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ABSTRACT
Systematic review and meta- analysis are a gift to the 
modern researcher, delivering a crystallised understanding 
of the existing research data in any given space. This can 
include whether candidate drugs are likely to work or not 
and which are better than others, whether our models 
of disease have predictive value and how this might be 
improved and also how these all interact with disease 
pathophysiology.
Grappling with the literature needed for such analyses 
is becoming increasingly difficult as the number of 
publications grows. However, narrowing the focus of a 
review to reduce workload runs the risk of diminishing 
the generalisability of conclusions drawn from such 
increasingly specific analyses.
Moreover, at the same time as we gain greater insight 
into our topic, we also discover more about the flaws that 
undermine much scientific research. Systematic review 
and meta- analysis have also shown that the quality of 
much preclinical research is inadequate. Systematic 
review has helped reveal the extent of selection bias, 
performance bias, detection bias, attrition bias and low 
statistical power, raising questions about the validity of 
many preclinical research studies. This is perhaps the 
greatest virtue of systematic review and meta- analysis, 
the knowledge generated ultimately helps shed light on 
the limitations of existing research practice, and in doing 
so, helps bring reform and rigour to research across the 
sciences.
In this commentary, we explore the lessons that we have 
identified through the lens of preclinical systematic review 
and meta- analysis.

INTRODUCTION
The rate of growth of knowledge claims and 
the literature in which these are communi-
cated is now so great that we are faced with 
major data overload. For example, in the 
field of neurological disorders, more than 
2.6 million papers were classified as relevant 
by PubMed ‘MeSH’ headings. Thousands 
more publications describe other similar 
fields of research (figure 1). No individual 
can read, let alone absorb and master all this 
detail, so we rely on summaries to gain an 
overview of a topic.

The traditional approach to summarising 
the literature has been the narrative review, 
where (at least conceptually) an expert, or 

group of experts, condenses the knowledge 
gained over one, or many lifetimes of work in 
a field. Journals value these reviews because 
they highlight areas of current develop-
ment and attract many citations, raising the 
profile of the journal. Junior researchers like 
them because they provide a short- cut into 
a complex world they are just beginning to 
explore. Despite their undoubted value as 
important repositories of human wisdom, 
narrative reviews have limitations. In most 
instances, the literature described represents 
only a small proportion of the total evidence 
available, and it is rare for the reader to be 
able to discern the reasons for the selection 
of some papers and exclusion of others. It 
is also rare for narrative reviews to provide a 
quantitative summary of the underlying data 
to justify the conclusions which they reach. 
In both instances, we are forced to trust the 
judgement of the narrative review authors but 
are unable to judge the scientific basis of the 
claims made. An unacknowledged problem is 
that writing such reviews is a task often given 
to PhD students and junior post- doctoral 
researchers on starting a new project. While 
a great training tool, they cannot truly be 
considered expert reviews.

Systematic review and meta- analysis try to 
address these limitations. By clearly defining 
the scope of the review and providing repli-
cable search criteria, their readers know 
explicitly what subject matter was assessed. 
By providing inclusion and exclusion criteria, 
systematic reviews also tell the reader what 
was considered important and what was not. 
Moreover, where performed, meta- analyses 
provide a formal environment for testing 
the statistical validity of claims made by the 
included literature. This includes assess-
ment of whether or not publication bias 
might contribute to a falsely positive picture 
of a subject. By embracing the principles of 
Open Science,1 systematic reviews and meta- 
analyses have the additional advantage of 
permitting ongoing aggregation of data, an 

http://bmjopen.bmj.com/
http://orcid.org/0000-0003-3057-3443
http://orcid.org/0000-0002-0791-0950
http://orcid.org/0000-0001-6195-8536
http://orcid.org/0000-0001-9187-9839
http://orcid.org/0000-0002-2512-7724
https://www.cos.io/our-services/badges/
https://www.cos.io/our-services/badges/
http://dx.doi.org/10.1136/bmjos-2021-100219
http://dx.doi.org/10.1136/bmjos-2021-100219
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjos-2021-100219&domain=pdf&date_stamp=2022-03-12


2 Russell AAM, et al. BMJ Open Science 2022;6:e100219. doi:10.1136/bmjos-2021-100219

Open access 

important consideration when faced with an ever- growing 
literature. However, this comes at a cost to the researcher. 
Because the process requires current searching and 
assessment of what is often a large body of literature, it 
is a demanding and time- consuming task. Consequently, 
systematic reviews usually have a very narrow focus and 
lack breadth. Ultimately, we need meta meta- research 
(meta- analysis of meta- analyses) to integrate these high- 
quality yet narrow snippets of information into research 
outputs with broader applicability. It should be remem-
bered, however, that systematic review and meta- analysis 
contain a risk of error caused by the rigid application of 
procedure and that not all knowledge is a matter of data 
aggregation.

Importantly, asking pertinent questions, establishing 
effective criteria for inclusion and exclusion of publica-
tions and deciding what data to extract from a body of liter-
ature still requires expertise. It should also be noted that 
systematic reviews are not immune from human foibles. 
The principle of ‘garbage in, garbage out’ still applies. If 
this is recognised, systematic review and meta- analysis can 
provide a vehicle for assessing the consequences of poor 
science and may salvage important signals that might 
otherwise be missed if suboptimal science is discarded 
outright.

In this commentary, we discuss some of our key obser-
vations from the formative years of preclinical systematic 
review and meta- analysis research. We present these in the 
form of ‘lessons’ (box 1). These lessons are not about the 
scientific aims or conclusions drawn by individual papers 
but about the environment in which they are performed. 
We acknowledge that these might one day become the 
specific subjects of new systematic reviews and meta- 
analyses but to do so is beyond the scope of this commen-
tary. Nevertheless, in the spirit of systematic review, where 

we provide examples to illustrate these lessons, we have 
selected data in an unbiased and transparent way.

Lesson 1: systematic review can compare interventions and 
assess preclinical models
In most cases, systematic review and meta- analysis in 
the preclinical space are performed to ask the question 
‘are we there yet?’. Is the preclinical data sufficient to 
support a move into the clinical sphere? A recent cross- 
sectional study (2015–2018) examining the epidemiology 
and reporting characteristics of preclinical systematic 
reviews found that 54% assessed pharmacological inter-
ventions and 46% assessed non- pharmacological (mainly 
cellular or surgical) interventions across 23 different 
disease domains.2 However, many studies do not just ask 
whether a single intervention works. Many also examine 
the relative efficacy within classes of interventions, how 
varying conditions employed during modelling modify 
the apparent efficacy of an intervention, and the validity 
of preclinical models themselves.

For example, a broad systematic review examining the 
efficacy of 1026 experimental treatments for stroke found 

Figure 1 Results of PubMed search performed on 3 March 2021 showing numbers of publications by year and totals for 
subject searches using ‘MeSH’ headings.

Box 1 Summary of the lessons that have emerged from 
preclinical systematic review and meta- analysis

1. Systematic review can compare interventions and assess preclinical 
models.

2. Literature overload limits research productivity.
3. Electronic databases have very different coverage.
4. Not all publications have value for meta- research.
5. The internal validity of many preclinical experiments is poor.
6. Publication bias is common.
7. Small preclinical studies present problems.
8. Promising reviews are rarely followed- up by their authors.
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that the best candidates were not always those taken to 
clinical trial. Additionally, as the breadth of experimental 
testing increased, effectiveness appeared to decrease.3 
Another stroke study found that while systematic review 
supported treatment of ischaemic stroke with magne-
sium (anti- glutamatergic), melatonin (anti- oxidant) and 
minocyclin (anti- inflammatory), appropriately powered, 
randomised and blinded experiments across a range 
of ischaemic conditions were unable to detect any effi-
cacy.4 This raises concerns about the true efficacy of 
many of the candidates that appear promising in system-
atic reviews. Conversely, in models of multiple sclerosis, 
systematic review has identified drugs effective across 
multiple outcome domains which have not been tested in 
humans suggesting clinical evaluation of these otherwise 
neglected drugs may be of value.5

Systematic review and meta- analysis have also been used 
to explore the experimental conditions most conducive to 
detection of benefit. For example, for stem cell therapies 
in renal disease, cardiac disease, stroke and spinal cord 
injury, therapeutic efficacy is inversely related to the size 
of the experimental animal, raising important questions 
about the doses that might be required for effective trans-
lation to humans.6 Others have used systematic review to 
support the face validity of models of, for example, cere-
bral palsy7 and xenograft models of colorectal cancer,8 or 
to justify calls for greater standardisation in preclinical 
experiments.9

Lesson 2: literature overload limits research productivity
The inclusivity of systematic reviewing presents a specific 
challenge, the person- power needed to find and sift publi-
cations for inclusion within the review. A utopian view 
would require us to perform broad reviews that exam-
ined the entire data set of a field of research. This would 
enable comparison of issues such as the strengths and 
weaknesses of our model systems, the relative merits of 
candidate drugs used within such models or the impact of 
interacting variables often present but not controlled for, 
such as anaesthesia in surgical models or staffing inter-
actions during behavioural testing. Such broad studies 
are rare and probably unrealistic for most research teams 
until all publications are available in a searchable elec-
tronic format and automated text and data extraction 
tools mature. Asking a broad research question finds 
more publications than are easy to handle. As in science 
in general, asking a more specific question reduces the 
potential workload but at the probable expense of gener-
alisability.

To illustrate this, we completed a simple and easily 
replicable search using PubMed’s ‘advanced’ search filter 
(figure 2). By searching for the neurological disorder 
‘ischaemic stroke’ we can see that a large number of 
potentially relevant papers are found, much larger than 
any one reviewer could handle alone (78 730 total). 
Limiting the search to studies containing animals only 
and to studies listing particular treatments (hypothermia 
or aspirin), we reduce the number of studies identified 

with our search to a few hundred. This number is much 
more tractable for a systematic review project, but there 
is a risk that relevant papers are being missed in these 
narrower searches. That is, the increased specificity comes 
at the costs of some reduction in sensitivity.

We do not argue for less primary research but do 
argue that making such data more accessible for meta- 
research will improve future productivity and under-
standing. Importantly, consideration of logistics is critical 
when planning a systematic review. Automation tools 
are increasingly useful adjuncts to human effort, but the 
human effort is still substantial.

Lesson 3: electronic databases have very different coverage
Finding the publications would seem to be a simple 
task; after all, many electronic repositories/directo-
ries of the scientific literature are available for this 
purpose. However, no search engine provides access to 
a complete record of all published works. Search results 
with different tools vary with respect to subject matter 
and period of coverage, or how the indexing works 
(use of proprietary search and indexing algorithms and 
human curation).10 11 Changes to any of these databases 
or their indexing systems without public documentation 
also means that full reproducibility during future studies 
cannot be assured. Systematic reviewers must balance 
scientific purity against pragmatism.

Depending on your branch of science, you may have 
access to many literature databases. In our field, PubMed, 
EMBASE, Scopus (the latter two both owned by Elsevier) 
and Web of Science/BIOSIS are commonly used. While 

Figure 2 Results of simple searches performed in PubMed 
illustrating potential workload for systematic review and 
meta- analysis. Search completed on 19 January 2021 using 
the ‘advanced’ search option on the front page and the 
‘species’ filter on the search results page.
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all cover biomedical and life science literature, their 
coverage differs substantially.11

To illustrate these issues of coverage and address addi-
tional questions below, we performed a simple search 
to find systematic reviews of preclinical therapeutic 
interventions to determine where these reviews found 
their primary data. On 3 March 2021, PubMed indexed 
180 585 publications as systematic reviews. Of those with 
‘Free full text’ available, PubMed’s inbuilt ‘other animal’ 
filter identified 5593 (3%) as potentially relevant to 
animal research. One thousand five hundred and seven-
ty- two (0.9% of all PubMed returns, 28% of those filtered 
as ‘other animal’) self- identified as a systematic review, 
including the term in the article title. On inspection of 
these papers, we found 283 papers examining therapeutic 
interventions in preclinical disease models. We selected 
20 of these at random for closer examination,12–31 their 
characteristics are summarised in table 1.

In these 20 studies, the authors had searched using 
the name of the intervention of interest within a broader 
pool of papers specific to a disease model in non- human 
animal species, giving little scope for ambiguity. The 
median number of databases searched by these reviews 
was 3 (range 1–7). The most commonly searched data-
bases were PubMed, EMBASE and Web of Science. Exam-
ining the reason why publications were excluded from 
each review’s analysis shows that on average, 30% (range 
0%–92.3%) of a review’s discarded papers were replicates 
found across multiple databases (median 214 replicates 
per review) (figure 3). The corollary of this is that many 
unique and potentially important papers would be missed 
if only a single database had been searched. The magni-
tude of this problem, and the extent to which adding a 
further database to be searched changes the conclusions 
of a meta- analysis, is unclear. Luijk32 found that for some 
reviews the global estimate of efficacy was lower when 
limited to studies identified through PubMed compared 
with all other databases; from PubMed and EMBASE 
compared with all other databases; and when inclusion 
was limited to English language publications. However, 
overall, there was no significant effect. Information 
scientists have been aware of such problems for decades. 
We should also remember—in the context of system-
atic reviews that aspire to assess all available data on a 
subject—that the English literature is not the only source 
of scientific data and it is critical that such language bias 
is avoided.33

Lesson 4: not all publications have value for meta-research
Among several thousand publications found by elec-
tronic searching, examination of the search results and 
application of the systematic review inclusion and exclu-
sion criteria also illustrates that the returns of electronic 
searches do not always provide a high yield of relevant 
data. We examined the total identified, excluded and 
included studies in our 20 randomly selected reviews 
(table 1) and noted the reasons nominated by review 
authors for their exclusions (figure 3). In the 20 reviews, 

each identified a large number of papers that might have 
been relevant (median 1345 publications identified per 
review, range 161–9027). However, on average, only 5.5% 
(range 0.2%–17.1%, median 36 publications per review) 
of these potentially relevant papers were included in each 
review’s final data set and their analyses. If we consider 
the other 94.5% of identified publications which were 
excluded per review (range 82.9%–99.8%, median 1279 
excluded publications), we find that 61% of them (range 
7.1%–99.9%, median 624 publications per review) were 
excluded as they were considered irrelevant when the 
abstracts were read by a screening team. Additionally, 
an average of 7% (range 0%–15.5%, median 15.5 publi-
cations) of each review’s excluded publications were 
excluded by the review authors because of omissions in 
data reporting. Usually this takes the form of reporting 
outcome measures that are not usable for meta- analysis 
or missing important parameters in the describing of 
methods. From the perspective of a systematic reviewer, 
this is frustrating. An inordinate amount of effort goes 
into evaluation of papers of little value. One could argue 
this is highly dependent on the sensitivity/specificity of 
the search terms used. However, it should be remem-
bered that we selected the data for figure 3 because the 
authors of these systematic reviews were asking relatively 
unambiguous questions about very specific interventions. 
It is likely that studies asking more complex and ambig-
uous questions might have larger initial searches and 
exclude even more studies. This strongly suggests that 
better sensitivity and specificity require improvements to 
the indexing provided by the respective databases and the 
clarity of titles, abstracts and key words provided by orig-
inating authors.

The inclusion of articles that are subsequently discov-
ered to be fraudulent may also contribute to a systematic 
review if the review is performed prior to the fraudulent 
discovery. However, it is outside the scope of the reviewer 
to detect this given the lack of access to raw data, except 
for circumstances where individual subject data is used. 
The time of the systematic reviewer is of the least concern 
here, when set against the grant funding gone to waste, 
the exposure of animals to harms with little benefit in 
knowledge in return, and the efforts of research teams 
squandered by poor reporting.

Lesson 5: the internal validity of many preclinical experiments 
is poor
As stated by the late Doug Altman and colleagues ‘If the 
raw material is flawed then the conclusions of systematic 
reviews cannot be trusted’.34 The internal validity of a 
study is threatened by bias, ‘any process at any stage of 
inference tending to produce results that differ system-
atically from the true values’.35 In preclinical studies, as 
in clinical trials, we see selection bias, performance bias, 
detection bias and attrition bias. Moreover, most publi-
cations fail to include information that would allow a 
reader to know to what extent biases might have been 
prevented.4 36 37 Within the preclinical literature, a variety 
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of tools have been used to assess overall quality and risk 
of bias. Within the 20 preclinical systematic reviews we 
randomly selected as illustrative of trends within the field, 
the majority used either the Collaborative Approach to 
Meta Analysis and Review of Animal Data from Experi-
mental Studies (CAMARADES) quality score checklist38 

or SYstematic Review Center for Laboratory animal Exper-
imentation’s (SYRCLE) risk of bias tool.39 Two studies 
made no assessment of study quality or risk of bias. Worry-
ingly, only one study assessed both, which raises the possi-
bility that the other 17 studies were unaware that assessing 
a study’s quality and assessing the study’s risk of bias are 

Table 1 Characteristics of 20 randomly selected systematic reviews, including the disease or biological system of interest 
and the treatment/intervention being investigated. Total number of studies identified through systematic searches and number 
of studies included in each review’s final analysis were self- reported in each publication, percentage of studies included out of 
all studies identified was calculated by the authors of this paper

Study (reference)
Disease/biological 
system Treatment/intervention

# studies 
identified from 
searches

# studies 
included in 
final analysis

% studies 
included in final 
analysis

Albuquerque et al12 Melanoma Plant extracts 1359 35 2.6

Archambault et al13 Neonatal hypoxic 
ischaemic 
encephalopathy (HIE)

Mesenchymal stem/
stromal cells (MSCs)

161 18 11.2

Ashcraft et al14 Cancer Aerobic exercise 466 53 11.4

Auboire et al15 Ischaemic stroke Microbubbles (MBs) 
combined with ultrasound 
sonothrombolysis (STL)

2506 16 0.6

Cao et al16 Gut microbiota Anti- hyperglycaemic drugs 4075 64 1.6

Chen et al17 Ischaemic stroke Neural stem cells (NSCs) 
transplantation therapy

2524 37 1.5

Dong et al18 Ischaemic stroke Recombinant tissue 
plasminogen activator 
(rtPA)

2128 47 2.2

Gaubys et al19 Regeneration of 
periodontal tissue 
complex

Stem cell therapy 2099 10 0.5

Janssen20 Ischaemic stroke Constraint- induced 
movement therapy (CIMT)

3580 8 0.2

Lambrecht21 Anaemia Animal husbandry and 
capture (AHC)

9027 23 0.3

Li et al22 Hepatocellular 
carcinoma

Metformin 573 13 2.3

Liao et al23 Injury to bone Stem cell therapy 202 20 9.9

Ma et al24 Ischaemic stroke Xingnaojing injection (XNJI) 392 23 5.9

Senders et al25 Glioma surgery Agents for fluorescence- 
guided glioma surgery

2619 105 4.0

Silverblatt et al26 Myocardial injury Beta blockers, calcium 
channel blockers and 
antagonists of the renin–
angiotensin system

347 52 15.0

Suen et al27 Pulmonary arterial 
hypertension (PAH)

Regenerative cell therapies 1368 45 3.3

van der Bent et al28 Heritable 
neurodegenerative and 
neuromuscular diseases

Antisense oligonucleotide 
(AON)- based therapies

1330 95 7.1

van der Spoel et 
al29

Ischaemic heart disease Stem cell therapy 304 52 17.1

Wei et al30 Ischaemic stroke Buyang Huanwu decoction 
(BHD)

973 56 5.8

Zhang et al31 Vascular dementia Acupuncture 194 16 8.2
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not the same thing (table 2). Risk of bias tools assess a 
publication for the potential presence of specific biases 
(listed above). Quality scores assign yes/no answers to 
questions regarding disease model specific norms, rando-
misation, blinding, reporting ethics approvals or conflicts 
of interest to assess a paper’s overall adherence to good 
research practices. For each of the systematic reviews we 
assessed, included publications scored poorly against 
either of these types of tool. The highest median score 
using SYRCLE’s risk of bias tool was 5 out of 10, which is 
much lower than desirable. Reviews reporting a quality 
score were similar. No review using the CAMARADES 
quality rating scored a single included publication higher 
than 8 out of 10, with the median score being 4.

While it can be argued that these poor assessments 
merely reflect a failure to report these issues and is of little 
consequence, the data suggest otherwise. Where system-
atic reviews have been able to stratify data by the pres-
ence or absence of randomisation and blinding (which 
should guard against bias), the detected effect sizes are 
often substantially reduced by the presence of these 
measures.38 40–46 Further, the increase in reporting which 
followed implementation of a change in editorial policy 
at nature was largely due to an increase in researchers 

reporting that they had not randomised, had not blinded 
or had not conducted a sample size calculation.47

Lesson 6: publication bias is common
Publication bias (also known as dissemination bias) is 
the phenomenon whereby studies with positive results 
are more likely to be published than research with nega-
tive or neutral results, causing an over- representation of 
positive findings in the literature. This distorts that liter-
ature, making interpretation and assignment of value to 
knowledge claims difficult. In 2011, a systematic review 
of over 4600 research papers from different disciplines 
found that the frequency of publishing positive findings 
rose by over 22% between 1990 and 2007, with the fields 
of clinical medicine, pharmacology and toxicology, and 
molecular biology the worst affected.48

In preclinical stroke research, estimates of the propor-
tion of missing neutral or negative studies ranged from 
5% to 36% for different candidate therapies and across 
the field this constituted an overstatement of efficacy 
(relative) of 31%.49 Excess significance (where there 
are more statistically significant results than should be 
expected) has been detected in most preclinical system-
atic reviews in neuroscience50 and publication bias prob-
ably exists in most of the preclinical literature.51 A 2019 
Nature commentary co- signed by over 800 statisticians 
discussed that of these statistically significant papers 
dominating the literature, 51% were likely wrongly inter-
preted, and most of them likely interpreted their results 
with the false belief that a significant p value determines 
whether a result is ‘real’ or not.52 Because systematic 
reviews should find all the available data, a biased litera-
ture will lead to a biased synthesis of that evidence unless 
statistical methods are used to identify and where possible 
correct for this problem.50 53 However, despite systematic 
reviews being well positioned to take advantage of their 
comprehensive data collection to check for bias, Mueller 
and colleagues found that only 50% of preclinical system-
atic reviews chose to assess publication bias in their anal-
ysis.54 Of the 20 studies we analysed for this commentary, 
only 11 (55%) considered publication bias.

The presence of publication bias is important. New 
studies using biased foundational data run the risk of 
unnecessary repetition of futile science that has been 
performed but not reported. This wastes valuable 
resources, leads to unethical use of animals and ultimately 
puts humans at risk if, consequently, they are recruited 
into misguided clinical trials.55 56

Among the standard tools in assessment of publication 
bias are the funnel plot, and derivatives such as Egger’s 
regression. These detect asymmetry in the distribution 
of the effect size of a result compared with a measure 
of its precision. In the absence of bias, the distribution 
is ‘funnel’ shaped and symmetrical about its mean with 
small imprecise studies, most influenced by random varia-
tion, distributed broadly towards the base. When publica-
tion bias is present, smaller, less precise studies, reporting 

Figure 3 Screening data (extracted from PRISMA diagrams 
or text) from 20 randomly selected systematic reviews 
published between 2011 and 2020. Of the original 20 
papers, three were excluded and replaced as the PRISMA 
diagrams contained mathematical errors. ‘Reasons for 
exclusion’ are expressed as a mean percentage of each 
review’s excluded publications. ‘Replicates’=studies found 
in multiple databases, only a single replicate is included 
in further screening and all other replicates are discarded, 
‘irrelevant’=did not answer the research question asked by 
this review, ‘ineligible’=did not contain data useable by this 
review, ‘other’=papers excluded for reasons such as not 
having an available full text, being written in languages not 
included in the review or being a publication other than a 
primary research article. PRISMA, Preferred Reporting Items 
for Systematic Reviews and Meta- Analyses.
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negative or neutral results, will be missing and the distri-
bution becomes skewed.57

Lesson 7: small preclinical studies present problems
In 3145 preclinical stroke studies undertaken on 45 476 
animals, the average cohort size was 7 animals per treat-
ment group.58 In 2016, using similar data from the CAMA-
RADES data set (mean group size=8), it was calculated that 
the statistical power of the preclinical stroke literature is 
only 45%, implying that half of the studies investigating 
a hypothesis which was correct would fail to find statis-
tical evidence to support this. This is still, however, much 
larger than the 23% median power calculated across >700 
neuroscience experiments.59 This problem is not unique 
to preclinical research. One review of data held within 
the Cochrane Reviews data set concluded that in 70% of 
14 886 meta- analyses, all the publications included in the 
analyses were underpowered.60 Because small underpow-
ered studies have a low chance of detecting a real effect, 
the statistical power of an experiment is a critical deter-
minant of its value to users of the data. Meta- analysis can 
overcome this individual lack of power.

However, small sample size is also associated with more 
insidious risks. Publication bias is not the only possible 
explanation for funnel plot asymmetry. Small- study effects, 
where smaller studies show greater effects than larger 
studies are also detected this way. In both clinical and 
preclinical settings, this can occur because of heteroge-
neity between subjects in different sized studies.50 61 Such 
heterogeneity can occur for many reasons. For example, 
a small hospital- based study may not provide as good a 
representation of patients receiving a treatment as a large 
population- based study. Moreover, the hospital patients 
may have additional undeclared reasons for their selec-
tion into the study. In preclinical studies, it has been 
argued that heterogeneity between studies can be a good 
thing if it broadens the biological base of a series of exper-
iments to improve generalisability.62 The caveat is that this 
benefit is only realised when research teams cooperate 
in data pooling or multicenter studies or when meta- 
research is conducted. If the heterogeneity is present, 
for example, because of attrition bias due to selective 
reporting of results in a subset of studies, it is clearly not 
beneficial. One study shows that attrition bias can inflate 

Table 2 Median and range for quality/RoB scores were calculated for the studies included in each review

Study (reference) Assessed quality/RoB
Score for included 
publications, median (range) Scoring system

Auboire et al15 Yes—Quality 4.5 (3–6) CAMARADES

Chen et al17 Yes—Quality 5 (3–7) CAMARADES

Dong et al18 Yes—Quality 4 (2–6) CAMARADES

Janssen et al20 Yes—Quality 5 (2–6) CAMARADES

Liao et al23 Yes—Quality 2.5 (1–4) Jadad scale (modified)

Ma et al24 Yes—Quality 4 (3–6) CAMARADES

van der Spoel et al29 Yes—Quality 1 (0–5) Authors' custom scale

Wei et al30 Yes—Quality 3 (2–6) CAMARADES

Zhang et al31 Yes—Quality 5.5 (4–8) CAMARADES

Silverblatt et al26 Yes—Both 5 (3–8) CAMARADES (modified)

5 (1–10) SYRCLE’s Risk of Bias Tool

Albuquerque et al12 Yes—RoB 62.9 (40–74.3) ARRIVE

Archambault et al13 Yes—RoB 4 (4–8) SYRCLE’s Risk of Bias Tool

Cao et al16 Yes—RoB 3 (2–4) SYRCLE’s Risk of Bias Tool

Gaubys et al19 Yes—RoB 3 (1–4) Cochrane’s Risk of Bias Tool

Lambrecht et al21 Yes—RoB 2 (1–4) GRADE (modified)

Li et al22 Yes—RoB 1.5 (1–5) SYRCLE’s Risk of Bias Tool

Suen et al27 Yes—RoB 1 (0–2) SYRCLE’s Risk of Bias Tool

van der Bent et al28 Yes—RoB 2 (0–8) SYRCLE’s Risk of Bias Tool

Ashcraft et al14 No – –

Senders et al25 No – –

CAMARADES score is out of 10, Jadad scale is out of 5, SYRCLE’s Risk of Bias Tool is out of 10, ARRIVE score is a percentage, Cochrane’s 
Risk of Bias Tool is out of 7, GRADE score is out of 5, van der Spoel’s (2011) custom scale is out of 5.
ARRIVE, Animal Research: Reporting of In Vivo Experiments; CAMARADES, Collaborative Approach to Meta Analysis and Review of Animal 
Data from Experimental Studies; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; RoB, Risk of bias; 
SYRCLE, SYstematic Review Center for Laboratory animal Experimentation.
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effect sizes by 25%–175% with the inflation greatest for 
the smallest studies.63 Moreover, because biases tend to 
co- occur in small studies, they have a disproportionate 
chance of being published and providing a falsely positive 
impression in preclinical meta- analyses.64 These issues 
leave the systematic reviewer with a number of important 
quandaries; when is the body of evidence big enough for 
systematic review or meta- analysis to add value to a field of 
research; do imperfect studies provide value despite their 
imperfections; should small studies be excluded because 
of an assumption of bias or is such an assumption an even 
bigger risk to finding the truth? At present these ques-
tions remain unanswered.

Lesson 8: promising reviews are rarely followed-up by their 
authors
Within the 20 preclinical therapeutic meta- analyses we 
randomly selected, examination of the citations of these 
papers within PubMed (11 May 2021) revealed that many 
had been extensively cited. For example; 91 citations29; 
44 citations14 ; 27 citations25; 24 citations30. However, for 
most, the citations provided no evidence of direct experi-
mental follow- up (preclinical or clinical) of the principal 
findings by the systematic review team (15/20). While 
lack of time for follow- up is one potential explanation for 
this, especially with the more recent reviews, a disturbing 
alternative is that many systematic reviewers are not 
embedded within the experimental science teams where 
the knowledge they generate would have most value. 
These reviews may have been undertaken simply for the 
sake of doing a study, instead of for their most valuable 
purpose, to inform biological knowledge and improve 
experimental studies.

Moreover, while most authors (65%) concluded that 
the intervention being studied was effective, few (20%) 
also concluded that the evidence available was robust 
(table 3). This demonstrates that systematic reviewers are 
aware that the quality of their data does not lend itself to 
robust conclusions. We use the term robust here in the 
sense defined in the Oxford English Dictionary—strong; 
able to survive being used a lot and not likely to break—in 

order to capture the gestalt of a range of quality/risk of 
bias scoring systems and author conclusions that point 
towards an interpretation that the authors believed their 
analysis to have sufficiently answered their question or 
not. This robustness was our conclusion from their reviews 
and is of necessity subjective. However, it is perturbing 
that these studies do not provoke further research, as 
this might lend more weight to these positive findings 
and possibly lead to effective therapeutics being carried 
through to clinical trials. Where a team conducting a 
systematic review is able to interact with teams conducting 
the primary research, the quality and impact of subse-
quent research is enhanced (see for example, McCann 
et al65).

CONCLUSIONS
Preclinical systematic review and meta- analysis are in 
its infancy and, like preclinical science itself, are busy 
absorbing lessons already learnt by other fields and 
earlier generations of scientists. The lessons presented 
above highlight considerations of the conduct of system-
atic reviews and where they can be improved to provide 
more informative information for the many scientific 
fields these reviews are important for. Data overload 
is common to all modern science and is a symptom of 
its successes. Dealing with that data overload requires a 
number of strategies. In the short term, we can ask ever 
more specific questions, but this focus occurs at the 
expense of the generalisability of our conclusions. We 
must build better ways of storing, indexing, retrieving 
and ensuring the availability of the data we generate. For 
meta- research in particular, it is important to be able to 
readily find and extract the data from its accompanying 
commentary. While systematic review and meta- analysis 
have played an important part in identifying the presence 
and importance of a variety of biases in the preclinical 
literature, until they are eliminated by better experi-
mental conduct and reporting, we need to remain vigi-
lant to their potential influence within our reviews. The 

Table 3 Conclusions drawn by authors of systematic reviews on the effectiveness of studied therapies and the robustness of 
the included data, n=20

Total reviews % of reviews References

Conclusion drawn on treatment

  Effective 13 65 12 13 16 17 19 22–24 26 27 29–31

  Unsure 6 30 14 15 18 21 25 28

  Not effective 1 5 20

Conclusion drawn on robustness of work

  Robust evidence, results could be refined 
further but is not essential

4 20 17 19 29 31

  More evidence would be beneficial 8 40 12 13 20 22–24 27 30

  Not enough evidence, more needed 7 35 14–16 21 25 26 28

  Not reported 1 5 18
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recent advance in pre- registration of preclinical studies 
may help with improved experimental conduct and 
reporting. Moreover, because the foundations of our 
field include exposing the influence of poor scientific 
behaviours, we should adopt only the highest standards 
for our own work and expect that, as we learn more, these 
standards are likely to become more rigorous across the 
broader field of science. These increased standards would 
provide greater definiteness to the conclusions reached 
by systematic review and meta- analysis.
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