A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain **Development and Function**

John D. Cahoy,^{1,2*} Ben Emery,^{1*} Amit Kaushal,^{3,4*} Lynette C. Foo,¹ Jennifer L. Zamanian,¹ Karen S. Christopherson,¹ Yi Xing,⁵ Jane L. Lubischer,⁶ Paul A. Krieg,⁷ Sergey A. Krupenko,⁸ Wesley J. Thompson,⁹ and Ben A. Barres^{1,2} Departments of 1Neurobiology and 2Developmental Biology, 3Stanford Genome Technology Center, and 4Stanford Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, California 94305, 5Department of Internal Medicine and Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, 6 Department of Zoology and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, 7Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson, Arizona 85724, *Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, and *Section of Neurobiology, Institute for Neuroscience, and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712

Understanding the cell- cell interactions that control CNS development and function has long been limited by the lack of methods to cleanly separate neural cell types. Here we describe methods for the prospective isolation and purification of astrocytes, neurons, and oligodendrocytes from developing and mature mouse forebrain. We used FACS (fluorescent-activated cell sorting) to isolate astrocytes from transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of an S100ß promoter. Using Affymetrix GeneChip Arrays, we then created a transcriptome database of the expression levels of >20,000 genes by gene profiling these three main CNS neural cell types at various postnatal ages between postnatal day 1 (P1) and P30. This database provides a detailed global characterization and comparison of the genes expressed by acutely isolated astrocytes, neurons, and oligodendrocytes. We found that Aldh1L1 is a highly specific antigenic marker for astrocytes with a substantially broader pattern of astrocyte expression than the traditional astrocyte marker GFAP. Astrocytes were enriched in specific metabolic and lipid synthetic pathways, as well as the draper/Megf10 and Mertk/ integrin $\alpha_{v}\beta_{5}$ phagocytic pathways suggesting that astrocytes are professional phagocytes. Our findings call into question the concept of a "glial" cell class as the gene profiles of astrocytes and oligodendrocytes are as dissimilar to each other as they are to neurons. This transcriptome database of acutely isolated purified astrocytes, neurons, and oligodendrocytes provides a resource to the neuroscience community by providing improved cell-type-specific markers and for better understanding of neural development, function, and disease.

Key words: astrocyte; neuron; oligodendrocyte; GeneChip; Aldh1L1; culture; gene profiling; microarray; transcriptome; phagocytosis; astroglia; Megf10; Mertk; Draper; Mfge8

Introduction

ns r⁰ - -\$- •<u>v</u>•1 <u>v</u>1• • $\begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf$ K--nt 12° she - far the The ng + s g h Ο.

Received Sept. 12, 2007; revised Nov. 9, 2007; accepted Nov. 14, 2007.

This work was supported by National Institute of Neurological Disease Grant R01 NS045621 (B.A.B.), National Eye Institute Grant R01 EY10257 (B.A.B.), Medical Scientist Training Program Grant MSTP GM07365 (J.D.C., A.K.), Australian National Health and Medical Research Council CJ Martin Fellowship 400438 (B.E.), a Singapore Agency of Science, Technology and Research graduate scholarship (L.C.F.), National Eye Institute National Research Service Award Postdoctoral Fellowship Grant EY07033 (K.S.C.), and National Institutes of Heath Grant DK54388 and CA095030 (S.A.K.). We extend special thanks to Dr. Lubert Stryer for advice, encouragement, and support in doing the Affymetrix gene profiling and members of the Barres laboratory for discussions and critical readings of this manuscript.

*J.D.C., B.E., and A.K. contributed equally to this work.

Correspondence should be addressed to John D. Cahoy, Department of Neurobiology, Stanford University, D205 Fairchild Building, 299 Campus Drive, Stanford, CA 94305. E-mail: jcahoy@stanford.edu. DOI:10.1523/JNEUROSCI.4178-07.2008

Copyright © 2008 Society for Neuroscience 0270-6474/08/280264-15\$15.00/0

1 5 th 11 th gaar K 5 X. 7 . Or Kest $\underline{\mathcal{C}}_{1} \rightarrow \overset{\circ}{\overset{\circ}} + \underbrace{\mathcal{C}}_{1} \underbrace$ ז<u>ר</u> ליזי ביי<u>ה</u> יתי-תיזי תייי<u>ה</u>יי **x** •**p**\ • • •**p**. n n<u>r</u> 0 - 4 -<u>_</u>1 - - х <u>s</u>r st s. 1980; <u>L</u> ... <u>L</u> ... 2004). ' 🖺 00 .! (2 's18 . . . V ' fing 1 X0 . 0. , [–]•<u>1</u> <u>ß</u> ç 🖓 1••⁰ п п^с <u>∄</u>• - п- • ¶n '€ ⊑ <u>n</u> • • • <u>n 99 -</u> $\sum_{i=1}^{n} \frac{1}{2} \left\{ \sum_{i=1}^{n} \frac{1}{2} \right\} \neq gaa \sum_{i=1}^{n} \frac{1}{2} \left\{ \sum_{i=1}^{n} \frac{1}{2} \right\}$ L L × (g, - g), n - xn · · n-n · · g ; f. ; · g g, · · nr · · · (g, g), · · · · η gg \$ * <u>r</u> P'i L $E = \frac{1}{2} \left\{ \begin{array}{c} 1 \\ - \end{array}\right\} \left\{ \begin{array}{c} 1 \end{array} \left\{ \begin{array}{c} 1 \\ - \end{array}\right\} \left\{ \begin{array}{c} 1 \end{array} \left\{ \begin{array}{c} 1 \\ - \end{array}\right\} \left\{ \begin{array}{c} 1 \end{array} \left\{ \end{array}\right\} \left\{ \begin{array}{c} 1 \end{array} \left\{ \begin{array}{c} 1 \end{array} \left\{ \begin{array}{c} 1 \end{array} \left\{ \end{array}\right\} \left\{ \begin{array}{c} 1 \end{array} \left\{ \begin{array}{c} 1 \end{array} \left\{ \end{array}\right\} \left\{ \begin{array}{c} 1 \end{array} \left\{ \begin{array}{c} 1 \end{array} \left\{ \end{array}\right\} \left\{ \begin{array}{c} 1 \end{array} \left\{ \end{array}\right\} \left\{ \begin{array}{c} 1 \end{array} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \begin{array}{c} 1 \end{array} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \begin{array}{c} 1 \end{array} \left\{ \end{array}\right\} \left\{ \end{array}$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ $\underline{r}_{1}^{,,2006}, \underline{r}_{2}^{,\underline{r}_{1}}, \underline{o}_{1}^{,\underline{r}_{1}}, \underline{c}_{2}^{,\underline{r}_{2}}, \underline{c}_{2005}, \underline{r}_{1}^{,\underline{r}_{2}}, \underline{c}_{2005}, \underline{r}_{2}^{,\underline{r}_{2}}, \underline{c}_{2005}, \underline{r}_{2}^{,\underline{r}_{2}}, \underline{c}_{2006}, \underline{c}_{2}^{,\underline{r}_{2}}, \underline{c}_{2}^{,\underline{r}_{2}$

1 X11 .

 $\sum_{n=1}^{n} \sum_{i=1}^{n} 0, \quad \sum_{i=1}^{n} \sum_{i=1}^{n}$

Materials and Methods

 $\frac{1}{2} \mathbf{n}_{1}^{\mathbf{x}} \cdot \mathbf{n}_{2}^{\mathbf{x}} \cdot \mathbf{n}_{1}^{\mathbf{x}} \cdot \mathbf{n}_{2}^{\mathbf{x}} \cdot \mathbf{n}_{1}^{\mathbf{x}} \cdot \mathbf{n}_{2}^{\mathbf{x}} \cdot \mathbf{$ $\begin{array}{c} \mathbf{n}^{\circ} \cdot \mathbf{n}$

 $\begin{array}{c} \mathbf{n} \mathbf{c} & \mathbf{n} \mathbf{c}$

 $\mathbf{n}^{(1)} = \mathbf{n}^{(1)} + \mathbf{n$

Panning purification of oligodendrocyte lineage cells. g. 1\ fin 00 mg . s . 0 mg Kir Br to r teta to be the reg x ag 0. - c M ag

 $\begin{array}{c} \mathcal{L} \\ \mathcal{$ $\mathbf{n} \stackrel{\mathbf{n}}{=} 0 \stackrel{\mathbf{n}}{=} \stackrel{$ $\begin{array}{c} \mathbf{x}_{\mathbf{n}} & (17), & \mathbf{x}_{\mathbf{n}} & 7, & \mathbf{x}_{\mathbf{n}} & 17, & \mathbf{x}_{\mathbf{n}} & \mathbf{0}_{\mathbf{n}} & \mathbf{x}_{\mathbf{n}} & \mathbf{x$ 1 son (12 2 2, 22 E EVIVA S. 1. Elson ($\mathbf{1} \mathbf{L} \in \mathbf{M} \to \mathbf{N} = \mathbf{M} = \mathbf{$ $\frac{1}{x_{c}} \left\{ \begin{array}{c} \mathbf{n} \\ \mathbf$ $\begin{array}{c} \mathbf{x} \in \mathbf{n} \mathbf{s}_1 \bullet \mathbf{z} \in \mathbf{z} \\ \mathbf{x} = \mathbf{n} \quad \mathbf{n} \quad \mathbf{x} \in \mathbf{z} \\ \mathbf{x} = \mathbf{n} \quad \mathbf{n} \quad \mathbf{x} = \mathbf{n} \quad \mathbf{x} \in \mathbf{z} \in \mathbf{z} \\ \mathbf{x} = \mathbf{n} \quad \mathbf{x} = \mathbf{n} \quad \mathbf{x} = \mathbf{z} \in \mathbf{z} \\ \mathbf{x} = \mathbf{n} \quad \mathbf{x} = \mathbf{n} \quad \mathbf{x} = \mathbf{z} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \\ \mathbf{x} = \mathbf{x} = \mathbf{n} \quad \mathbf{x} = \mathbf{z} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \\ \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \\ \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \\ \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \\ \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \\ \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \\ \mathbf{x} = \mathbf{z} \quad \mathbf{x} = \mathbf{z} \quad \mathbf{z} \\ \mathbf{x} = \mathbf{z} \quad \mathbf{z} \\ \mathbf{z} \quad \mathbf$

Gene expression profiling of CNS cell types

"IL" n ng 0 - < ns . 0 < 1 Xn 1 & st 0 r 1 $\begin{array}{c} \mathbf{x} \\ \mathbf{$ 1 n 12° $\begin{array}{c} \mathbf{L} \\ \mathbf$ • <u>n</u> · <u>r</u> · <u>c</u> · <u>r</u> <u>c</u> · · <u>c</u> · n 1.0 $\begin{array}{c} \mathbb{Z}^{X} \setminus \mathbf{j} = \{\mathbf{x} \in \mathcal{C} : \mathbf{y} \in \mathcal{D} : \mathbf{n}^{-1} = \{\mathbf{y} \in \mathcal{C} : \mathbf{n} \in \mathcal{C} : \mathbf{y} \in \mathcal{X}\}, \\ \mathbb{Z}^{-1} \to \mathbb{Z}^{-1} \in \mathcal{C} : \mathbb{Z}^{-1} \in \mathcal{C} : \mathbb{Z}^{-1} \\ \mathbb{Z}^{-1} \in \mathcal{C} : \mathbb{Z}^{-1} : \mathbb{Z}^{-1} \in \mathcal{C} : \mathbb{Z}^{-1} \\ \mathbb{Z}^{-1} : \mathbb{Z}^{-1} :$ 17,213 D $\mathbf{n} \stackrel{\mathbf{n}}{=} \mathbf{n} \stackrel{\mathbf{n}}$ 7. 1 n s. 0 . ng neg g X . g D . Sn . . .

n ≠<u>n</u> tr i tr ns - $\sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$ 1 · 01). 1 **9** 932 20^{-1} 1 <u>6</u> <u>6</u> <u>a</u> ¹¹¹. $\underline{\mathbf{g}}_{\mathbf{n}\mathbf{n}} \mathbf{g}^{\mathbf{L}} \cdot \mathbf{f}_{\mathbf{n}\mathbf{n}} \mathbf{g}^{\mathbf{L}} \mathbf{g$ ₹. n • 1 1 n- 0 64 • • 1 X 1 1 💆 'nĽ $\begin{array}{c} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \\$ $\begin{array}{c} \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{$ · • • • • • • • ¢. 1 a <u>E</u>a ng-\€¢ <u>ñ</u>. 1 she ben to ge s i x_nt, t. co . £ IL⁰IEC n⁺ i⁺C · C^XC · C⁺ $\underline{\mathbf{n}} < \underline{\mathbf{n}} \qquad \underline{\mathbf{$ 1 ^Xn · 1 Cona < 12 gilla c. the grant igt g. $L^{X}L$

Figure 2. Dendrogram and sample clustering of purified CNS cell types. Hierarchical clustering of highly purified CNS cell type samples from different developmental stages reveals three distinct clusters representing astrocytes, neurons, and oligodendrocytes. The similarity of gene expression between different samples is represented by the vertical distances on each branch of the dendrogram. Biological replicates show the highest degree of correlation within samples, represented by short vertical distances. Within each cell population, gene expression is more highly correlated between maturing and mature samples (Astros P7, Astros P17, OLs, Myelin OLs) than between immature and maturing samples (Astros P1, Astros P7, OPCs, OLs). Color bar and sample labels describe each individual sample type (green, astrocytes; yellow, neurons; orange–red, OL lineage cells; P, postnatal day, represented by different color shades; g, cerebral cortical gray matter astrocytes; n, neuron samples depleted of residual endothelial cells).

Identification and validation of neural cell-type-specific genes

schift scher - freit, se og k $\mathbf{n} \stackrel{\text{def}}{=} \underbrace{\mathbf{L}}_{\mathbf{n}} \stackrel{\text{def}}{=} \underbrace{\mathbf{n}}_{\mathbf{n}} \stackrel{\text{def}}{=} \underbrace{\mathbf{n}}_{\mathbf$ -1 <u>E</u> C . 1 ^xa · 4 6 (\underline{r} $\underline{$ $\begin{array}{c} (\mathbf{c}_{\mathbf{nn}} \mathbf{c}_{\mathbf{1}} \mathbf{f}_{\mathbf{2}} \mathbf{f}_{\mathbf{2$ $\frac{\mathbf{i} \mathbf{x}_{n} + \mathbf{n} \cdot \mathbf{v}}{\mathbf{i} \mathbf{x}_{n} + \mathbf{n} \cdot \mathbf{v}} = \mathbf{r} \mathbf{n}^{40} \mathbf{g}_{1} \cdot \mathbf{x}_{1}^{2}, \quad \mathbf{s} \mathbf{z}_{1}^{0} \mathbf{x}_{1}^{1}, \quad \mathbf{s} \mathbf{z}_{1}^{0} \mathbf{z}_{1}^{1}, \quad \mathbf{s} \mathbf{z}_{1}^{0} \mathbf{z}_{1}^{1} \mathbf{z}_{1}^{1}, \quad \mathbf{s} \mathbf{z}_{1}^{0} \mathbf{z}_{1}^{1} \mathbf{$ n'nÖ 'n 1 ^Xn In the ty is a Xame in go not of wall

 $\begin{pmatrix} \underline{x} \\ \underline{x} \\ 1 \end{pmatrix} \stackrel{\mathbf{f}}{\mathbf{n}} \stackrel{\mathbf{f}}$

1.

5 1 POSSA NO

92 1^Xn $\underline{\mathcal{L}}^{(1,0)}, \underline{\mathcal{L}}^{(1,0)}, \underline{\mathcal{$ <u>BLL-1</u> (+ n K · ⁰r n · ⁰ · · L) n · 2006). **5**4,1 <u>ι</u>ς, <u>η</u> z = 1 z = 17,2138 (<u>r</u> - $L = \frac{1}{2} \frac{1}{2}$ $\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{$. P . .

 $\mathbf{x} = \mathbf{x} + \mathbf{y} +$

Figure 4. Validation of gene expression data by *in situ* hybridizations. *A*–*C*, Coronal brain sections showing ISH for genes identified by array data as having specific neuronal expression: *A*, Nov; *B*, Tmem130; *C*, Brunol4. *D*–*L*, Higher-magnification images corresponding to outlined region in *A* showing hippocampus, corpus callosum (cc), and the overlying cortex. *D*–*F*, Genes identified by array data as having specific neuronal expression, displaying expression in the hippocampus and cortex: *D*, Nov; *E*, Tmem130; *F*, Brunol4. *G*–*I*, Genes identified by array data as having specific neuronal expression, displaying expression in the hippocampus and cortex: *D*, Nov; *E*, Tmem130; *F*, Brunol4. *G*–*I*, Genes identified by array data as having specific OL expression, showing fibrous, positive cells throughout the white and gray matter: *G*, Ntsr2; *H*, Aldh1L1; *I*, Acsbg1. *J*–*L*, ISH for genes identified by array data as having specific OL expression, showing white matter expression in the corpus callosum and the occasional positive cell in the overlying cortex: *J*, Fa2h; *K*, Tmem125/6330530A05Rik; *L*, Gpr62. All ISH performed on P17 mouse brains. Scale bars: *A*–*C*, 2 mm; *D*–*L*, 200 µm.

2 n n۳ nfa 0 4 D 44 69 n ₹ 178 ₹ (93%)3 X . 0 **141** (79%) 0, 106 (60%)>4x_n ī 30 (17%) >20n 73 б.

Aldh1L1 is a new astrocyte-specific marker

n <u>۽ ڊ</u> ٢ n/ 1 XD К1 D ₹ D XD ŗ. 2007 എ n¶ 1 ΧĮ ₹ £ 111 ₹ 111.1 D D 111 х 1 λ 1D -D ₹ ٢ 1 **[**_ **n** ε. ٢ ٢ 5 ٢nn 17 1

0 1k1 L 0 $\mathbf{I}_{\mathbf{r}} = \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{r} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \end{array} \right\} \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \end{array}\right\} \right\} \left\{ \left\{ \mathbf{i} \end{array} \right\} \left\{ \left\{ \begin{array}{c} \mathbf{i} \end{array} \right\} \left\{ \left\{ \mathbf{i} \end{array}\right\} \right\} \left\{ \left\{ \mathbf{i} \right\} \right\} \left\{ \left\{ \mathbf{i} \end{array}\right\} \left\{ \left\{ \mathbf{i} \right\} \right\} \left\{ \mathbf{i} \end{array} \right\} \left\{ \left\{ \mathbf{i} \right\} \left\{ \mathbf{i} \end{array} \right\} \left\{ \mathbf{i} \\ \mathbf{i} \end{array} \right\} \left\{ \mathbf{i} \\\} \left\{ \mathbf{i} \end{array} \right\} \left\{ \mathbf{i} \\\} \left\{ \mathbf{i} \end{array} \right\} \left\{ \mathbf{i} \\\} \left\{ \mathbf{i} \end{array}\right\} \left\{ \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array}\right\} \left\{ \mathbf{i} \\\} \left\{ \mathbf{i} \\ \mathbf{i} \end{array} \right\}$ 1 ٢ ر , **r**), **r**_0 · (_ 2) · o · <u>6</u> 1 <u>6</u> õ 0 111 0 • 1 💆 , x₁ • (² • . 5D−F). , **!** .0. p, x = 0 $1 \mathbb{N} 1$ E E x, E x, ED D ۲ ر

o 11.1-_ t <- s É L **L**^{0 X} <u>L</u>⁰ x n-<u>n</u>, (, 2004). 0.5 வது - ര1№1 - s - s n 1 <u>a</u> ‼. (tan C 1 💆 1 LLXÖ $\frac{c_{nn}}{c} \left(\begin{array}{c} 1 \\ \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{$

2 < - 6 n ‼. • • ×₁ r എ 0 1k1 2 r D ۲. 1 4 4- 4 Lı ç X a 1ª € 5G-1,\ _ c 0 1 11 n. 0 1k1 - ¢_{1 1} <u>_</u> ۰. ۰ ۴<u>۲</u>۰ ۵۱ ۱ <+110· . o 111-_ 🖡 <u>n</u> ‼. էլ. Վ Վո՝ + ո<u>ტ</u>լ <u>6</u>1 - s¶ 0 1k1 a-1 · · · 2001 D_ 0. (0 .r. 1 es este 1 ng · · g x g x r P 1 · x g · · · x n 1;<u>1</u>1 Ŀ - < 1 D n¶, ธี1**№**โ-__ <+>> <<<-10 D 4 L.L. •• ^{0 X}r 🗸 М, 1 D 1 1 L s. c Ľ д^с • Х. En . X . Sna & Ĕ. c **A** \\\..... 8

Figure 5. Aldh1L1 is a specific pan-astrocyte marker. *A*–*F*, Immunohistochemical staining of P15 rat cortex shows Aldh1L1 is a cell-type-specific pan-astrocyte marker. *A*–*C*, Costaining of rat cortex for Aldh1L1 (red) and GFAP (green) staining. *A*, Aldh1L1 labels both the cell bodies and extensive processes of astrocytes in the cortex. *B*, GFAP labels the astrocyte intermediate filament cytoskeleton but not the finer processes that Aldh1L1 is capable of labeling. *C*, GFAP labels a subset of astrocytes: cells labeled by GFAP are also Aldh1L1 positive (white arrowheads), whereas Aldh1L1 labels many astrocytes not labeled by GFAP (black arrowheads). *D*–*F*, Aldh1L1 does not label neurons (*D*, Tuj1), OLS (*E*, MBP + CC1), or OPCs (*F*, NG2). *G*–*I*, The merge (*I*) of Aldh1L1 immunostaining (*G*) and strong BAC Aldh1L1-EGFP fluorescence (*H*) seen in the Aldh1L1-EGFP transgenic mouse cortex shows that all cells expressing the EGFP transgene also express the endogenous Aldh1L1 protein. Scale bars: *A*–*F*, 40 µm; *G*–*I*, 60 µm.

a s . . . A Sina & 12 5 1 -a • 1 • 1 / L <u>_</u>1 - X 1 4-0 < L: بر _ _ _ ¶., £°°1. 4-111-L <u>n</u> • •**]**• ∢ ^{'N} L 5. · · ⁰. 5. · · 5. II. <- € **1** n^c • ^X• 11 100β < . . · 5 K nr. 01 1 1 • 0<u>6</u> <u>6</u> <-1 1 1 1 • • ¥ · · · × o 1K1 L m M. . • 1 Red 4 < + E E1 - + X < E n Eui - 0 x <u>r</u> 0 L 11 SE' IXA CE I E £, P -<- "1"n ++ $\underline{\mathbf{r}} = \mathbf{n} \cdot \mathbf{p} \cdot \mathbf{\bar{p}} \cdot \mathbf{r} \cdot \mathbf{r} + \mathbf{s} \cdot \mathbf{c} \cdot \mathbf{r} \cdot \mathbf$ 1...0 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ 111 · s. (. .), . . . Apokad Alecola LEL ri S. . . . 5 ((C , X.

Analysis of canonical pathways enriched in the main CNS cell types

 $E = \{ x \in 0 \\ x \in 0$

1 X11 , (0 < ig + ing \ gx 1 r s, X X, 2 1 n · (' g'ig 'i * g i 'i · · · · · · · · · · ۰. ,۹ 0 - C D C - C D C C D C C C • • • • • • • L s da 1., • ·r ., 0 ۲ ۲ <u>۲</u> 1 L^t n. <u>L</u>r 1 <u>B</u> L ⁰ t · ⁰ r · 1 LX. 0 ••• 1•• றி வதி 1 1 5 , 1 n٢ 1 1 $\cdot \cdot \cdot 30_{r} 100_{r} \cdot \cdot \cdot$. 0. P . L ۰ ¢0 • ¶., < ig + ing \ gx g 0 . 0 . c < 12-r r L · · · · · · · · nŋ 1 (· 1 r n⁴g · · · · L. LOKIL + ng \ LX - <u>1</u> <u>6</u> <u>C</u> 1 0 K - 1 <u>,</u> х 4 D . n $\underline{\underline{r}} = \underbrace{\underline{r}}_{\mathbf{X}_{\mathbf{A}}} \underbrace{(\underline{\mathbf{r}}_{\mathbf{A}\mathbf{A}} < \underline{\mathbf{r}}_{\mathbf{A}} + \underline{\mathbf{r}}_{\mathbf{A}} < \underline{\mathbf{r}}_{\mathbf{A}} + \mathbf{r}}_{\mathbf{A}} + \mathbf{r}}_{\mathbf{A}} + \mathbf{r}_{\mathbf{A}} + \mathbf{r}}_{\mathbf{A}} + \mathbf{r}}_{\mathbf{A}} + \mathbf{r}_{\mathbf{A}} + \mathbf{r}}_{\mathbf{A}} + \mathbf{r}}_{\mathbf{$ \ **_**X[−](*D*−*F*) is of xot g n and the control xo structure xo X 🛃 D 7.1 $\begin{array}{c} \langle \mathbf{n}_{\mathbf{L}} & \mathbf{n}_{\mathbf{M}} \rangle & \mathbf{g}^{\mathbf{X}} & \mathbf{g}_{\mathbf{L}} & \mathbf{x}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{x}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{M}} & \mathbf{g}_{\mathbf{M}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{x}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}_{\mathbf{L}} \\ \mathbf{g}_{\mathbf{L}} & \mathbf{g}$ M L 0

Table 1. Ingenuity pathway analysis identified cell-type-enriched pathways

		<u>, , , , , , , , , , , , , , , , , , , </u>	r				
A: /	Astrocyte e	nriched signaling pathways	iched signaling pathways				
4	P-value	Signaling Pathway	4	P-value	Signaling Pathway		
1	1.82E-05	Noton Signaling	1	7.94E-20			
2	5.01E-05	Mat/0 astania Signaling	2	1.30E-13	Axonal Guidance Signaling		
3	1.32E-04	Whi/p-catenin Signaling	3	5.01E-15	Synaptic Long term Depression		
4	2.34E-04		4	3.10E-13	Synaptic Long term Potentiation		
5	0.70E-04	I GF-p Signaling	5	2.31E-11	Siliamate Receptor Signaling		
0	7.24E-04	Axonal Guidance Signaling	0	1.74E-10	CAMP-mediated Signaling		
0	0.91E-04	Ephinin Receptor Signaling	6	3.02E-09	Champeling Signaling		
0	2.03E-03	Sonia Hadaabaa Signaling	0	3.10E-07	C Protoin Coupled Recenter Signaling		
9	3.00E-03	DTEN Signaling	9	3.90E-07	Entrin Decenter Signaling		
10	9.00E-00	PTEN Signaling	10	4.00E-07	Cardiae B adronorgio Signaling		
12	1.022-02	PI3K/AKT Signaling	12	3.16E-06	Nitric Ovide Signaling in the CV System		
13	1.03E-02	Circadian Rhythm Signaling	12	2.57E-05	B Cell Recentor Signaling		
14	1.07E-02		14	7 76E-05	GABA Recentor Signaling		
15	1.26E-02	PPAR Signaling	15	2 69E-04			
16	2 00F-02	Actin Cytoskeleton Signaling	16	3.31E-04	FRK/MAPK Signaling		
17	2.69E-02	Toll-like Receptor Signaling	17	5.01E-04	Amvotrophic Lateral Sclerosis Signaling		
18	3.09E-02	ERK/MAPK Signaling	18	9.55E-04	Dopamine Recentor Signaling		
19	3.80E-02	Antigen Presentation Pathway	19	1 91E-03	Actin Cytoskeleton Signaling		
20	4 79E-02	JAK/Stat Signaling	20	6 17E-03	Integrin Signaling		
20	1.102 02	of the oldr olgraning	21	1 12E-02	Neuregulin Signaling		
B: (Oligodendr	ocyte enriched signaling pathways	22	1 20F-02	GM-CSE Signaling		
	P-value	Signaling Pathway	23	1 23E-02	SAPK/JNK Signaling		
1	3.98E-11	Axonal Guidance Signaling	24	1.23E-02	IGF-1 Signaling		
2	5.25E-10	Integrin Signaling	25	1.38E-02	Protein Ubiguitination Pathway		
3	7.76E-09	Ephrin Receptor Signaling	26	1.78E-02	Phototransduction Pathway		
4	2.45E-07	ERK/MAPK Signaling	27	1.91E-02	T Cell Receptor Signaling		
5	6.03E-06	PI3K/AKT Signaling	28	2.69E-02	Xenobiotic Metabolism Signaling		
6	7.08E-06	Neuregulin Signaling	29	3.24E-02	Parkinson's Signaling		
7	2.63E-05	Actin Cytoskeleton Signaling					
8	1.82E-04	SAPK/JNK Signaling	D:/	Astrocyte e	nriched metabolic pathways		
9	4.57E-04	PTEN Signaling		P-value	Metabolic Pathway		
10	5.25E-04	Estrogen Receptor Signaling	1	1.58E-11	Valine, Leucine and Isoleucine De gradation		
11	5.25E-04	B Cell Receptor Signaling	2	7.94E-07	Propanoate Metabolism		
12	8.91E-04	PPAR Signaling	3	1.38E-04	Fatty Acid Metabolism		
13	1.17E-03	PDGF Signaling	4	8.91E-04	Citrate Cycle		
14	1.20E-03	Protein Ubiquitination Pathway	5	1.26E-03	Butanoate Metabolism		
15	1.48E-03	Leukocyte Extravasation Signaling	6	2.45E-03	Pyruvate Metabolism		
16	1.51E-03	Apoptosis Signaling	7	2.95E-03	Alanine Metabolism		
17	1.86E-03	IGF-1 Signaling	8	7.08E-03	Lysine Degradation		
18	1.91E-03	Natural Killer Cell Signaling	9	1.70E-02	Nitrogen Metabolism		
19	2.14E-03	VEGF Signaling	10	1.74E-02	N-Glycan Degradation		
20	2.95E-03	JAK/Stat Signaling	11	1.82E-02	Glycolysis/Gluconeogenesis		
21	3.02E-03	TGF-β Signaling	12	4.27E-02	Glycine, Serine and Threonine Metabolism		
22	3.39E-03	Insulin Receptor Signaling					
23	3.80E-03	Fc Epsilon RI Signaling E: Oligodendrocyte enriched metabolic pathways					
24	6.03E-03	NF-kapaB Signaling		P-value	Metabolic Pathway		
25	8.13E-03	Huntington's Disease Signaling	1	6.76E-03	Inositol Phosphate Metabolism		
26	9.77E-03	Neurotrophin/TRK Signaling	2	2.09E-02	Lysine Degradation		
27	1.10E-02	Cell Cycle: G2/M DNA Damage Checkpoint	3	2.88E-02	Nicotinate and Nicotinamide Metabolism		
28	1.12E-02	GM-CSF Signaling					
29	1.58E-02	Xenobiotic Metabolism Signaling	F: 1	Neuron enr	iched metabolic pathways		
30	2.04E-02	IL-6 Signaling		P-value	Metabolic Pathway		
31	2.14E-02	vvnt/p-catenin Signaling	1	2.29E-04	Inositol Phosphate Metabolism		
32	2.00E-02	IL-2 Signaling	2	1.91E-02			
১ ১ ০∤	3.31E-UZ	Noton Signaling	3	2.40⊏-02	Aminosugars metabolism		
34 25	3.00E-02						
30	3.30E-UZ	Carulac p-aurenergic olgnalling					
30	4.17 E-02	C-Protein Counled Recontor Signaling					
38	4 00E-02	T Cell Recentor Signaling					
00	T.JUL-UZ						

Canonical signaling pathways (A–C) and metabolic pathways (D–F) statistically enriched in astrocytes, OLs, and neurons at p < 0.05 (5.00E-02). Genes enriched in astrocytes, OLs, and neurons (supplemental Tables S4–S6, available at www.jneurosci.org as supplemental material) were compared to Ingenuity's database of 72 canonical signaling pathways and 80 metabolic pathways. Pathways enriched at *p* < 0.001 (1.00E-03) are considered highly significant.

$$\begin{pmatrix} 1 \underline{\Gamma} & 1 \underline{\Gamma} & 0 \underline{\Gamma} & \cdots & \underline{\Gamma} & 0 & \underline{n} & \underline{n$$

Analysis of genes expressed by astrocytes

Analysis of genes expressed by astrocytes $x _ _ _ x + _ _ _ x + _ _ _ 0, x + _ n + 0 + _ 1 + _ n + _ n + _ 0 + _ n + _ 1 + _ n + _ n + _ 0 + _ n + _ n$

Table 2. Genes in defined phagocytosis and engulfment pathways

Probe set ID	Astrocytes (P7)	Astrocytes (P17)	Neurons (P16)	Myelin oligos	Gene symbol	Gene title
1451086_s_at	12835	17817	9937	19272	Rac1 (ced-10)	RAS-related C3 botulinum substrate 1
1421840_at	13229	11313	443	239	Abca1 (ced-7)	ATP-binding cassette, subfamily A (ABC1), member 1
1453771_at	840	770	105	69	Gulp1 (ced-6)	GULP, engulfment adaptor PTB domain containing 1
1429841_at	4746	8268	149	2340	Megf10 (ced-1)	Multiple EGF-like-domains 10
1448655_at	4671	5922	1693	86	Lrp1 (ced-1)	Low-density lipoprotein receptor-related protein 1
1448248_at	5831	6609	4578	5183	Crk (ced-2)	v-crk sarcoma virus CT10 oncogene homolog (avian)
1452220_at	4040	3898	175	1574	Dock1 (ced-5)	Dedicator of cyto-kinesis 1
1456098_a_at	1232	4115	1553	801	Elmo2 (ced-12)	Engulfment and cell motility 2, ced-12 homolog (C. elegans)
1422869_at	1948	7370	59	89	Mertk	c-mer proto-oncogene tyrosine kinase
1423586_at	2145	2598	52	43	AxI	AXL receptor tyrosine kinase
1417399_at	503	1991	1485	268	Gas6	Growth arrest specific 6
1452784_at	9018	10595	1757	4162	ltgav	Integrin α V
1417533_a_at	8569	6783	193	231	ltgb5	Integrin β 5
1420911_a_at	25011	31089	617	754	Mfge8	Milk fat globule-EGF factor 8 protein
1417876_at	36	50	11	36	Fcgr1	Fc receptor, IgG, high-affinity I
1435477_s_at	48	21	32	54	Fcgr2b	Fc receptor, IgG, low-affinity IIb
1448620_at	24	33	34	72	Fcgr3	Fc receptor, IgG, low-affinity III
1418340_at	21	55	22	80	Fcer1g	Fc receptor, IgE, high-affinity I, gamma polypeptide
1450678_at	55	33	79	79	Cd11/ltgb2	Integrin β 2
Reference cell-type	e-enriched genes					
1440142_s_at	9742	13827	31	77	Gfap	Glial fibrillary acidic protein
1448768_at	7	14	6	24964	Mog	Myelin oligodendrocyte glycoprotein
1433884_at	326	339	18197	239	Syt1	Synaptotagmin I

Molecular components of phagocytosis and engulfment pathways are enriched and expressed at high levels in astrocytes. See Results and Discussion for a complete description of the different pathways.

L n · Y Can CIE L 11, LEL B III 0 $\begin{array}{c} \mathbf{n}_{1} \quad \mathbf{n}_{2} \\ \mathbf{n}_{1} \quad \mathbf{n}_{2} \\ \mathbf{n}_{1} \quad \mathbf{n}_{2} \\ \mathbf{n}_{1} \quad \mathbf{n}_{2} \\ \mathbf{n}$ <- 1 m * 1 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$ -n $\frac{1}{\beta} - \underline{g} \quad \cdot \quad \underline{c} \quad \underline{n} \quad \underline{c} \quad$ х, $\underline{L}^{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \underbrace{L}^{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \underbrace{L}^{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \underbrace{L}^{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \underbrace{L}^{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \underbrace{L}^{0} = \underbrace$ ē k kn+g 0 · · 0 sⁱ · · S g n-to type they are a say to go a to go a to the go a to En · · X A ·

 $(\underbrace{}_{L} 1), \underbrace{}_{L} 0 \cdot 0 \cdot 6 \cdot (\underbrace{}_{n} 1), \underbrace{}_{L} \cdot \underbrace{}_{n} \underbrace{}_{n} 1 (\cdot 0 \cdot 9 1), \underbrace{}_{n} \cdot \underbrace{}_{n} \cdot \underbrace{}_{n} 1 (\cdot 0 \cdot 9 1), \underbrace{}_{n} \cdot \underbrace{}_{n}$ • n $\begin{array}{c} \mathbf{r} & \mathbf{n} & \mathbf{r} & \mathbf$ o -2 2). to the the second secon n <u>L</u>- • ¥- • • ο D $\mathbf{n}_{\mathbf{f}} \setminus \underline{\mathbf{f}}^{\mathbf{X}}, \quad \mathbf{n}_{\mathbf{f}} \times \mathbf{x}^{\mathbf{X}}, \quad \mathbf{f} \in (\mathbf{f}, \mathbf{f}, \mathbf{f}) = \mathbf{f} \circ \alpha \beta 5$ · [°]r ۹. L $\begin{array}{c} \mathbf{n} \\ \mathbf$ L ô ę 0 . r • 0 1 <u>د</u> 1 gi - 1 ¢ • -• D • 1 ,1 Tr - X C TE KAIDI - O - A - EO CEC far i to a fr i to

Analysis of genes expressed by oligodendrocytes

 $\begin{array}{c} \mathbf{n} & \mathbf$

Analysis of genes expressed by neurons

Gene expression changes during astrocyte and oligodendrocyte development

 $\begin{array}{c} \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{$

 $\begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{x} \\ \mathbf{z} \\ \mathbf{x} \\ \mathbf{z} \\ \mathbf$

 $\begin{array}{c} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} & \mathbf{x} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \mathbf{x} & \mathbf{x} & \mathbf{z} \\ \mathbf{z} & \mathbf{x} & \mathbf{z} \\ \mathbf{z} & \mathbf{z} \mathbf{z} & \mathbf{$ • ⁽¹¢ ^X, ^c1 ⁻ 1 $\begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf$

 $\mathbf{n} \stackrel{\circ}{=} \mathbf{0} \quad \mathbf{x}_{1} \qquad \mathbf{x}_{1} \quad \mathbf{x}_{1} \quad \mathbf{x}_{1} \quad \mathbf{x}_{2} \quad \mathbf{x}_{1} \quad \mathbf{x}_{2} \quad \mathbf{x}_{3} \quad$ • ⁰• 1 <u>Å</u> 2 $\begin{array}{c} \mathbf{n} \cdot \cdot \cdot \langle \underline{p} \\ \mathbf{n} \cdot \mathbf{r} \\ \mathbf{n} \\ \mathbf{n} \cdot \mathbf{r} \\ \mathbf{n} \cdot \mathbf{r} \\ \mathbf{n} \\ \mathbf{n$ Lage 1 X Ō N... D. D ٤. ۲ ۲ ŝ ໍ <u>ເ</u>____1 2.3 •• \ • 0 •• -4 4), $I_{\bullet} = \{ I_{\bullet} : I_{\bullet} : I_{\bullet} \}$, $I_{\bullet} = I_{\bullet}$ • 5 1 $1 \frac{1}{2} \frac{1}{2} (2), \frac{1}{2} \frac{1}{$ 1 ° < 2 * 12 -D $\begin{array}{c} \mathbf{L}^{\bullet} & \mathbf{M} & \mathbf{L}^{\bullet} & \mathbf{L}^{\bullet$.(X 20 \$1 -- 0 gan 2 -- n * * r 20 \$14 ¶., L

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ x . M (saa 111 a 🥵 🔩 💭 - na ₹ Sa - S M.• . (х. ٢ LLOKE* O.V ٩.,₁ • <u>n</u>••• ۰ <u>م</u> -ILLOCE · • x. • • X. 51 5 C + 1 - 5 - 1 - 1 11 . 1 L'i- in ig. - LL 53 . 7. Ind fr r on X . (₅ . · x · r £ 'ı • (c) farre. • x. •). r · gr i r 1 • \underline{C}^{0} < \underline{C}_{n-1} · \underline{C}_{n-1} n L x $\mathbf{x} = \mathbf{L}^{\circ} \quad in \quad vivo < \mathbf{x} \cdot \mathbf{h}^{\circ} \quad \cdot \quad \varepsilon^{\circ}$ \$ 15 $\begin{array}{c} \mathbf{L} \\ \mathbf{$ · · · · · ÷ -L L[°]_{3),} < 📶 330104 05 (n- 1). $\mathbf{q} = \mathbf{q} \cdot \mathbf{q} \cdot \mathbf{q} \cdot \mathbf{x} \cdot \mathbf{q} \cdot \mathbf{q} \cdot \mathbf{x} \cdot \mathbf{q} \cdot \mathbf{q}$ -く・ х. 2006), • <u>6</u> < 1-1 to be the to prove the second • • <u>£</u>⁰1

Comparison of *in vivo* astrocytes with *in vitro* cultured astroglia

 $\begin{array}{c} \mathbf{c}_{\mathbf{n}} & \mathbf{c}_{\mathbf{$ Sico Brow Contraction X L $\mathbf{L}^{\mathsf{L}} \stackrel{\mathsf{L}}{\longrightarrow} \mathbf{L}^{\mathsf{L}} \stackrel{\mathsf{L}}{$ (same of the - ena DEL L . Cy M. B. Cm ο. 1 · C L • 1 Saa C 17 MILLA CALLA · \$

Sec in the second L 12,416 n 10 0 • 2 0 • 0 • 2 • 1 2 • 51 5 0 _ n ≝ < <u>r</u> x. • n 🗓 o Ĩ Ľ L ^{X 0}, D · 1 1 1 1 1 1 1 L М. • <u>n</u> ‼. 5. 1 D • <u>r</u> n 🛄 0 X·cic • • ¥ Ż 12 ----Ľ 1. (LL x 🛃 🔹 x 🖣 in vivo. <u>.</u> 0 11. in vitro ı fir n 1 Xn N, o 1616 Év 4 j х с <u>п</u> с о *in vivo* (, с <u>г</u> , <u>г</u> , 2006; , <u>г</u> , 2007). <u>с</u> с о <u>п</u> <u>п</u> <u>о</u> х <u>п</u> <u>с</u> <u>و</u> ا 2. c, c < 0 - c < β, 2 - 0. <u>.</u> · . . . $\mathbf{n} \stackrel{\mathbf{r}}{=} \mathbf{n} \stackrel{\mathbf{r}}$ 1 o in vivo Ľ (com (12 2 20, 21, 22, 2 BUILD C. C. gtsna < rg < g ⋅g).

to the particular to the providence of the provi Xn LL Misis D ¶_n` ć L Ľ Ľ he for for the other source $\underbrace{\mathbf{L}}_{\mathbf{r}} = \underbrace{\mathbf{L}}_{\mathbf{r}} = \underbrace{\mathbf{r}}_{\mathbf{r}} \underbrace{\mathbf{r}} \underbrace$ D · _ _ 22, LEL EVIL A C. ... gtsina < L ^{0 \} - \$ ⁰1 <u>5</u> -1' 1<u>C</u> n 🗓 0 х vitro 5 < 51 in vitro., •,• X,• • • • 2 17 4), \mathbb{L} 0 1 (\mathbb{L} 1), \mathbb{L} 0 \mathbb{L} x \mathbb{L} (\mathbb{L} \mathbb{L} {\mathbb{L}} \mathbb{L} \mathbb{L} {\mathbb{L}} \mathbb{L} \mathbb{L} { (n 🗓 х х 0, ₁ •, • n• • 0 $0 \underline{\mathbf{n}} \underline{\mathbf{n}}$, $\mathbf{x} = \mathbf{x} + \mathbf{x} +$ <u>r</u>. ₹ **5** ° 1 ደ< ይና <u>n</u> ·· < 5-15-21 - X r <u>n</u> ! <u>n</u> • **!!**,₁ X₁₁₁ 3) 🙍 "Esca c • ×, < 1 1 1 1 • (1, 0, 0, 0, 0, 0)L C . P ۲. s1 e 1 DEE £ . . . « xō • • • 5 - 1616 D E1-2. .

Discussion

A database of transcriptional profiles for CNS neural cell types

,	1	• • • • × · · · · ·	٥ د	<u>.</u>	0,	y n • 0	1*	1 < 1 -	0
r		• x ne	• ^x 🗹 🖓	X 🐛	D ⁰	<u>_</u> , `,	\$ -	•' L ⁰ ▼	M

[←]

Figure 6. Genes upregulated and downregulated during astrocyte and oligodendrocyte development. The top 60 genes most downregulated during astrocyte development (*A*, light green bar) and OL development (*B*, orange bar), and the top 60 genes most upregulated during astrocyte development (*C*, dark green bar) and OL development (*D*, red bar). The genes are plotted on a heat map to illustrate gene expression patterns in all CNS cell types at different developmental stages. The individual gene expression level for each cell type is normalized to the age averaged astrocyte expression (*A*, *C*) and the age averaged OL expression (*B*, *D*). The normalized values are plotted on a log₂ color scale, with blue representing low expression and red representing high expression. The fold enrichment can be estimated from the log₂ color bar scale. For example, the change from light blue (-1) to medium red (2) represents an eightfold difference in expression level. Note that, although few genes strongly downregulated during development (*A*, *B*) are expressed in a cell-type-specific pattern, the majority of genes strongly upregulated during development (*C*, *D*) are expressed in a cell-type-specific pattern.

(1, 30) (..., 20) (...,

Identification of new cell-type-specific markers

 $\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$

 $L_{0} = \frac{1}{100} + \frac{1}{100$

 $\begin{array}{c} \mathbf{c} & \mathbf{$

The astrocyte transcriptome provides many new clues to astrocyte development and function

Several evolutionarily conserved phagocytic pathways are highly enriched in astrocytes

L. Drosophila L. EL K. Lr KKKLL $\begin{array}{c} \mathbf{L} \\ \mathbf$ 1 · · · ¥ · · · $\begin{array}{c} & & \\ & &$ $, \alpha \beta 5, \gamma = , ng \setminus \underline{z}_n \cdot \cdot \underline{s}_n \cdot \underline{s}_n$ x (^L 2002; c 2007), ^L x 0 ^L ^D x in vivo. K. 201. 2. 1 ng (24, n 20 8 2 2 - 1 (- 1 x n 10) 2 - 3 (n 20) $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ $\frac{\partial 11}{\partial 1}, \frac{18}{\partial 1}, \frac{\partial \beta_n}{\partial 1}, \frac{\partial \beta_n}$

 $\underbrace{\mathcal{B}}_{\mathcal{L}} = \underbrace{\operatorname{al}}_{\mathcal{L}} \underbrace{\operatorname{al}}_{$ $\mathbf{n} = \mathbf{n} + \mathbf{n} +$ $= \underbrace{c}_{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{x}} \underbrace{\mathbf{z}}_{\mathbf{x}} \underbrace{\mathbf{x}}_{\mathbf{y}} \underbrace{\mathbf{y}}_{\mathbf{y}} \underbrace{\mathbf{x}}_{\mathbf{y}} \underbrace{\mathbf{x$ $\begin{array}{c} \mathbf{n} \\ \mathbf$ 1 ng \ 24 . co pr gx p ng c greeceg. < 10 L A .

References

- $\begin{array}{c} \mathbf{L} \mathbf{r} \\ \mathbf{n} \mathbf{L} \\ \mathbf{r} \\ \mathbf{r}$
- $\underbrace{\mathcal{L}}_{(2006)} \underbrace{\mathfrak{L}}_{1} \underbrace{\mathcal{L}}_{2} \underbrace{\mathfrak{L}}_{1} \underbrace{\mathfrak{L}}_{1}$
- , K.

- $L = \begin{pmatrix} x & y & y \\ 101:8384 & 8389. \\ (1992) & 0 \\ (1992) & 0 \\ C & C & C \\ (1992) & 0 \\ C & C & C \\ (1992) & 0 \\ C & C & C \\ (1992) & 0 \\ C & C & C \\ (1992) & 0 \\ C & C & C \\ (1992) & 0 \\ C & C & C \\ (1992) & 0 \\ C & C & C \\ (1992) & 0 \\ C & C & C \\ (1992) & 0 \\ C & C \\ (1992) &$
- $\begin{array}{c} & \overset{00}{} \\ & \overset{00}{} \\ & \overset{0}{} \\ & \overset{0}{} \\ \\ & \overset{0}{} \\ & \overset{0}{} \\ \\ & \overset{0}{} & \overset{0}{& \overset{0}{} \\ & \overset{0}{} \\ & \overset{0}{} & \overset{0}{& \overset{0}{} \\ &$

 - $\begin{array}{c} \mathbf{x} & \mathbf{y} & \mathbf$ L -- > L
 - $\frac{1}{1} \left\{ x + \frac{1}{2} \right\}_{n-1} \left\{ \frac{1}{2} \right\}_{n-1} \left\{ x + \frac{1}{2} \right\}_{n-1}$ 120:421 433.

 - 120:421 435. $(1991), \underline{a} \\ \underline{b} \\ \underline{c} \\ \underline{c}$

- . 1 4
- $L \square (L L) , L (L) ,$

- $\begin{array}{c} \mathbf{L} \\ \mathbf$ ^{377:85} 93.
- $\begin{array}{c} & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ Ŀ
- $\begin{array}{c} L & \cdot & \cdot \\ 1 & \langle \underline{L} & \cdot \\ 2 & \langle \underline{L} & \\ 2 &$ - < _ - 5: 80.
- $\begin{array}{c} & & (2000) \\ & & & (275) \\ \end{array}$
- $\begin{array}{c} \mathbf{x}_{\mathbf{n}} \\ \mathbf{x}_{\mathbf{$ 5:41 44.

- $E \rightarrow E \rightarrow E^{0} \qquad (1996) \qquad n = E \rightarrow 0 \qquad (1996) \qquad n = E \rightarrow 0 \qquad (1996) \qquad (1996) \qquad n = E \rightarrow 0 \qquad (1996) \qquad (19$
- **. . . . 7:483.**

- $\begin{array}{c} \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{7} \cdot \mathbf{483.} \\ \mathbf{n} \cdot \mathbf{1} \cdot \mathbf{2004} \\ \mathbf{n} \cdot \mathbf{1} \cdot \mathbf{2} \cdot \mathbf{0} \\ \mathbf{n} \cdot \mathbf{1} \cdot \mathbf{2} \cdot \mathbf{0} \\ \mathbf{n} \cdot \mathbf{1} \cdot \mathbf{2} \cdot \mathbf{0} \\ \mathbf{n} \cdot \mathbf{1} \cdot \mathbf{1} \cdot \mathbf{0} \\ \mathbf{n} \cdot \mathbf{1} \cdot \mathbf{1} \\ \mathbf{n} \cdot \mathbf{1} \cdot \mathbf{1} \\ \mathbf{n} \cdot \mathbf{1} \cdot \mathbf{1} \\ \mathbf{n} \cdot \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \cdot \mathbf{n} \\ \mathbf{$
- (2001) ^{K,E} K • ^X • 0 • K,00 . , £ 1 ' ' • • n '
- $\mathbf{n}_{1} \cdot \mathbf{n}_{2} \cdot \mathbf{n}_{3} \cdot \mathbf{n}_{4} \cdot \mathbf{n}_{5} \cdot \mathbf{n}_{6} \cdot \mathbf{n}_{1} \cdot \mathbf{n}_{5} \cdot \mathbf{n}_{6} \cdot \mathbf{n}_{6} \cdot \mathbf{n}_{1} \cdot \mathbf{n}_{5} \cdot \mathbf{n}_{6} \cdot \mathbf{n}_{6} \cdot \mathbf{n}_{1} \cdot \mathbf{n}_{5} \cdot \mathbf{n}_{6} \cdot \mathbf{n}_{6}$ Υ.
- $\mathbf{K}_{\mathbf{x}} = \left(\begin{array}{c} 2001 \\ \mathbf{x}_{\mathbf{x}} \\$
- 129:1215 1225.

- 165:197 207.
- $\begin{array}{c} \underline{L} \\ (2006) \\ \underline{L} \\ (2006) \\ \underline{L} \\ \underline{L} \\ (2006) \\ \underline{L} \\ \underline{L$

- $\begin{array}{c} 209:2304 \ 2311. \\ \begin{array}{c} & & \\$

- $\begin{array}{c} \mathbf{g} \in 438:360 \ 363. \\ \mathbf{g} \in \mathbf{f} = \mathbf{g} \in \mathbf{f} = \mathbf{g} = \mathbf{g}$

- $L = \frac{1}{2} \frac{1}{2}$
- $\begin{array}{c} \mathbf{n} & \mathbf{$ • n
- $\begin{array}{c} \underline{c} \\ \underline$

- 7:229 235.
- $\begin{array}{c} (1978) = \frac{1}{2} + \frac{1}{2} +$

- $\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$
- $\begin{array}{c} \mathbf{n} \underbrace{\mathbf{g}}_{(2004)} \stackrel{\mathbf{h}}{=} \underbrace{\mathbf{f}}_{(2004)} \stackrel$ 11009.