These results generated with the rat PBPK model
are well preserved in a human model.

Recently, PBPK models have been widely used by the
pharmaceutical industry and regulatory agencies for human
DDI assessments for substrates of liver transporters, with
hepatic clearance processes estimated by fitting systemic data.
This may lead to biased conclusions about DDI or misleading
guidance for clinical practice when both transporters and
metabolic enzymes are acting on liver concentrations. Pre-
dicted DDI dependent upon plasma concentrations, such as
hepatic uptake transporter inhibition for compounds whose

Table I. The Number of Sets of Clearances Leading to Precise Estimates of Kpuu and Clearances, with Different SD of Generated Systemic
Data

SD of systemic data

0.297 (determined from observations) 0.0891 (30% of 0.297) 0.0297 (10% of 0.297)

Sets without producing numerical error 98 98 98
Sets with precise estimate of CLact 13 19 31
Sets with precise estimate of CLpass 16 20 39
Sets with precise estimate of CLmet 4 7 12
Sets with precise prediction of Kpuu 12 27 40

Table II. Best Fitted, Minimal, and Maximal Values of Parameters in the Human PBPK Model for Rosuvastatin and Resulting Kpuu Values

Parameter Best fitted value Minimum Maximum

CLact (L/h) 2266 137 3260000
CLpass (L/h) 6.63 0.0552 6420
CLbile (L/h) 2.51 0.518 46.3
Fa 0.380 0.0989 0.835
ka,1 (h

−1) 0.0147 0.00147 0.143
ka,2 (h

−1) 0.509 0.0510 4.53
Fabosprition,1 0.382 0.0671 0.969
Kpuu 454 4.36 2662
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clearance is mainly driven by hepatic active uptake, should be
minimally affected, as well as very permeable compounds for
which free liver concentration is about the same as free
plasma concentration.

It is worth noting that here, to simplify the problem, we
fixed parameters except for hepatic clearance processes at
the Btrue^ values, such that the analysis results are not
confounded by the values of these parameters. In analyzing
real-world compounds, if some of these parameters are
fixed at Bwrong^ values, the Kpuu prediction may be precise
but may not be accurate. However, under such a scenario, it
may not be possible to estimate Kpuu or free tissue
concentration with any other approach either (including
the direct measurement of drug concentration in the tissue,
such as a positron emission tomography study or terminal
study). In the analysis, it is interesting to see that a precise
prediction of Kpuu is possible, even if all three hepatic
clearance processes cannot be precisely estimated. The
following equation may help understand this phenomenon.
To simplify the problem, assuming the impact of hepatic

blood flow, fu,p, and RBP on Kpuu is minimal, Kpuu can be
approximated using Eq. 7 (4).

Kpuu ¼ CLpass þ CLact

CLpass þ CLmet
ð7Þ

Hence, Kpuu can be uniquely determined, as far as the
ratio between CLact + CLpass and CLpass + CLmet is uniquely
defined by systemic data, even if every single parameter in
the equation is not uniquely identifiable.

In the analyses, the compounds with precise estimate of
CLmet are more likely to have precise estimates of Kpuu;
however, when fixing CLmet at true values, there are still
about 40% compounds that do not have precise prediction of
Kpuu. It may be because the CLmet exerts its influence on
systemic concentration through changes it makes on liver
concentration. As such, if CLmet is influential on the systemic
data, then it must also be influential on the liver concentra-
tion, making a precise estimate of CLmet a sufficient condition

Fig. 6. Simulated human plasma and predicted liver concentration-time profiles for rosuvastatin.
Circles represent the simulated mean systemic plasma concentration using best fitted parameter
values given in Table II. Error bar represents the prediction intervals using observed average
standard deviation. Green solid lines represent 1000 predicted liver concentration-time profiles,
using parameter values with which model can generate systemic concentration-time profiles (blue
solid lines) within the prediction intervals
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for precise estimates of Kpuu. On the other hand, if CLmet is
influential on the liver concentration, it may not be influential
on the systemic data (e.g., active uptake limited plasma
clearance). In such a case, neither CLmet nor Kpuu can be
confidently estimated. In addition, there are cases where
CLmet is not influential enough on the liver concentration; as
such, even if CLmet is fixed at true value, Kpuu cannot be
precisely predicted, or even if CLmet is not precisely
estimated, Kpuu can still be precisely predicted. If CLact and/
or CLpass is also influential on liver concentrations, then
precise Kpuu prediction also requires precise CLact and/or
CLpass estimates. However, because these two clearances
have direct impact on systemic concentration, even if precise
estimates of them are achieved, it does not guarantee that
Kpuu can be precisely predicted.

Nevertheless, when fitting systemic data of individual
compounds, the chance to have a precise Kpuu prediction will
be greatly increased with precise CLmet prediction as shown in
results. This may be achieved by using the product of in vitro
metabolic clearance, physiological scaling factor, and empirical
scaling factor. The empirical scaling factor, which captures all
differences between in vitro and in vivo that are not described by
physiological scaling factor, hence, is an important parameter. The
challenge is that these scaling factors are not always readily
determined to be assured of good estimates. An attempt to
address this challenge has been published previously (5). In
addition toCLmet, the in vitro assaysmay also provide information
about permeability and transporter activity. For compounds
showing high permeability and not being transporter substrates
in the assays, the permeability limited liver model with three free
parameters (CLact, CLpass, and CLmet) can be reduced to a
perfusion-limited well-stirred liver model with only one free
parameter (CLmet). In such cases, at steady state, the free liver
concentration can be approximated as the same as the observed
free plasma concentration for compounds with low extraction. In
the current analysis, we assume a linear model to simplify the
problem. For compounds with saturable transport or metabolism
processes, a similar but compound-specific analysis with addi-
tional parameters can be performed.

In this study, the PBPK model with permeability-limited
liver compartment is determined to be structurally globally
identifiable (i.e., quantification of parameters is possible from
a set of ideal noise-free data (15)). Even if the models are
structurally identifiable, they may not be numerically identi-
fiable, potentially because the data are not ideal. The current
study focuses more on the numerical identifiability, which
addresses the question of whether practical quantification of
parameters is possible when the data are real with noise (15).
The results that the parameter estimation and liver concen-
tration prediction are precise for only certain pseudo
compounds, and with smaller SD and narrower intervals,
more pseudo compounds can have precisely estimated
clearances and precisely predicted Kpuu, are consistent with
the conclusion that the model is structurally identifiable but
may not be numerically identifiable for some data.

CONCLUSION

In this study, we generated systemic and liver concentra-
tion profiles for pseudo compounds with predefined values of
hepatic clearance processes and a PBPK model structure

validated by rat systemic and liver data. Then, the hepatic
clearance processes are reestimated by fitting systemic data
and used to predict liver concentrations. The accuracy and
precision of estimated hepatic clearances and predicted liver
concentration are analyzed. With hepatic clearance processes
estimated using plasma data, model predictions of liver are
always accurate but less likely to be precise. The results of the
current study indicate that extra attention is required when
using the current PBPK approach for transporter substrates
to predict liver concentrations and DDI dependent upon
those liver concentrations.
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