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Abstract 

Background:  Pulpitis often are characterized as sustained inflammation and impaired pulp self-repair. Circular RNAs 
(circRNAs) have been reported to be involved in the development of inflammation, but their influence in pulpitis is 
still unidentified, which was examined in our research.

Methods:  In this study, TNF-α (20 ng/mL) was used to treat DPSCs, then MTS identified cell proliferation. The circR-
NAs profile in DPSCs with or without TNF-α treatment was evaluated using RNA sequencing and subsequently by 
bioinformatics analysis. After that, the circular structure was assessed using agarose gel electrophoresis, followed by 
Sanger sequencing. And the circRNAs expression was ratified using quantitative real-time polymerase chain reaction 
in cell and tissues samples. Additionally, the plausible mechanism of circRNAs was envisaged, and the circRNA-miRNA-
mRNA linkage was plotted using Cytoscape.

Results:  The treatment of TNF-α inhibited cell proliferation capabilities in DPSCs, which also made 1195 circRNA 
expressions undergo significant alterations. Among these changes, 11 circRNAs associated with inflammation 
were chosen for circular structure verification, and only seven circRNAs (hsa_circ_0001658, hsa_circ_0001978, hsa_
circ_0003910, hsa_circ_0004314, hsa_circ_0004417, hsa_circ_0035915, and hsa_circ_0002545) had circular structure. 
Additionally, five circRNAs expressions (hsa_circ_0001978, hsa_circ_0003910, hsa_circ_0004314, hsa_circ_0004417, 
and hsa_circ_0035915) had significantly altered between with or without TNF-α treated DPSCs. Furthermore, hsa_
circ_0001978 and hsa_circ_0004417 were increased in patients suffering from pulpitis. Furthermore, their ceRNA 
linkage and Kyoto Encyclopedia of Genes and Genomes analysis suggested that these two circRNAs may participate 
in the inflammation development of pulpitis via mitogen-activated protein kinase and the Wnt signaling pathway.

Conclusion:  This study revealed that the circRNAs profile was altered in TNF-α treated DPSCs. Also, hsa_circ_0001978 
and hsa_circ_0004417 may be involved in the inflammation progress of pulpitis. These outcomes provided the latest 
information for additional research on pulpitis.
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Introduction
Pulpitis, also known as dental pulp inflammation, is usu-
ally caused by microbe [1, 2]. Thus, its features include 
persistent inflammation and impaired pulp self-repair 
[3]. Furthermore, pulpitis is accompany with pain, and 
as a result, patients with the condition constitute the 
highest percentage of dental emergencies in both pri-
vate dental clinics and hospitals [4]. Currently, drilling 
or filling are utilized for reversible pulpitis treatment, 
whereas root canal and crown or extraction are applied 
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for inrreversible pulpitis [5]. Nevertheless, these treat-
ments may lead to post-operative discomforts, injuries 
on the periodontium due to micro-leakages from the 
tooth crown, and vertical root breakage as treated teeth 
are more fragile than non-treated teeth [6, 7]. Hence, it 
is expedient to discover a new technique to mitigate the 
scourge of pulpitis.

The dental pulp comprises nerves, blood vessels, 
odontoblasts, fibroblasts, and dental pulp stem cells 
(DPSCs). DPSCs are profuse cell groups in the dental 
pulp that promote host resistance and tissue redevelop-
ment [3, 8]. Additionally, DPSCs have been shown to 
have the same effects as mesenchymal stem cells, such 
as multi-lineage differentiation, self-replacement ability, 
and clonogenic assay [9]. Therefore, DPSCs are a power-
ful tool for the treatment of osteoarthritis [10], Sjögren’s 
syndrome [11], and pulp self-replacement therapy [12, 
13]. Furthermore, pulp regeneration can improve the 
viability of the dental pulp and even the whole tooth by 
differentiating into odontoblast-like cells and synthesiz-
ing reparative dentin [14, 15]. Therefore, DPSCs perform 
a crucial function in pulpitis.

Circular RNAs (circRNAs) are a type of RNA with a 
circular shape formed by back-splicing [16]. Numerous 
circRNAs have been observed to perform an essential 
role in varying biological development via functioning 
as a microRNAs (miRNAs) sponge to control mRNAs 
expressions, such as differentiation, cell proliferation, 
immunity feedback, and angiogenesis [17, 18]. Recently, 
circRNA124534, circ_0026827, circRNA SIPA1L1, and 
exosomal circLPAR1 were reported to influence the oste-
ogenic differentiation of DPSCs by controlling miRNAs 
expression [19–22]. However, the role of circRNAs in 
DPSCs from pulpitis has not yet been described.

Previous studies have discovered that 20 ng/mL TNF-α 
treated DPSCs influenced inflammation responses [7, 
23]. As a result, 20  ng/mL TNF-α was utilized to treat 
DPSCs in this study, then the circRNAs profile was ascer-
tained using RNA sequencing followed by bioinformatics 
analysis. Therefore, this study suggests the latest informa-
tion to further explore the future mechanism of pulpitis 
and a current understanding for tackling pulpitis.

Methods and materials
Cells cultivation and treatment
DPSCs were obtained from Cellcook (Guangzhou, China) 
with surface marker negative for CD34, CD45, and 
HLA-DR, while positive for CD90, CD105, and CD146. 
Also, cells at 3–5 passages were utilized in this research. 
DPSCs were cultured in DMEM (Gibco, Grand Island, 
NY, USA), consisting of 10% fetal bovine serum (FBS, 
Gibco) and 1% antibiotic–antimycotic solution (Invitro-
gen, Carlsbad, CA, USA) in a humidity vessel with 5% 

CO2 and 95% air at 37 °C. The protocol used for TNF-α 
treatment was hinged on earlier studies with minimal 
modification [23]. First, 2 × 105 DPSCs were introduced 
into six well plates. After that, the medium was separated 
and inoculated with fresh MEM without FBS when the 
confluence reached 80% for 24 h. After that, the medium 
was substituted by MEM augmented with 20% FBS and 
TNF-α (20 ng/mL) and stored for 48 h. Finally, the cells 
were harvested for additional examination. The negative 
control (NC) DPSCs were examined with TNF-α treat-
ment protocol, although ddH2O was used instead of 
TNF-α solution.

3‑(4,5‑Dimethylthiazol‑2‑yl)‑5‑(3‑ 
carboxymethoxyphenyl)‑2‑(4‑sulfophenyl)‑2H‑tetrazolium 
(MTS) assay
After treatment, DPSCs were harvested and placed into 
96-well plates in a total number of 5000 cells per well. 
After that, cell proliferation was identified at 24, 48, and 
72  h according to the method of MTS reagent (Biovi-
sion, Milpitas, CA, USA). The OD value was recorded at 
490 nm.

RNA sequencing
After treatment, DPSCs were harvested for complete 
RNA extraction using TRIzol (Invitrogen). After that, 
the total RNA was used for cDNA libraries formation 
and sequencing in Novogen (Beijing, China). After that, 
the RNA sequencing was analyzed using the R package. 
The probability levels P < 0.01 and |log2Ratio|≥ 1 were 
significantly different between the two groups. The pro-
totype genes of differential expression of circRNAs or 
mRNAs were used for the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis using DAVID 
(https://​david.​ncifc​rf.​gov/).

Construction of circRNA‑miRNA‑mRNA network
The binding site of circRNAs to miRNAs, and miRNAs 
to mRNAs were predicted on miRanda. After that, the 
circRNA-miRNA-mRNA network was plotted using 
Cytoscape (https://​cytos​cape.​org/).

Quantitative real‑time PCR (qRT‑PCR)
The total RNA was detached from the DPSCs or den-
tal pulp using TRIzol (Invitrogen) in this method. After 
that, 2 µg of total RNA were rearranged into cDNA using 
PrimeScript™ RT reagent Kit (Takara, Tokyo, Japan) fol-
lowing the manufacturer’s guidelines. Also, qPCR was 
performed on ABI 7500 (ABI, Foster City, CA, USA) fol-
lowing the method of TB Green Fast qPCR Mix (Takara). 
The primer information is displayed in Table 1. GAPDH 
was used as an internal reference.

https://david.ncifcrf.gov/
https://cytoscape.org/
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Circular structure validation
Divergent primer and convergent primer were pro-
duced by Sangon (Shanghai, China), and the detailed 
information is shown in Table  1. First, the gDNA was 
extracted from DPSCs using PureLink™ Genomic DNA 
Mini Kit (Invitrogen). After that, PCR was carried out 
by using the method of Platinum™ II Hot-Start Green 
PCR Master Mix (Invitrogen). Then, the products were 
further electrophoresed using 2% agarose gel, in which 
the effects from divergent primer were additionally 
subjected to Sanger sequencing in Sangon.

Collection of clinical sample
The study was endorsed by the ethics committee of 
Shenzhen Hospital, Southern Medical University 
(endorsement code: NYSZYYEC20190024). The con-
sent letters were received from seven patients suffering 
from pulpitis and nine others suffering from orthodon-
tic. The diagnostic requirement for pulpitis includes 
the following: (1) spontaneous pain, nocturnal pain; (2) 
carious pulp exposure; (3) post-pulpotomy wherein the 
pulp becomes dark red and bleeds out. As a result, the 
bleeding is difficult to stop. Exclusion requirements for 
pulpitis include the following: (1) fistula and abscess 
can be observed at the root tip; (2) X-ray examination 
showing a large area of transmission shadow at the root 
tip or root bifurcation. The diagnostic measures for 
orthodontic include the following: (1) young perma-
nent teeth with open paramount foramen; (2) supernu-
merary tooth. Furthermore, the exclusion criteria for 
orthodontic include the following: (1) young permanent 
teeth with caries or pulp inflammation or periapical 
injuries; (2) accidental exposure of young permanent 
teeth due to trauma; (3) the presence of a deformed 
central tip. Dental pulp from pulpitis was collected 
using the protocol as described. First, the infected pulp 
was extracted with the help of a pulp extraction needle 
after pulp opening. After that, the samples were stored 
at − 80  °C for additional analysis. Furthermore, dental 
pulp from orthodontic (control group) was harvested 
as described. After tooth extraction, it was washed 
with normal saline to remove excess blood and soft 
dirt. Then, the pulp was removed entirely with a pulp 
extraction needle and stored at − 80  °C for additional 
examination.

Statistical analysis
Data were examined using the Graphpad 7.0 statistical 
tool (La Jolla, CA, USA), and the results were represented 
as mean ± standard deviation. T-test was used to distin-
guish the variance between the two groups, and a P value 
less than 0.05 was regarded as statistically significant.

Results
CircRNAs expression was changed in TNF‑α treated DPSCs
To examine the fluctuation of the circRNAs profile in 
DPSCs after treating inflammatory factors, TNF-α 
(20  ng/ml) was used to treat DPSCs for 48  h [7, 23]. 
After that, the cell proliferation was determined at 
24, 48, and 72  h. As shown in Fig.  1A, the cell prolif-
eration significantly decreased in TNF-α treated group 
compared with the NC group. After that, circRNAs 
profile was obtained using RNA sequencing. The size 
of circRNAs mainly ranged from 100 to 2500  bp, and 

Table 1  Primers sequence used in this study

Primer name Sequence (5′-3′)

hsa_circ_0001658-CF CAT​GCG​TCC​CCT​CAT​CTC​TC

hsa_circ_0001658-CR GTC​CCC​TCT​GTT​GAA​CCT​TCA​

hsa_circ_0001978-CF GAC​TAC​AGG​TGC​TTG​CCA​CT

hsa_circ_0001978-CR ACT​GCT​GCA​GTG​GTC​AAC​TT

hsa_circ_0003910-CF AGG​CTA​TAA​GCT​TCT​TGA​AGGCA​

hsa_circ_0003910-CR AGG​ACT​CTG​GAA​CGT​CTG​GA

hsa_circ_0004314-CF AAG​ACA​GCC​GAT​TCA​CCA​GC

hsa_circ_0004314-CR CAG​TAA​GCA​CTT​GAC​ACA​TGACA​

hsa_circ_0004417-CF AGA​AGC​ATC​TTG​GAT​CTT​ACT​ATT​TGG​

hsa_circ_0004417-CR TGT​TCT​GGG​CAG​TCA​TTG​GT

hsa_circ_0035915-CF GCT​AAG​GAA​GAA​GAG​CGC​CT

hsa_circ_0035915-CR GGT​CTA​AGA​ACT​CCA​GGT​GAAA​

hsa_circ_0002545-CF GCC​CTT​GTG​GAT​AAG​CAC​AAAG​

hsa_circ_0002545-CR GAG​GTA​AGA​GGG​GGC​TGT​CG

hsa_circ_0001978-LF GCC​TCC​CAA​AGT​GCT​GAG​AT

hsa_circ_0001978-LR ACT​TGT​GGG​GAG​CAC​TTA​GG

hsa_circ_0003910-LF TCA​CCG​TGT​TAG​CCA​GGA​TG

hsa_circ_0003910-LR GTT​CTC​ACC​AGA​GGC​TCA​CC

hsa_circ_0004314-LF AGA​CTT​TCC​CAC​AGC​TTG​CA

hsa_circ_0004314-LR TGG​AAC​CAG​ATC​ATG​ACT​CTCC​

hsa_circ_0001658-LF TGG​TGT​CAC​CCT​GAG​ATA​GAGA​

hsa_circ_0001658-LR CCG​AAG​TAA​CTG​ATG​GCA​CCT​

hsa_circ_0035915-LF CAA​GGA​CAT​GGT​GCC​AAA​GG

hsa_circ_0035915-LR GCC​AAA​AAC​AGT​GGT​CGC​TT

hsa_circ_0004417-LF CTT​GGG​CAG​AAG​AGA​CAA​ACTC​

hsa_circ_0004417-LR CCA​TTT​CTC​CTG​GCA​GCT​TTG​

hsa_circ_0002545-LF CTT​TGG​GTG​TGG​GAA​TGC​AG

hsa_circ_0002545-LR TGG​GCC​AAG​TTT​TGA​AAG​GG

GAPDH-CF

GAPDH-CR

GAPDH-LF

GAPDH-LR
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the majority were about 500  bp (Fig.  1B). Addition-
ally, most circRNAs’ backspliced reads ranged 1–100 
(Fig.  1C). Furthermore, there were 1195 differen-
tial expression circRNAs (P < 0.01, |log2Ratio|≥ 1) in 
TNF-α treated group compared with those in the NC 
group, in which 487 circRNAs were up-regulated and 
708 circRNAs were down-regulated (Fig.  1D). The top 
3 of the up-regulated circRNAs’ distribution on the 
chromosome were chr 1, chr 2, and chr 10, and the top 
3 of the down-regulated circRNAs’ distribution on the 
chromosome were chr 1, chr 2, and chr 3 (Fig. 1E). The 
original gene of the differentially expressed circRNAs 
was further for the KEGG analysis. The top 20 path-
ways were represented in Fig. 1F, in which the mitogen-
activated protein kinase (MAPK) pathway has been 
reported to participate in inflammation development 
[24, 25]. The above outcomes have indicated that many 
circRNAs expressions have been altered in DPSCs by 
TNF-α treatment.

The expression of circRNAs and its circular structure 
validation
To further verify which circRNAs participated in the 
occurrence of pulpitis, the circRNA-miRNA-mRNA link-
age was plotted using Cytoscape, in which the differential 
expression circRNAs were chosen by adhering to these 
guidelines: (1) the number of envisaged binding loca-
tions of circRNAs to miRNAs, and miRNAs to mRNAs 
was more than three; (2) The gene was envisaged to par-
ticipate in pulpitis linked signaling pathway, including 
TNF, NF-κB, NLRP3 inflammasome, MAPK, and Wnt 
signaling pathways [25–28]. As shown in Fig.  2A, there 
were 11 circRNAs, 44 miRNAs, 30 mRNAs were discov-
ered and plausibly involved in the development of pul-
pitis. The expression alterations of these 11 circRNAs 
in RNA sequencing data were presented in Fig.  2B, the 
expression of hsa_circ_0005187, hsa_circ_0001658, hsa_
circ_0018087, hsa_circ_0001978, hsa_circ_0003910, hsa_
circ_0004314, hsa_circ_0004417, and hsa_circ_0059685 

Fig. 1  CircRNAs expression were changed in TNF-α treated DPSCs. A The proliferation of DPSCs in TNF-α (20 ng/ml) treated DPSCs and negative 
control (NC) DPSCs was identified using MTS assay. N = 3, T-test; **, indicates P value less than 0.01; ***, indicates P value less than 0.001. B The 
length distribution of circRNAs was shown in the column chart. C The circRNAs’ backspliced was shown in the column chart. D Differentially 
expressed circRNAs between TNF-α treated group, and the NC group were shown in the heat map. E The up- and down-regulated circRNAs’ 
distribution on the chromosome was shown in the column chart. F The top 20 KEGG pathways of differentially expressed circRNAs’ parent genes 
were shown in a bubble chart
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were all augmented in TNF-α treated DPSCs than that 
in the NC group; the expression of hsa_circ_0035915, 
hsa_circ_0005534, and hsa_circ_0002545 all declined in 
TNF-α treated DPSCs compared with NC group. Then 
the circular structure of these 11 circRNAs was verified 
using agarose gel electrophoresis and Sanger sequenc-
ing. The outcomes indicated that seven circRNAs (hsa_
circ_0001658, hsa_circ_0001978, hsa_circ_0003910, 
hsa_circ_0004314, hsa_circ_0004417, hsa_circ_0035915, 
hsa_circ_0002545) had circular structure; their diver-
gent primers products only were amplified in cDNA, 
which was used to verify the junction site by Sanger 
sequencing (Fig. 2C). These seven circRNAs expressions 
were subsequently validated in RNA sequencing sam-
ples. The outcome proves that hsa_circ_0001978, hsa_
circ_0003910, hsa_circ_0004314, and hsa_circ_0004417 
were significantly improved, hsa_circ_0035915 was nota-
bly decreased in TNF-α treated DPSCs than NC group 
(Fig. 2D). The above results were in harmony with RNA 
sequencing outcomes. Generally, 5 circRNAs expressions 
(hsa_circ_0001978, hsa_circ_0003910, hsa_circ_0004314, 
hsa_circ_0004417, and hsa_circ_0035915) had notably 
changed between TNF-α treated DPSCs and NC group, 
which may likely be implicated in TNF, NF-κB, NLRP3 
inflammasome, MAPK, and Wnt signaling pathways.

hsa_circ_0001978 and hsa_circ_0004417 were 
up‑regulated in pulpitis patients
The five circRNAs expressions were subsequently con-
firmed in dental pulp tissue. As shown in Fig.  3, hsa_
circ_0001978 and hsa_circ_0004417 expression had 
variance between pulpitis samples and control sam-
ples obtained from patients with orthodontic. As delta 
Ct value increased, the expression declined, and as a 
result, their expression behavior was in harmony with 
RNA sequencing. These outcomes suggested that hsa_
circ_0001978 and hsa_circ_0004417 may plausibly per-
form a crucial role in pulpitis.

hsa_circ_0001978 and hsa_circ_0004417 maybe regulate 
MAPK and Wnt signaling pathways after TNF‑α treatment 
in DPSCs
To further elucidate the prospective mechanism of hsa_
circ_0001978 and hsa_circ_0004417, a new circRNA 

(hsa_circ_0001978 and hsa_circ_0004417)-miRNA-
mRNA network was constructed based on a prediction 
by using miRanda. As presented in Fig. 4A, 396 miRNAs 
and 65 mRNAs were implicated. Then mRNAs in this 
linkage were used in KEGG analysis, MAPK and Wnt 
signaling pathways remained in the top 20 pathways 
(Fig. 4B). The above results proved that hsa_circ_0001978 
and hsa_circ_0004417 may influence TNF-α-treated-
DPSCs via MAPK and Wnt signaling pathway.

Discussion
Pulpitis is a common infection of dental pulp tissue [29]. 
Also, immune and non-immune cells, cytokines, and 
chemokines were regarded as modulating factors in pul-
pitis [30]. Therefore, the principal treatment measures of 
pulpitis are based on the exclusion of inflamed or necrotic 
pulp tissue and substitution with a synthetic biomate-
rial [31]. Recently, complete or incomplete pulp regen-
eration has been suggested as an alternate therapeutic 
concept. DPSCs were regarded as an efficient constitu-
ent due to their function in tooth development, healing, 
rejuvenation, and immunomodulatory processes [15, 
32]. However, the progression of pulpitis is responsible 
for developing DPSCs with diminished immunosuppres-
sive capacity. This action is induced by calcitonin gene-
related peptide to release proinflammatory cytokines 
and chemokines, which stimulate neuronal sensitization 
and contribute to the discomfort of pulpitis [32, 33]. Fur-
thermore, DPSCs may lose their potential for odonto-
genic regeneration due to the progression of pulpitis [34]. 
Therefore, redefining the role of DPSCs in pulpitis may 
be a method to tackle pulpitis.

CircRNAs were regarded as biomarkers and thera-
peutic targets of human cancer [35]. However, there are 
no reports regarding their application as therapeutic 
targets in pulpitis. In this study, it was discovered that 
DPSCs cells proliferation efficacy declined after TNF-α 
treatment. Additionally, it was discovered that 1195 
circRNA expressions were altered in TNF-α treated 
DPSCs. Among these circRNAs, hsa_circ_0001978 and 
hsa_circ_0004417 may likely control the inflammation 
progression of pulpitis via MAPK and Wnt signaling 
pathway.

Fig. 2  The expression of circRNAs in DPSCs and their circular structure validation. A The circRNA-miRNA-mRNA linkage was plotted using 
Cytoscape; red represented circRNA, green represented miRNA, and blue indicated mRNA. B The expression changes of these 11 circRNAs in RNA 
sequencing data were shown in the column chart. N = 3, T-test; **, indicates P value less than 0.01; ***, indicates P value less than 0.001. C The 
circular structure was verified using agarose gel electrophoresis and Sanger sequencing. The original blots were included in a Additional file 1, in 
which the edges with no signals were not included. D The expression of circRNAs was identified using the qRT-PCR protocol in TNF-α treated DPSCs 
and NC DPSCs. N = 3, T-test; ns, indicates no difference; *, indicates P value less than 0.05; **, indicates P value less than 0.01; ***, indicates P value 
less than 0.001; ****, indicates P value less than 0.0001

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  The expression of circRNAs in dental pulp tissue. The expression of hsa_circ_0001978, hsa_circ_0003910, hsa_circ_0004314, hsa_
circ_0004417, and hsa_circ_0035915 were identified in dental pulp from patients with pulpitis or orthodontic using qRT-PCR methods. N = 3, T-test; 
ns, indicates no difference; **, indicates P value less than 0.01; ****, indicates P value less than 0.0001

Fig. 4  Hsa_circ_0001978 and hsa_circ_0004417 maybe regulate MAPK and Wnt signaling pathways in TNF-α treated-DPSCs. A The circRNA (hsa_
circ_0001978 and hsa_circ_0004417)-miRNA-mRNA linkage was plotted using Cytoscape; blue represented circRNA, green represented miRNA, and 
red indicated mRNA. B mRNAs in the network of (A) were used to carry out KEGG analysis
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RNA sequencing is a protocol that affords additional 
information for subsequent studies. CircRNA sequencing 
is a form of RNA sequencing, which provides new circR-
NAs for subsequent molecular mechanism examination. 
For instance, a new circRNA circDENND1B character-
ized by circRNA sequencing was discovered to control 
the interface between inflammation and cholesterol 
transport through miR-17-5p/Abca1 axis in atheroscle-
rosis [36]. The other circRNA circ_0062491 was found to 
be up-regulated in gingival tissues by circRNA sequenc-
ing followed with qRT-PCR confirmation and was iden-
tified as the sponge of miR-584 [37]. Presently, there are 
a few reports about the inflammation progression in 
DPSCs. More so, another comparative research focused 
on mRNA profile to examine the DPSCs differentiation 
after TNF-α (10 ng/ml) treatment for 7 (or 14) days [38]. 
The present study is the first to report that 1195 circR-
NAs expression had been altered in TNF-α (20  ng/ml) 
treated DPSCs than normal control DPSCs. These results 
provide a new gene for additional investigation.

Pulpitis often occurs alongside inflammation, so we 
focused on differential expressed circRNAs related 
signaling pathways, including TNF, NF-κB, NLRP3 
inflammasome, MAPK, and Wnt signaling pathways 
[25–28]. Generally, 11 circRNAs were discovered, and 
just seven circRNAs were confirmed to possess circu-
lar structure. Among these, five circRNAs expressions 
were further confirmed in RNA sequencing samples, 
and the outcome was comparable with RNA sequence 
results, in which the expression of hsa_circ_0001978 
and hsa_circ_0004417 varied between pulpitis sam-
ples and control samples derived from patients with 
orthodontic.Hsa_circ_0001978 derived from TCONS_
l2_00001804 (a lincRNA) [39]. Additionally, earlier stud-
ies have verified the role of circ_0001944 obtained from 
TCONS_l2_00030860 (a lincRNA) in non-small cell 
lung cancer proliferation via sponging with miR-142-5p 
[40]. So, hsa_circ_0001978 also plausibly perform a cru-
cial function in pulpitis by behaving like a sponge. For 
hsa_circ_0004417, its expression was down-regulated 
in lung adenocarcinoma and patients with atrial fibrilla-
tion but up-regulated during the differentiation of human 
umbilical cord-derived mesenchymal stem cells into car-
diomyocyte-like cells [41–43]. Nevertheless, there is no 
report that investigated the role of hsa_circ_0001978 and 
hsa_circ_0004417.

Then based on circRNAs (hsa_circ_0001978 and hsa_
circ_0004417)-miRNA-mRNA linkage, we discovered 
that these two circRNAs might regulate the inflam-
mation progression of pulpitis via MAPK and Wnt 
signaling pathways. Earlier studies have shown that 
DPSCs perform two roles in pulpitis [3]. On the one 
hand, DPSCs can identify the invading microbes and 

then facilitate innate immune feedback to exude dis-
tinct inflammation-related factors, such as TNF-α, and 
finally recruit immune cells to kill invading microbes. 
On the other hand, DPSCs can move to injured sites 
to act as a repairer. In these biochemical reactions, 
TNF, NF-κB, MAPK, and Wnt signaling pathways were 
activated [44, 45]. Hence, hsa_circ_0001978 and hsa_
circ_0004417 may be involved in the inflammation of 
pulpitis.

Nevertheless, our study was just an introductory 
investigation. And as such, additional studies are 
needed to verify whether hsa_circ_0001978 and hsa_
circ_0004417 can influence MAPK and Wnt signaling 
pathways in pulpitis in vivo and in vitro.

Conclusion
This study was the first to discover that circRNAs pro-
file was changed in the inflammation progression of 
TNF-α treated DPSCs. Also, hsa_circ_0001978 and 
hsa_circ_0004417 may be involved in the inflamma-
tion of pulpitis via MAPK and Wnt signaling pathways. 
These results have presented more information for 
additional investigations.
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