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Abstract
Background  The diagnosis of dental implants and the periapical tissues using periapical radiographs is crucial. 
Recently, artificial intelligence has shown a rapid advancement in the field of radiographic imaging.

Purpose  This study attempted to detect dental implants and peri-implant tissues by using a deep learning method 
known as object detection on the implant image of periapical radiographs.

Methods  After implant treatment, the periapical images were collected and data were processed by labeling the 
dental implant and peri-implant tissue together in the images. Next, 300 images of the periapical radiographs were 
split into 80:20 ratio (i.e. 80% of the data were used for training the model while 20% were used for testing the model). 
These were evaluated using an object detection model known as Faster R-CNN, which simultaneously performs 
classification and localization. This model was evaluated on the classification performance using metrics, including 
precision, recall, and F1 score. Additionally, in order to assess the localization performance, an evaluation through 
intersection over union (IoU) was utilized, and, Average Precision (AP) was used to assess both the classification and 
localization performance.

Results  Considering the classification performance, precision = 0.977, recall = 0.992, and F1 score = 0.984 were 
derived. The indicator of localization was derived as mean IoU = 0.907. On the other hand, considering the indicators 
of both classification and localization performance, AP showed an object detection level of AP@0.5 = 0.996 and 
AP@0.75 = 0.967.

Conclusion  Thus, the implementation of Faster R-CNN model for object detection on 300 periapical radiographic 
images including dental implants, resulted in high-quality object detection for dental implants and peri-implant 
tissues.
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Introduction
Panoramic and periapical radiography are necessary for 
long-term implant management while preventing and 
treating the corresponding complications [1]. While the 
panoramic radiograph confirms the overall oral condi-
tion, the periapical radiograph aids in the visualization 
of the gingiva, alveolar bone trabeculae, and the implant 
shape much more clearly owing to its high resolution [2]. 
Furthermore, the periapical radiograph is widely used as 
a method of examination for evaluating the biological 
and technical complications following implant treatment 
[3]. Using a periapical radiograph, the implant fixture 
shape and prosthesis can be confirmed, and appropriate 
treatment planning and prognosis can be derived by eval-
uating the level of resorption of the peri-implant mar-
ginal bone tissue [4–6].

However, there have been reports of varying results 
based on the resolution quality of periapical radiographs 
in measuring the resorption of the peri-implant marginal 
bone tissue [7]. Although the intra-and inter-examiner 
measurements were small, certain differences have been 
reported. Batenburg et al. [8] reported differences in 
the inter-observer error when measuring changes in the 
marginal bone surrounding several types of endosse-
ous implants supporting mandibular overdentures fol-
lowing radiograph scanning. Moreover, Gröndahl et al. 
[9] reported 0.14  mm and 0.08  mm difference in inter-
observer and intra-observer error, respectively, when 
measuring the radiographic bone level at Brånemark 
fixtures.

Thus, Artificial Intelligence (AI) could be efficient in 
handling measurements maintaining the same standards 
without such errors. For instance, based on the research 
on the implementation of deep learning in Computed 
Tomography (CT) images for pulmonary nodule detec-
tion in diagnosing lung cancer, the accuracy, sensitiv-
ity, and specificity of medical doctors diagnosing on 50 
images of lung cancer were 79.6%, 81.3%, and 77.9%, 
respectively, whereas the deep learning model showed 
92.0%, 96.0%, and 88.0%, respectively [10]. If AI could 
aid in the diagnosis of the level of changes in the peri-
implant marginal bone tissue as well as gather informa-
tion on the implant shape on periapical radiographs, AI 
would be able to aid in dental implants and peri-implant 
tissue detection in periapical radiographs.

Deep learning is being widely used in medical diag-
noses [11–13]. In particular, various image data have 
been accumulated since digital imaging technology was 
adopted by the medical profession [14, 15]. Based on 
previous research reviews on deep-learning methods 
for medical image analysis, active collaboration has been 
ongoing between medical images/video data and vision-
related deep learning, including classification, localiza-
tion, detection, segmentation, registration, etc [16–19]. 

In particular, image classification, which is one of the 
vision-related fields in deep learning, is a project that 
classifies objects in an image based on various classes. 
For example, a classification of three classes of dental car-
ies, periapical infection, and periodontitis was processed 
based on dental disease research [20].

A recent study, in which various classification models 
were applied to identify four types of different implants 
from the periapical radiographs, revealed findings simi-
lar to our study [21–24]. However, despite this achieved 
classification of various types of implants, there was a 
limitation wherein processing through deep learning 
for location detection was not possible which required 
cropping of the image for implant classification in the 
preprocessing stage. Therefore, by using the success-
ful localization performance of dental implant and peri-
implant tissue detection, efficiency of the classification 
model could be improved without the conventional pre-
process of manually cropping the implant area. More-
over, the object detection field implemented in this study 
has been actively adopted by the medical profession. This 
is an automatic technique for detecting a target object 
from an image separated from the background [25]. 
For example, there is a study that detected cervical spi-
nal cord injury and disc degeneration from 1500 cervi-
cal MRIs by using Faster R-CNN, which showed a mAP 
result of 0.886 [26].

Therefore, our study used periapical radiographs from 
periodic checkups following implant treatment to investi-
gate the method of accurate detection of dental implants 
and peri-implant tissue together, using a deep learning 
model.

Materials and methods
Data collection
Intraoral X-rays (i.e. Planmeca intra, Planmeca, Helsinki, 
Finland) with a sensor (i.e. Fona CDRelite, Fona Dental, 
Assago, Italy) were used for the paralleling technique, and 
the exposure conditions were 63 kVp and 8 mA, with an 
exposure time of 0.125 s according to the manufacturer’s 
guidelines. Based on the dental hospital digital medical 
records, anonymous dental implant radiological imaging 
datasets were collected from January 2016 to June 2020.

In this study, a total dataset of 300 images of periapical 
radiographs of different patients was used, with 240 and 
60 images as the training and test dataset, respectively; 
the total number of implants in the training and test 
dataset was 374 and 125, respectively.

This study complied with the EQUATOR guideline 
STARD 2015: An Updated List of Essential Items for 
Reporting Diagnostic Accuracy Studies and was approved 
by the Institutional Review Board (IRB No. 3-2020-0028). 
The study was designed to be non-invasive and retro-
spective, and all data were analyzed anonymously; hence, 
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informed consent was not necessary. All data collection 
and experiments were performed according to approved 
ethical guidelines.

Data preprocessing
Digital periapical radiographic images were obtained 
using PACS (Zetta PACS, TaeYoung Soft, Anyang-si, 
Korea) and then extracted to the PNG. The size was 
640 × 900 or 900 × 640 pixels. Each radiographic image 
included various dental implants.

To proceed with the object detection task, the ground 
truth bonding box should be labelled, for which an open-
source tool called ‘labelimg’ (github link: https://github.
com/tzutalin/labelImg.git) was used. To reduce the man-
ual noise during labeling, the crown, abutment, fixture, 
peri-implant soft tissue, and peri-implant marginal bone 
were all included in the bounding box, and the prosth-
odontist carefully processed the images by fitting the 
boundary line of the implant and peri-implant tissue as 
ground truth.

Object detection model architecture
In this study, the Faster R-CNN model was applied, using 
Resnet 101 as the backbone [27]. Note that various clas-
sification models can be used for the pretrained CNN 
backbone of the object detection model. Faster R-CNN 
is an upgraded version of the previous fast R-CNN model 
[28]. In Fast R-CNN, selective search [29]. was used dur-
ing region proposal, the process that detects locations 
where objects are likely to be found, and the RoI (Region 
of Interest) generation process acted as a bottleneck for 
this entire process and was calculated outside of the 
CNN. A region proposal network (RPN) was employed 
in the Faster R-CNN for integration of the RoI genera-
tion and CNN layer construction stages. Subsequently, 
sibling layers comprising a softmax output layer for clas-
sification and bounding box regressor layer resulted in a 
branching form after the following two processes: (1) the 
RoI pooling layer yielded a fixed length of feature vec-
tor from the region proposal, and (2) all network nodes 
were connected to form a Fully Connected (FC) layer. 
The softmax output layer predicts the object class, while 

the bounding box regressor layer predicts the location of 
an object that is responsible for classification and local-
ization, respectively. The prediction outputs from these 
branches were compared with the class labels and bound-
ing box coordinates of the ground truth labels, yielding 
the loss value. The model parameters were subsequently 
trained through back-propagation (Fig. 1).

Model training
The Faster R-CNN used in this study was learned through 
back-propagation by calculating the loss functions com-
posed against localization and classification, consistent 
with many deep learning models. A loss refers to the 
value calculated based on the difference between the pre-
diction results of classification/localization and ground 
truth labels. The model used in this study also used back-
propagation of the loss value within the neural network.

In the learning process of Faster R-CNN, the term 1 
epoch refers to one learning time on the whole train 
dataset, and this study tested the model weight that pro-
gressed 2826 times of steps in one batch unit. This is sim-
ilar to approximately 12 epochs considering the trainset 
size of 240 images; since a convergence in the loss was 
demonstrated under such epoch, no further learning was 
processed. The loss in the object detection model pre-
sented a total loss, in which the classification and local-
ization loss were combined demonstrating a decrease as 
the epochs progressed. The classification and total loss 
revealed an ideal graph with a minor fluctuation; how-
ever, it was relatively large in the localization loss (Fig. 2).

Statistical analysis and evaluation metrics
Selecting evaluation indicators against the AI model is 
crucial; various metrics exist based on the type of task 
assigned by AI. Among these indicators, statistical indi-
cators in the AI field, such as the comparison result for 
prediction (positive or negative) and ground truth, are 
widely used, consisting of four indicators: True Positive 
(TP), True Negative (TN), False Positive (FP), and False 
Negative (FN). Based on these four indicators, precision, 

Fig. 2  Training loss graph of the Faster R-CNN model for the 240 training 
datasets. (a) loss on object classification performance, (b) loss between the 
ground truth bounding box and the predicted bonding box, and (c) total 
loss of both classification and localization

Fig. 1  Faster R-CNN architecture applied to implant detection (with 
Resnet 101 backbone)

https://github.com/tzutalin/labelImg.git
https://github.com/tzutalin/labelImg.git
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recall, and F1 score, considering both, can be defined. 
These are widely used indicators in the performance 
evaluation of various AI models, including classifica-
tion models (Eq.  1). In this study, precision, recall, and 
F1 score were used to evaluate the classification perfor-
mance, excluding the localization of object detection.

	

Precision = TP/ (TP + FP ) ,

Recall = TP/ (TP + FN ) ,

F1 = 2 ∗ (Precision ∗ Recall) / (Precision + Recall)

� (1)

Meanwhile, as the object detection model carries out 
bounding box regression, Intersection over Union (IoU) 
is defined as an indicator of localization, which is the 
ratio of the overlapping area of the ground truth and the 
predicted area to the total area. Localization refers to 
predicting where the objects are located within an image 
(Eq. 2). For reference, the mean IoU shown in this study 
is defined as the calculated average of all IoUs from each 
test image used. Thus, this study examined the absolute 
minimum, absolute maximum, and average IoU (Fig. 3).

	 IoU = areaofoverlap/areaofunion � (2)

The Average Precision (AP), an integrated indicator com-
prising classification evaluation metrics and bounding 
box evaluation metrics shown above, is a widely used 
metric in the object detection field. The ‘p ’ value in the 
equation refers to precision on the y-axis of PR (preci-
sion-recall) curve and the ‘r ’ value refers to recall on the 
x-axis. (Eq. 3)

	
AP =

1∫

0

p(r)dr � (3)

Specifically, the model first collects prediction results of 
the detected objects and arranges them by rank based on 
the confidence level of the prediction. The results must 
simultaneously exceed the confidence score threshold. 
Next, IoU values are estimated to determine whether 
they exceed the IoU threshold (correct) or not (incor-
rect). These are accumulated in order of rank to calcu-
late the precision and recall values, respectively, which 
are then used to construct a PR curve. Finally, the value 
obtained by integrating the area below this graph is the 
AP. AP@0.5 denotes the AP value when the IoU thresh-
old is 0.5. Therefore, in our study, the result of AP@0.5, 
which is widely used, and the result of AP@0.75, mea-
sured using strict criteria, and the average value of 
AP@0.5 to AP@0.95 were compared. The results of deep 
learning object detection were analyzed using the PR 
curve (Fig. 4).

Results
Various results of the running implant detection infer-
ence against the test dataset were obtained based on the 
trained detection model. The results showed TP = 124, 
FP = 3, and FN = 1 among all 125 ground truth labels, 
including all the dental implants and peri-implant tissue 
within the whole test dataset. Considering the FP and 
FN, the FN did not detect the implant profile that was 
truncated in the corner of the image. If all the profiles 
of the implant had been obtained clearly on the periapi-
cal radiograph, a higher accuracy would be anticipated. 
Meanwhile, FP occurred when brightness and saturation 
within the image were similar to those of implants such 
as crowns, pontics, and screw posts and crowns (Fig. 5).

First, considering the overall evaluation of the clas-
sification performance, based on the yielded TP, FP, and 
FN values, the precision, recall, and F1 score were calcu-
lated as 0.977, 0.992, and 0.984, respectively. These met-
rics evaluated the classification performance of dental 
implants and peri-implant tissue from the background. 
Furthermore, the localization performance could be 
considered precise, since the mean IoU value was 0.916 
despite the various dental implant sizes and shapes and 
peri-implant tissue. Detailed statistics of IoU yielded a 
maximum IoU of 0.986, a minimum IoU of 0.640, and an 

Fig. 4  The strategy for data collection to data split, annotation and infer-
ence results, and evaluation metrics calculation process

Fig. 3  Schematic diagram showing the concept of IoU. The area where 
the ground truth bounding box and the predicted bounding box overlap 
indicates the IoU.



Page 5 of 7Jang et al. BMC Oral Health          (2022) 22:591 

IoU standard deviation of 0.050. In the metrics account-
ing for all classification and localization performances, 
AP@0.5 showed excellent performance of 0.996. More-
over, AP@0.75, which was evaluated on a stricter IoU 
threshold, also demonstrated a reasonable value of 0.967. 
On changing the IoU threshold by 0.05 from 0.5 to 0.95, 
average value AP@0.5:0.95 was derived as 0.849 (Table 1).

To obtain an AP, a PR curve must be derived, which 
is drawn differently based on the IoU threshold setting. 
For our test dataset, the same graph was drawn up to an 

IoU threshold of 0.5:0.65; the same graph is drawn up to 
0.7:0.75, and different graphs are drawn every 0.05 IoU 
threshold increment thereafter. Following that, every 
time the IoU threshold is increased by 0.05, the trend 
of decreasing precision is more noticeable. In particular, 
when set to 0.95, the bounding box prediction for all the 
test sets does not exceed 0.95; hence, the graph is drawn 
to fall vertically (Fig. 6).

Discussion
Many professionals believe that AI applications will grad-
ually replace or substitute medical education for health-
care experts, especially in diagnosis [30]. For example, a 
study that used deep learning to predict exudative Age-
related Macular Degeneration (AMD) demonstrated an 
average accuracy of 100% by DCNN in the diagnosis of 
Optos images (without a fundus examination), whereas 
the six ophthalmologists showed an average accuracy of 
81.9% [31]. A similar result was obtained comparing the 
results of ameloblastomas and keratocystic odontogenic 
tumors made by CNN and oral maxillofacial specialists; 
however, CNN took 38 s and oral maxillofacial specialists 
took 23.1  min, demonstrating AI efficiency in diagnosis 
[32]. In our study, we applied theFaster R-CNN model 
and processed a comparative analysis to proceed with the 
implant detection task; consequently, it demonstrated 
accurate classification and localization performance for 
dental implants and peri-implant tissue, even with little 
data. It would be clinically beneficial to apply this model 
in evaluation of resorption level of the peri-implant mar-
ginal bone and identification of unknown implant in 
periapical radiograph.

Meanwhile, the mean IoU showed a fine result of 0.916 
since Faster RCNN is a 2-stage model that has a separate 
RPN; hence, the location accuracy is relatively higher. 
This result was similar to the 0.91 of mean IoU, which 
was interpreted owing to the size and similarity of shape 
of the tooth and implant [33]. Specifically, the abso-
lute minimum of IoU against 60 test images was 0.640, 
absolute maximum was 0.986, and standard deviation 
was 0.050. IoU values ​​are distributed around an average 
value, and the minimum IoU value is a result of the dif-
ference in localization of the cantilever part, as shown 
in (3) of Fig. 3. The slight difference in the IoU between 
the experts and the prediction was due to the slight dif-
ference of the area of the implant prosthesis and peri-
implant tissue,reflecting an area of overlap; however, all 
parts of the fixture were included in the prediction area.

At the same time, during the process of AP calcula-
tion, based on the changes in the IoU threshold, we found 
that if the IoU threshold was set low, the classification 
performance improved while the localization accuracy 
decreased, whereas if set higher, the classification perfor-
mance dropped while the localization accuracy improved 

Table 1  Evaluated metrics of classification, localization, and 
object detection performance
Evaluation Target Metrics Re-

sults
Classification Precision 0.977

Recall 0.992

F1 Score 0.984

Localization Mean IoU 0.916

Min / Max IoU 0.640 / 
0.986

IoU std 0.050

Object Detection AP@0.5 0.996

AP@0.75 0.967

AP@0.5:0.95 0.849

Fig. 6  Changes in Precision-Recall curve according to intersection over 
union (IoU) thresholds variation

Fig. 5  Example images of the result of the implant detection test. a–d: 
True positive (TP) cases that detect dental implants and peri-implant tis-
sue well, e–g : False positive (FP) cases, h: false negative (FN) case
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[34]. In the results of AP, our Faster R-CNN showed high 
performance with AP@0.5: 0.996 and AP@0.75: 0.967. 
This was likely because the color distribution was monot-
onous and the implant thread had a clear geometrical 
feature, implying fine quality for practical use. In another 
study that applied an object detection model to dental 
implants, six implant systems were detected using Yolo 
v3 with a total of 1282 panoramic radiograph images [35, 
36]. Although it is significant in that it detected a large 
number of implants, only the implant area containing no 
peri-implant tissue was detected, and the mAP of 0.71 
was relatively insufficient in accuracy. This is mainly due 
to the fact that it used the panoramic radiograph, which 
has lower image quality compared to the periapical 
radiograph we used, and also due to the Yolo-type model 
that focuses on inference speed rather than accuracy. 
As such, before classifying various types of implants, we 
first conducted a study on how well a single implant and 
peri-implant tissue could be detected within the periapi-
cal radiograph and resulted remarkable performance for 
implant identification.

The faster R-CNN used in our study was developed 
quite a long time ago, and although it falls largely behind 
in terms of Frame Per Second (FPS) compared to recent 
object detection models; its accuracy remains competi-
tive [37]. To apply Faster R-CNN to the implant detection 
task, we used TensorFlow object detection API (Applica-
tion Programming Interface) [38]. Tensorflow provides 
detailed instructions, such that non-AI professionals, 
such as dentists, find it easily accessible and can custom-
ize the data. To improve the detection performance of 
the model in our study, we fine-tuned the implant data-
set against the pretrained weight of the COCO (Com-
mon Objects in Context) image dataset [39]. This refers 
to a deep learning method called transfer learning, in 
which either the final model performance improves or 
the learning process becomes faster compared to learn-
ing from scratch [40]. Such a method is useful when there 
is a lack of data on new areas in medicine and dentistry. 
This is because neural networks have semantic informa-
tion produced in the late CNN layers after patterns result 
from the early layers. Therefore, by changing the linear 
layers except for the early layers and performing fine-tun-
ing, we could quickly and accurately perform the model 
study even with a small amount of data. We surmise that 
this is the reason for the good performance of our model 
despite a small amount of data.

Furthermore, although labeling has been processed 
based on the advice from professionals, the standard 
regarding the boundaries of the bounding box is still 
ambiguous and this limitation has been persistent in 
the field of object detection. Hence, applying image seg-
mentation for categorizing geometrical features as the 

standard of various implants in future, we will enhance 
performance of multi-class implant detection.

Conclusion
Object detection using the Faster R-CNN model against 
300 periapical radiographic images, including implants, 
showed high performance in dental implant and peri-
implant tissue detection.
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