RESEARCH Open Access

Self-e cacy and oral health outcomes in a regional Australian Aboriginal population

Eleanor Jane Parker^{1*}, Dandara Gabriela Haag¹, Andrew John Spencer¹, Kaye Roberts-Thomson¹ and Lisa Marie Jamieson¹

Abstract

Background Perceived self-e cacy has been associated with psychological well-being, health behaviours and health outcomes. Little is known about the influence of self-e cacy on oral health outcomes for Aboriginal adults in Australia, a population experiencing high levels of oral health conditions. This study examines associations between oral health-related self-e cacy and oral health outcomes in a regional Aboriginal Australian population and investigates whether the associations persist after adjusting for sociodemographic characteristics and other general and oral health-related psychosocial factors.

Methods Cross-sectional data were obtained from the baseline questionnaire of the Indigenous Oral Heath Literacy Project, South Australia. Oral health-related self-e cacy was measured using a six item scale, with total sum scores dichotomised into high/low self-e cacy. Oral health outcomes included self-rated oral health and oral health impacts, measured using the Oral Health Impact Profile (OHIP-14). Generalized linear models with a log-Poisson link function were used to estimate Prevalence Ratios (PR) of poor self-rated oral health according to levels of oral health-related self-e cacy. Multivariable linear regressions were used to estimate the association between oral health-related self-e cacy and OHIP-14 scores. Blocks of confounders were subsequently added into the models, with the final model including all factors.

Results Complete data were available for 252 participants (63%) aged 18 to 82 years (mean age of 37.6 years). Oral health-related self-e cacy was associated with poor self-rated oral health, with a 43% (PR = 1.43 (95% CI 1.09, 1.88)) greater prevalence of poor self-rated oral health among those with low self-e cacy. Oral health-related self-e cacy was associated with OHIP-14 severity scores, with a score over six points higher for those with low self-e cacy (B = 6.27 95% CI 2.71, 9.83). Although addition of perceived stress into the models attenuated the relationship, associations remained in the final models.

Conclusion Lower levels of oral health-related self-e cacy were associated with a higher prevalence of poor self-rated oral health and greater impacts of oral health among Aboriginal adults in regional South Australia. These associations persisted after controlling for sociodemographic and psychosocial confounders, suggesting that increasing self-e cacy may provide an opportunity for improving oral health outcomes for Aboriginal adults.

Keywords Self-e cacy, Oral health, Aboriginal, Indigenous

*Correspondence: Eleanor Jane Parker eleanor.parker@adelaide.edu.au ¹University of Adelaide, Adelaide, Australia

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the articles Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the articles Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0./ The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0./) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Parker et al. BMC Oral Health (2022) 22:447 Page 2 of 9

Background

Oral health is fundamental to overall health and wellbeing. Oral conditions a ect quality of life, with physical, social and psychological impacts in addition to economic consequences for individuals and communities [1]. In Australia, disparities in oral health exist, with Aboriginal and Torres Strait Islander Australians su ering a greater burden of oral disease and impacts of oral health than non-Aboriginal Australians [2, 3]. Aboriginal and Torres Strait Islander Australians, hereafter referred to as Aboriginal to identify with the traditional owners of the lands on which this study was conducted, make up 3% of the Australian population [4]. Improving oral health outcomes for Aboriginal adults is essential to improving overall health and wellbeing. Achieving this requires a more in-depth understanding of the issues impacting on the oral health of Aboriginal adults to enable more specific and culturally safe interventions to be developed. One area warranting further investigation is the relationship of psychosocial factors and oral health outcomes. Psychosocial factors are considered a crucial factor contributing to poor health and oral health and may be critical in understanding the oral health needs of more vulnerable populations [5].

A key psychosocial dimension related to health and oral health outcomes reported extensively in the literature is perceived self-e cacy, with an individual's perceived self-e cacy shown to influence a broad range of health-related behaviours [6]. Self-e cacy is a core element of Bandura's Social Cognitive eory [7], with Bandura defining self-e cacy as the "conviction that one can successfully execute the behaviour required to produce the outcome" [8]. Self-e cacy is also a key feature of the Health Belief Model [9], with self-e cacy acting directly and indirectly on health behaviours and therefore health outcomes. In terms of general health, self-e cacy has been associated with psychological well-being and predicts self-care and health-related quality of life for people with chronic health conditions, included cardiovascular disease, diabetes, multiple sclerosis and arthritis [10–14].

Perceived self-e cacy assesses an individual's belief in their ability to have control over their own behaviours and therefore their ability to engage in healthy behaviours irrespective of other external and internal factors. For Parker et al. BMC Oral Health (2022) 22:447 Page 3 of 9

in South Australia. is paper pertains to cross-sectional analysis of baseline data, collected in October and November 2010, for a convenience sample of 400 Aboriginal adults. Based on previous research with this community, recruitment methods included self-nomination, referral, word of mouth and visits at local community centres [26]. Eligibility criteria consisted of being Aboriginal or Torres Strait Islander, over 18 years of age, and living in Port Augusta or nearby communities. Questionnaires were completed as an interview, self-complete or a combination of both, as determined by the participant. Recruitment and administration of questionnaires was managed by project o cers with local community cultural knowledge. Utilisation of these recruitment methods, and the approach to administration of the questionnaire, were deemed essential elements to ensure e project o cers were provided cultural acceptability. with a scripted method of introducing and administering the questionnaire.

e exposure of interest, oral health-related self-e - cacy (OH-SE), was measured using six items adapted from a self-e cacy scale developed by Finlayson and colleagues [16]. e six items asked participants to rate

Parker et al. BMC Oral Health (2022) 22:447 Page 4 of 9

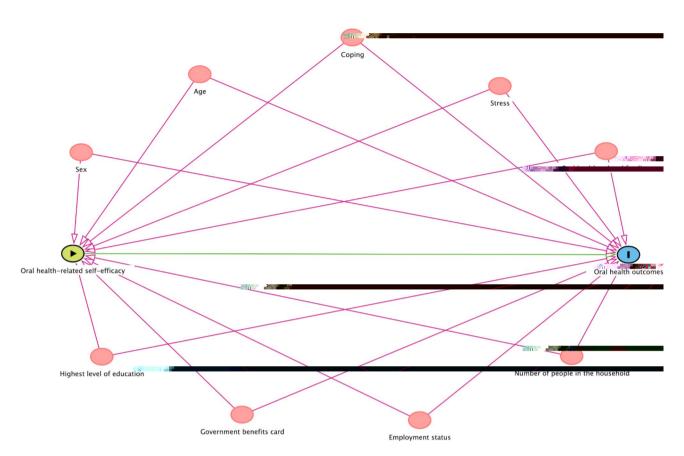


Fig. 1 Direct Acyclic Graph (DAG) for the association between oral health-related self-e cacy and oral health outcomes

option of "I don't know" was added, treated as a missing response. Internal consistency was high (Cronbach's alpha 0.88). Responses were summed to give a scale score ranging from 5 to 25, with high scores reflecting high oral health-related fatalism. e psychometric properties of the OH-F scale have reported for this community [27].

Analytic methods

All analyses were conducted for a complete case sample. Descriptive analyses were performed, including distribution of participants according to the exposure, confounding factors and outcomes.

Generalized linear models with a log-Poisson link function and robust standard errors were used to estimate Prevalence Ratios (PR) and their 95% confidence intervals (CI) of poor SROH according to levels of OH-SE. Adjusted PRs and their respective 95% CIs were assessed after blocks of confounders were added into the models. e final model included all factors.

Multivariable linear regressions were used to estimate the association between OH-SE and OHIP-14 scores, using Beta coe cients and their 95% confidence intervals (CI). Blocks of confounders were subsequently added into the models, with the final model including all factors.

Sensitivity analysis was conducted to identify if including those with the median score in the high or low OH-SE

group impacted on the results. e sensitivity analysis confirmed that patterns of associations remained for both approaches. Analyses were carried out using STATA 15.0.

Results

Complete data were available for 252 participants (63%) aged 18 to 82 years and a mean age of 37.6 years (95% CI 35.7, 39.4). Table 1 shows the sociodemographic characteristics of the sample. More than two thirds were female, one quarter had a level of education including a trade, TAFE or university, less than one quarter were in paid employment and just over 85% owned a government bene mean OH-SE score (range 6-30) was 20.2 (95% CI 19.3, 21.1). e mean OH-F score (range 9-25, median 23) was 21. 7 (95% CI 21.3, 22.1). Perceived stress scores ranged from 0 to 28, with a mean of 14.2 (95% CI 13.5, 14.9). Perceived Coping ranged from 0 to 24 with a mean of 11.9 (95% CI11.3, 12.4). e mean OHIP-14 severity score was 21.4 (95% CI 19.6, 23.2), and almost half the participants (47.2% 95% CI 31.1, 53.4) rated their oral health as fair or poor (poor SROH).

Table 2 shows the distribution of high and low e cacy according to sociodemographic characteristics. e proportion of participants with low OH-SE did not vary by sex. Among those in the oldest age group, 40% had low

Parker et al. BMC Oral Health (2022) 22:447 Page 5 of 9

Table 1 Distribution of sample characteristics, confounders and outcomes

	Percent (95% CI) or Mean (95% CI)		
Age group			
18–24	23.8 (18.9, 29.5)		
25–34	24.6 (19.7, 30.3)		
35–49	29.8 (24.4, 35.7)		
50-82	21.8 (17.1, 27.4)		
Sex			
male	30.6 (25.2, 36.5)		
female	69.4 (63.5, 74.8)		
Highest level of education			
Trade, TAFE or university	24.2 (19.3, 29.9)		
none, primary or high school	75.8 (70.1, 80.7)		
Employment status			
paid employment	23.4 (18.6, 29.1)		
unemployed/other	76.6 (70.9, 81.4)		
Government bene ts card			
no	14.3 (10.5, 19.2)		
yes	85.7 (80.8, 89.5)		
Number of people in the house on previous night			
4 or less	55.6 (49.3, 61.6)		
5 or more	44.4 (38.4, 50.7)		
Perceived stress (Mean, 95% CI)	14.2 (13.5, 14.9		
Perceived coping (Mean, 95% CI)	11.9 (11.3, 12.4)		
Oral health fatalism (Mean, 95% CI)	21. 7 (21.3, 22.1).		
OHIP-14 severity (Mean, 95% CI)	21.4 (19.6, 23.2)		
Poor self-rated oral health (prevalence, 95% CI)	47.2 (31.1, 53.4)		

self-e cacy, compared with just over 57% in the 35–49 year age group. Among those in paid employment there were nearly 20% less participants with low OH-SE. One third of participants without a benefits card had low OH-SE. Table 2 also shows the mean scores for perceived stress, perceived coping, and OH-F for those with high and low OH-SE. For those with low OH-SE, the mean stress score was just over three units higher than those with high e cacy. Mean scores for perceived coping and OH-F did not vary across high and low e cacy groups. e mean OHIP-14 severity score was six units higher among those with low e cacy than for those with high e cacy.

Table 3 shows the distribution of oral health outcomes according to sociodemographic characteristics and by levels of OH-SE. e mean OHIP-14 severity score varied by age and sex, with females having a score nearly five units higher than males, and participants in the second highest age group having a score 12 units higher than those in the youngest age group. ose without paid employment reported more oral health impacts, with a score over five units higher than those in paid employment. e prevalence of poor SROH was lowest among the youngest participants, with 18.5% and 30.4% less

Table 2 Oral health-related self-e cacy according to sociodemographic characteristics and psychosocial confounders

	Oral health self-e cacy Row % (95% CI) or Mean (95% CI)		
	High OH-SE	Low OH-SE	
Sex			
male	48.1 (37.1, 59.2)	51.9 (40.8, 57.7)	
female	49.7 (42.3, 57.1)	50.3 (42.9, 57.7)	
Age			
18–24	51.7 (39.1, 64.0)	48.3 (36.0, 60.9)	
25–34	45.2 (33.3, 57.7)	54.8 (42.3, 66.7)	
35–49	42.7 (32.0, 54.1)	57.3 (45.9, 68.0)	
50-82	60.0 (46.6, 72.1)	40.0 (27.9, 53.4)	
Highest level of education			
trade, TAFE or university	42.6 (30.8, 55.3)	57.4 (44.7, 69.2)	
none, primary or high school	51.3 (44.2, 58.4)	48.7 (41.6, 55.8)	
Employment status			
paid employment	59.3 (46.4, 71.2)	40.7 (28.9, 53.6)	
unemployed/other	46.1 (39.2, 53.2)	53.9 (46.8, 60.8)	
Government bene ts card			
no	66.7 (49.9, 80.1)	33.3 (19.9, 50.1)	
yes	46.3 (39.7, 53.0)	53.7 (47.0, 60.3)	
Number of people in the house			
4 or less	55.0 (46.7, 63.1)	45.0 (36.9, 53.3)	
5 or more	42.0 (33.2, 51.3)	58.0 (48.7, 66.8)	
Perceived stress (Mean, 95%CI)	12.6 (11.7, 13.6)	15.7 (14.7, 16.6)	
Perceived coping (Mean, 95%CI)	12.0 (11.2, 12.9)	11.7 (11.0, 12.5)	
Oral health-related fatalism (Mean, 95%CI)	21.8 (21.2, 22.4)	21.6 (21.0, 22.2)	

participants rating their oral health poorly than in the 25–34 year age group and 35–49 year age groups respectively. ose with low self-e cacy had higher OHIP-14 severity scores. Among those with low e cacy, 55.5% had poor SROH, around 17% relatively more than for those with high e cacy.

Oral health-related self-e cacy was associated with poor SROH, with over 40% (PR=1.43 (95% CI 1.09, 1.88) greater prevalence of poor SROH among those with low OH-SE (Table 4). When sociodemographic characteristics were added into the model, low OH-SE was associated with 1.49 higher prevalence of poor SROH (PR=1.49 (95% CI 1.14, 1.96) than for those with high OH-SE. When perceived stress was added into the model, the prevalence of poor SROH was 1.40 times higher among those with low OH-SE than among those with high OH-SE (PR=1.40 (95% CI 1.06, 1.86). Adding perceived coping and OH-F (models 4 and 5 respectively) had little reduction on the prevalence ratio for poor SROH.

Oral health-related self-e cacy was associated with OHIP-14 severity scores, with a score over 6 units higher for those with low OH-SE (B=6.27 95% CI 2.71, 9.83) (Table 5). Addition of demographic characteristics into model 1 and socioeconomic factors into model 2 had little impact on the association between low OH-SE

Parker et al. BMC Oral Health (2022) 22:447 Page 6 of 9

Table 3 Distribution of oral health outcomes according to sociodemographic characteristics and levels of self-e cacy

	OHIP-14 severity Mean (95% CI)	Poor SROH Row % (95% CI)	
Sex			
male	18.1 (14.8, 21.3)	42.9 (32.3, 54.1)	
female	22.9 (20.7, 25.0)	49.1 (41.8, 56.5)	
Age			
18–24	14.6 (11.5, 17.7)	28.3 (18.4, 41.0)	
25–34	22.1 (18.9, 25.2)	46.8 (34.7, 59.2)	
35–49	27.1 (23.4, 30.9)	58.7 (47.2, 69.3)	
50-82	20.3 (16.6, 24.0)	52.7 (39.6, 65.5)	
Highest level of education			
trade, TAFE or university	20.5 (16.9, 24.1)	52.5 (40.0, 64.6)	
none, primary or high school	21.7 (19.6, 23.8)	45.5 (38.6, 52.7)	
Employment status			
paid employment	17.2 (13.5, 21.0)	52.5 (39.9, 64.9)	
unemployed/other	22.7 (20.6, 24.7)	45.6 (38.7, 52.7)	
Government bene ts card			
no	18.8 (13.2, 24.3)	47.2 (31.7, 63.3)	
yes	21.9 (19.9, 23.8)	47.2 (40.6, 53.9)	
Number of people in the house the previous night			
4 or less	21.4 (18.9, 23.9)	47.1 (39.0, 55.5)	
5 or more	21.4 (18.7, 24.1)	47.3 (38.2, 56.6)	
Oral health-related self-e cacy			
high	18.2 (15.7, 20.8)	38.7 (30.5, 47.6)	
low	24.5 (22.1, 27.0)	55.5 (46.7, 63.9)	

and oral health impacts (model 2: B=6.22~95% CI 2.68, 9.77). When perceived stress was added in model 3, the Beta coe cient reduced from 6.22 to 4.03, an absolute attenuation in the OHIP-14 score of 2.24 units (B=4.03~95% CI 0.52, 7.53). is corresponds to a 35% decrease in the strength of association between low OH-SE and oral health impacts. Addition of perceived coping and OH-F resulted in no real further reduction.

Discussion

is study assessed associations between OH-SE and subjective measures of oral health among a regional Aboriginal population in South Australia. Levels of OH-SE varied by age and some, but not all, socioeconomic variables. e prevalence of poor SROH was greater among those with lower OH-SE. Adjusting for confounders attenuated the relationship. Perceived stress had the most notable impact on the relationship between OH-SE and OHIP-14 scores, however, in the final model higher levels of oral health impacts remained for those with lower e cacy beliefs.

e association between levels of self-e cacy and oral health outcomes is an important finding adding to the developing body of literature demonstrating the importance of psychosocial determinants of oral health for Aboriginal Australian populations. is finding is consistent with that among pregnant Aboriginal women in South Australia, whereby low self-e cacy persisted as a risk indicator for poor self-rated oral health after

Table 4 Unadjusted and adjusted prevalence ratios for poor self-rated oral health

	Prevalence ratios for poor self-rated oral health (95% CI)					
	Unadjusted	Model 1	Model 2	Model 3	Model 4	Model 5
Self-e cacy						
High	Ref	Ref	Ref	Ref	Ref	Ref
Low	1.43 (1.09, 1.88)*	1.47 (1.13, 1.92)*	1.49 (1.14, 1.96)*	1.40 (1.06, 1.86)*	1.39 (1.05, 1.84)*	1.38 (1.04, 1.84)*

^{*}p<0.05

Model 1: age and sex

Model 2: Model 1+socioeconomic factors (level of education, employment status, government concession card and number of people in the household)

Model 3: Model 2+Perceived Distress

Model 4: Model 3+Perceived Coping

Model 5: Model 4+Oral health-related fatalism

Table 5 Unadjusted and adjusted associations for oral health-related self-e cacy with OHIP-14 severity

	Beta coe cient (95% CI)					
	Unadjusted	Model 1	Model 2	Model 3	Model 4	Model 5
Self-e cacy						
High	Ref	Ref	Ref	Ref	Ref	Ref
Low	6.27 (2.71, 9.83)*	6.56 (3.09, 10.03)*	6.22 (2.68, 9.77)*	4.03 (0.52, 7.53)*	3.73 (0.20, 7.25)*	3.96 (0.45, 7.47)*

^{*}p<0.05

Model 1: age and sex

Model 2: Model 1+socioeconomic factors (level of education, employment status, government concession card and number of people in the household)

Model 3: Model 2+Perceived Distress

Model 4: Model 3+Perceived Coping

Model 5: Model 4+Oral health-related fatalism

Parker et al. BMC Oral Health (2022) 22:447 Page 7 of 9

controlling for a range of sociodemographic and psychosocial confounders [20]. e OH-SE items used in both studies asked only about a participant's confidence that they would brush their teeth at night when feeling a range of emotions and in various psychological states, and not about any other health behaviours or health beliefs. Despite the focus on tooth brushing, the association with oral health outcomes is important to further develop our understanding of the role of e cacy beliefs in oral health, specifically for the Aboriginal population. Higher levels of self-e cacy can increase the likelihood of oral health promoting behaviours [37, 38], with some evidence that self-e cacy can be improved with focussed interventions and support for chronic disease self-management, as well as preventive health behaviours [39–42]. Interventions to improve self-e cacy may improve oral health outcomes for populations at high risk of poor oral health.

For both outcome measures, the addition of perceived stress into multivariable models resulted in the most substantial attenuation in the association with OH-SE. While this was modest for the prevalence of poor SROH, the reduction in the association with the OHIP-14 severity score was 2.24 units, a relative attenuation of 35%. indicates that perceived stress is an important psychosocial factor to consider when investigating determinants of oral health for Aboriginal people. Despite this role of perceived stress, OH-SE remained significant in all models, indicating that even among more highly stressed individuals, self-e cacy is likely to be an important factor in evaluating oral health outcomes. is is consistent with the findings for pregnant Aboriginal women in South Australia, with a group of psychosocial factors including perceived stress, attenuating the odds of poor SROH by 17% [20]. is is an area that warrants further study to determine the impact that oral health specific self-e cacy has on the relationship between perceived stress, a general psychosocial measure, and oral health outcomes. If oral health-related self-e cacy has a protective e ect in modifying the relationship between stress and oral health outcomes, interventions that improve an individual's perceived self-e cacy may conceivably have the most impact for those who experience higher levels of stress.

e weaknesses of this study must be acknowledged and interpretation of findings assessed in light of the small sample size and, in particular, the high proportion of study participants excluded from this analysis due to missing data. Nearly one third of the original sample had missing data for the OH-SE. is was a result of the response option of "I never feel like this", treated as a missing response. e original scale from which ours was derived did not include this option. It was added in our study based on feedback from the expert and Aboriginal advisory groups. e second reason for missing data was the OH-F scale, as an option of "I don't know", also

treated as a missing response, also added on the advice of the expert and Aboriginal reference groups. Validation of the OH-SE scale [27] involved assessing sociodemographic di erences between those with and without scale scores. ere were di erences by age group, but no di erences were identified for other sociodemographic variables. We theorised a number of reasons for the high number of participants choosing the option of "I feel like this" including literacy levels and social stigma around depression and anxiety, with participants opting out as a more socially desirable response, particularly in the younger age group. e decision was made to proceed for this study with a complete case sample for all analyses to reduce the risk of misinterpreting the results of multivariable analyses with di erent number of participants depending on the confounders used in each model. Despite the smaller sample size, clear associations between OH-SE and both measures of oral health were identified, suggesting that OH-SE is an important factor to investigate further for this community.

is study involved a convenience sample of Aboriginal adults in a regional location, so extrapolation of results to the broader Australian population needs to be made with caution. Although we hypothesised causal pathways between OH-SE and oral health outcomes to drive analysis, this is a cross-sectional study and causation cannot be inferred.

Despite these weaknesses, this study has key strengths and is an important addition to the sparse literature investigating psychosocial factors and oral health outcomes for Aboriginal people in Australia. e fact that 400 Aboriginal adults in a regional location completed baseline questionnaires involving questions pertaining to psychosocial factors, with a complete data set for over 250 participants, is a successful study outcome. indicates the cultural acceptability of the survey instruments and study design. e inclusion of a broad range of sociodemographic variables known to be associated with general and oral health outcomes for Aboriginal people ensured these factors were not explaining the association between OH-SE and oral health outcomes.

Conclusion

Lower levels of OH-SE were associated with a higher prevalence of SROH and greater impacts of oral health among Aboriginal adults in regional South Australia. ese associations persisted after controlling for sociodemographic and general and oral health-specific psychosocial confounders. Perceived stress resulted in the most significant attenuation in the association between OH-SE

and oral health outcomes. e findings indicate that selfe cacy beliefs may provide an opportunity for intervention to improve oral health outcomes for Aboriginal adults in regional South Australia. Parker et al. BMC Oral Health (2022) 22:447 Page 8 of 9

Acknowledgements

The authors are very grateful to all participants of the IOHLP. This project would not have been possible without the enthusiasm and support of the Indigenous advisory group and the support of Pika Wiya Health Service Inc. The authors are extremely grateful for the work of the Aboriginal Project O cers who managed recruitment and data collection.

Author contributions

EJP, LMJ, AJS, KRT contributed to design of the primary study and survey design. All authors contributed to the design of this current study. EJP performed data analysis and initial interpretation of results under the guidance of DGH.

EJP provided the initial draft of the manuscript.

All authors contributed to manuscript revision and approved the final version.

Funding statement

This study was funded by Australia's National Health and Medical Research Council project grant 627101.

Data availability

The datasets generated and analysed during the current study are not publicly available due the sensitive nature of questionnaire information for the study community but are available from the corresponding author on reasonable request.

Declarations

Ethical approva

Ethical approval for this study was granted by the Aboriginal Health Council of South Australia and the Human research Ethics Committee of the University of Adelaide, code H-180-2009.

All methods were carried out in accordance with relevant guidelines and regulations.

Consent to participate

All participants provided informed consent prior to completing the initial baseline questionnaire. All participants were aged 18 or over and able to provide their own consent. Where requested by participants or deemed necessary by participants due to lower literacy, the full consent form was read to participants by Aboriginal Project O cers, as approved by the Aboriginal Health Council of South Australia and Human Research Ethics Committee of the University of Adelaide.

Consent for publication

Not applicable.

Competing Interests

All authors verify that they have no conflicts of interest to declare.

Received: 27 November 2021 / Accepted: 16 September 2022 Published online: 17 October 2022

References

- Naito M, Yuasa H, Nomura Y, Nakayama T, Hamajima N, Hanada N. Oral health status and health-related quality of life: a systematic review. J Oral Sci. 2006;48(1):1–7
- Jamieson LM, Sayers SM, Roberts-Thomson KF. Clinical oral health outcomes in young Australian Aboriginal adults compared with national-level counterparts. Med J Aust. 2010;192(10):558–61.
- Williams S, Jamieson L, MacRae A, Gray C. Review of Indigenous oral health / Scott Williams, Lisa Jamieson, Andrea MacRae and Caitlin Gray. Australian Indigenous healthreviews; no 7 (April 2011). 2011(National edeposit: Available online.).
- ABS. Estimates of Aboriginal and Torres Strait Islander Australians. June 2016 ABS Website 2018 [Available from: https://www.abs.gov.au/statistics/people/aboriginal-and-torres-strait-islander-peoples/estimates-aboriginal-and-torres-strait-islander-australians/latest-release.
- WHO. Social Determinants of Health: the solid facts. 2nd edition. Denmark: World Health Organisation; 2003.

- Bandura A, Locke E. Negative Self-E cacy and Goal E ects Revisited. J Appl Psychol. 2003;88:87–99.
- Bandura A. Health Promotion by Social Cognitive Means. Health Educ Behav. 2004;3:143–64.
- Bandura A. Self-e cacy: Toward a unifying theory of behavioral change. Psychol Rev. 1977;84(2):191–215.
- Rosenstock IM, Strecher VJ, Becker MH. Social learning theory and the Health Belief Model. Health Educ Q. 1988;15(2):175–83.
- Brekke M, Hjortdahl P, Kvien TK. Self-e cacy and health status in rheumatoid arthritis: a two - year longitudinal observational study. Rheumatology. 2001;40(4):387–92.
- Joekes K, Van Elderen T, Schreurs K. Self-e cacy and overprotection are related to quality of life, psychological well-being and self-management in cardiac patients. J Health Psychol. 2007;12(1):4–16.
- Johnston-Brooks CH, Lewis MA, Garg S. Self-E cacy Impacts Self-Care and HbA1c in Young Adults With Type I Diabetes. Psychosom Med. 2002;64(1):43–51.
- 13. Riazi A, Thompson AJ, Hobart JC. Self-e cacy predicts self-reported health status in multiple sclerosis. Multiple Scler J. 2004;10(1):61–6.
- Syrjälä A-MH, Ylöstalo P, Niskanen MC, Knuuttila MLE. Relation of di erent measures of psychological characteristics to oral health habits, diabetes adherence and related clinical variables among diabetic patients. Eur J Oral Sci. 2004;112(2):109–14.
- Syrjälä A-MH, Kneckt MC, Knuuttila MLE. Dental self-e cacy as a determinant to oral health behaviour, oral hygiene and HbA1c level among diabetic patients. J Clin Periodontol. 1999;26(9):616–21.
- Finlayson TL, Siefert K, Ismail AI, Delva J, Sohn W. Reliability and validity of brief measures of oral health-related knowledge, fatalism, and self-e cacy in mothers of African American children. Pediatr Dent. 2005;27(5):422–8.
- Sanders AE, Slade GD, Turrell G, Spencer AJ, Marcenes W. Does Psychological Stress Mediate Social Deprivation in Tooth Loss? J Dent Res. 2007;86(12):1166–70.
- Sanders AE, Slade GD. Gender modifies e ect of perceived stress on orofacial pain symptoms: National Survey of Adult Oral Health. J Orofac Pain. 2011;25(4):317–26.
- Sanders A, Spencer A. Why do poor adults rate their oral health poorly? Aust Dent J. 2005;50(3):161–7.
- Jamieson LM, Parker EJ, Roberts-Thomson KF, Lawrence HP, Broughton J. Self-e cacy and self-rated oral health among pregnant aboriginal Australian women. BMC Oral Health. 2014;14:29.
- Census of Population and Housing QuickStats. Port Augusta, Code SSC41175 (SSC): ABS; 2017 [Available from: https://quickstats.censusdata.abs. gov.au/census_services/getproduct/census/2016/quickstat/SSC41175.
- Port Augusta (C). 2016 Census Aboriginal and/or Torres Strait Islander people QuickStat 2016 [Available from: https://www.abs.gov.au/census/find-census-data/quickstats/2016/IQSLGA46090.
- Parker EJ, Mills H, Spencer AJ, Mejia GC, Roberts-Thomson KF, Jamieson LM.
 Oral Health Impact among Rural-dwelling Indigenous Adults in South Australia. J Health Care Poor Underserved. 2016;27(1A):207–19.
- Parker EJ, Mejia G, Spencer AJ, Roberts-Thomson KF, Haag D, Jamieson LM. Self-rated oral and general health among Aboriginal adults in regional South Australia. Aust Dent J. 2022;67(2):132–7.
- Parker EJ, Misan G, Chong A, Mills H, Roberts-Thomson K, Horowitz AM, et al. An oral health literacy intervention for Indigenous adults in a rural setting in Australia. BMC Public Health. 2012;12:461.
- Parker EJ, Jamieson LM. Associations between indigenous Australian oral health literacy and self-reported oral health outcomes. BMC Oral Health. 2010;10:3.
- Parker EJ, Spencer AJ, Roberts-Thomson K, Mills H, Jamieson LM. Oral healthrelated self-e cacy and fatalism in a regional South Australian Aboriginal population. Community Dent Health. 2022;39(2):92–8.
- Slade G. Derivation and validation of a short-form oral health impact profile. Community Dent Oral Epidemiol. 1997:25(4):284–90.
- Soares GH, Santiago PHR, Werneck RI, Michel-Crosato E, Jamieson L. A Psychometric Network Analysis of OHIP-14 across Australian and Brazilian Populations. JDR Clin Trans Res. 2021;6(3):333–42.
- Sisson KL. Theoretical explanations for social inequalities in oral health. Community Dent Oral Epidemiol. 2007;35(2):81–8.
- Armfield JM, Mejia GC, Jamieson LM. Socioeconomic and psychosocial correlates of oral health. Int Dent J. 2013;63(4):202–9.

Parker et al. BMC Oral Health (2022) 22:447 Page 9 of 9

- Bandura A, Cio D, Taylor CB, Brouillard ME. Perceived self-e cacy in coping with cognitive stressors and opioid activation. J Pers Soc Psychol. 1988;55(3):479–88.
- Cohen S, Kamarck T, Mermelstein R. A Global Measure of Perceived Stress. J Health Soc Behav. 1983;24(4):385–96.
- Watson JM, Logan HL, Tomar SL. The influence of active coping and perceived stress on health disparities in a multi-ethnic low income sample. BMC Public Health. 2008;8:41.
- Ribeiro Santiago PH, Nielsen T, Smithers LG, Roberts R, Jamieson L. Measuring stress in Australia: validation of the perceived stress scale (PSS-14) in a national sample. Health Qual Life Outcomes. 2020;18(1):100.
- Santiago PHR, Roberts R, Smithers LG, Jamieson L. Stress beyond coping? A Rasch analysis of the Perceived Stress Scale (PSS-14) in an Aboriginal population. PLoS ONE. 2019;14(5):e0216333.
- McCaul KD, Glasgow RE, Gustafson C. Predicting levels of preventive dental behaviors. J Am Dent Assoc. 1985;111(4):601–5.
- Anagnostopoulos F, Buchanan H, Frousiounioti S, Niakas D, Potamianos G. Self-e cacy and oral hygiene beliefs about toothbrushing in dental patients: a model-guided study. Behav Med. 2011;37(4):132–9.

- Stewart JE, Wolfe GR, Maeder L, Hartz GW. Changes in dental knowledge and self-e cacy scores following interventions to change oral hygiene behavior. Patient Educ Couns. 1996;27(3):269–77.
- George JT, Valdovinos AP, Russell I, Dromgoole P, Lomax S, Torgerson DJ, et al. Clinical e ectiveness of a brief educational intervention in Type 1 diabetes: results from the BITES (Brief Intervention in Type 1 diabetes, Education for Self-e cacy) trial. Diabet Med. 2008:25(12):1447–53.
- 41. Poortaghi Ś, Baghernia A, Golzari SEJ, Safayian A, Atri SB. The e ect of home-based cardiac rehabilitation program on self e cacy of patients referred to cardiac rehabilitation center. BMC Res Notes. 2013;6(1):287.
- Wu S-FV, Lee M-C, Liang S-Y, Lu Y-Y, Wang T-J, Tung H-H. E ectiveness of a selfe cacy program for persons with diabetes: A randomized controlled trial. Nurs Health Sci. 2011;13(3):335–43.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional a liations.