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Abstract 

Objectives:  This study aims to develop and evaluate the deep learning-based classifi-
cation model for recognizing the pathology of renal tumor from macroscopic cross-
section image.

Methods:  A total of 467 pathology-confirmed patients who received radical nephrec-
tomy or partial nephrectomy were retrospectively enrolled. The experiment of distin-
guishing malignant and benign renal tumor are conducted followed by performing 
the multi-subtypes classification models for recognizing four subtypes of benign tumor 
and four subtypes of malignant tumors, respectively. The classification models used the 
same backbone networks which are based on the convolutional neural network (CNN), 
including EfficientNet-B4, ResNet-18, and VGG-16. The performance of the classification 
models was evaluated by area under the receiver operating characteristic curve (AUC), 
sensitivity, specificity, and accuracy. Besides, we performed the quantitative compari-
son among these CNN models.

Results:  For the model to differentiate the malignant tumor from the benign tumor, 
three CNN models all obtained relatively satisfactory performance and the highest 
AUC was achieved by the ResNet-18 model (AUC = 0.9226). There is not statistically 
significance between EfficientNet-B4 and ResNet-18 architectures and both of them 
are significantly statistically better than the VGG-16 model. The micro-averaged AUC, 
macro-averaged sensitivity, macro-averaged specificity, and micro-averaged accuracy 
for the VGG-16 model to distinguish the malignant tumor subtypes achieved 0.9398, 
0.5774, 0.8660, and 0.7917, respectively. The performance of the EfficientNet-B4 is not 
better than that of VGG-16 in terms of micro-averaged AUC except for other metrics. 
For the models to recognize the benign tumor subtypes, the EfficientNet-B4 ranked the 
best performance, but had no significantly statistical difference with other two models 
with respect to micro-averaged AUC.

Conclusions:  The classification results were relatively satisfactory, which showed the 
potential for clinical application when analyzing the renal tumor macroscopic cross-
section images. Automatically distinguishing the malignant tumor from benign tumor 
and identifying the subtypes pathology of renal tumor could make the patient-man-
agement process more efficient.
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Introduction
The incidence of renal cell carcinoma (RCC) increased steadily, mostly on account of 
incidental detection via cross-sectional imaging [1, 2]. Partial nephrectomy (PN) has 
become the gold standard treatment for <4 cm renal masses, as studies demonstrated 
that PN had similar long-term cancer-specific survival results with radical nephrectomy 
(RN) [3]. After observing the increased overall survival and oncological efficacy in T1a 
(<4 cm) tumors, PN can be utilized with long-term disease-free survival and low mor-
bidity in T1b (4–7 cm) tumors [4]. Negative surgical margins (NSM) of the pathological 
specimen indicate a successful excision of PN, however, positive surgical margin (PSM) 
rates is not low, varying between 0 and 10.6% after PN [5–8]. Management options 
for PSM include radical nephrectomy, re-resection of the tumor bed, or observation. 
Though the oncologic impact of positive surgical margins after PN is still controversial 
[8–14], every effort must be performed to solve this dilemma.

Intraoperative frozen section (IFS) analysis is used to confirm the pathology during 
PN. However, surgical margin evaluation using IFS analysis is unreliable and time con-
suming [15, 16]. Despite reduction in PSM rates in IFS group, this data did not show 
that FS use could improve recurrence-free survival [17]. If we could differentiate benign 
tumor from malignant tumor or even recognize the subtypes at the suspicious positive 
cutting plane endoscopically or from macroscopic cross-section image of renal tumor 
when taken out of body in operation room instead of time-consuming frozen sec-
tion analysis, quick decision could be made and re-resection of tumor bed or radical 
nephrectomy might be spared.

Macroscopic cross-sectional imaging is a low-cost, efficient, and convenient image 
acquisition method which can be implemented by the mobile phone or digital camera. 
With the successful application in the fields of nature image processing by automatically 
extracting texture features, deep learning framework, especially the CNN, have been 
widely used in medical image analysis to classify disease or lesion types, segment the 
organs or tumors, detect the lesions, and so on [18–20]. The authors proposed a deep 
learning-based artificial neural network method to classify the chronic renal disease [21]. 
Wu et  al. proposed a multi-feature fusion CNN architecture to automatically identify 
the kidney abnormalities when analyzing abdominal ultrasound images [22]. Lin et al. 
proposed a CNN-based method to segment the retinal vessels [23]. The CNN-based 
multi-scale cost-sensitive neural networks was proposed to evaluated the lung nodules 
malignancy [24]. Besides, numerous attempts were made to investigate the automated 
diagnosis of renal tumor.

Lee et al. developed a deep learning-based feature classification method that the deep 
features and hand-crafted features were concatenated to distinguish benign angiomy-
olipoma without visible fat from malignant clear cell RCC [25]. The artificial neural 
network was used to distinguish non-clear cell RCC from clear cell RCC based on corti-
comedullary phase CT images [26]. Han et al. developed a deep learning framework to 
classify three subtypes of RCC using 3-phase CT images [27]. Considering that there is 
substantial overlap in the imaging findings of benign and malignant renal masses, Coy 
et  al. used both of deep learning and radiomics method to distinguish clear cell RCC 
from benign oncocytoma based on multiphasic CT images [28]. Kwang-Hyun et al. pro-
posed to identify five major histologic subtypes of renal tumors based on multi-phase 
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CT using the end-to-end deep learning framework [29]. Xi et al. developed a deep learn-
ing model to distinguish the benign tumors from RCC based on routine MR imaging 
[30]. Baghdadi et  al. developed and evaluated CNNs model to differentiate CD117(+) 
oncocytoma from the chromophobe subtype of RCC based on CT imaging [31]. Tan-
aka et  al. used CNN-based Inception-v3 architecture to identify the small renal mass 
on multi-phase contrast-enhanced CT and performed multivariate logistic regression 
analysis, concluding that deep CNN model makes it possible differentiating the small 
solid renal masses in dynamic CT images [32]. Zheng et al. built a novel CNN model to 
identify the four subtypes of the renal parenchymal tumors in T2-weighted fat satura-
tion sequence magnetic resonance images [33]. With an aim to identify two subtypes of 
benign renal masses and three subtypes of malignant renal masses, Oberai et al. applied 
CNN-based deep learning method to multi-phase contrast-enhanced CT images [34]. 
Similarly, based on contrast-enhanced CT images, Zabihollahy et al. aggregated the pre-
diction results from CNN by using the decision fusion-based model to identify two sub-
types of benign renal tumors and three subtypes of malignant renal tumors [35]. The 
authors used a deep CNN to distinguish clear cell RCC from renal oncocytoma based 
on MR imaging [36]. Zhao et  al. used residual CNN to differentiate low-grade (grade 
I–II) from high-grade (grade III–IV) in stage I and II RCC with MRI [37]. In order to 
screen the small-diameter renal tumors, Sassa et al. generated synthetic CECT images 
using a learned deep neural networks and assessed its quality concordance with the real 
CECT images [38]. Li et  al. proposed a radiomics nomogram to distinguish the renal 
oncocytoma and chromophobe renal cell carcinoma based on the CT imaging features 
and patient characteristics [39].

Although the above studies achieved relatively satisfactory results, more detailed 
subtypes of the renal tumor are desired to be identified to meet the practical clinical 
need. Besides, considering that the macroscopic cross-sectional imaging method is 
fast and low-cost, classifying the renal tumors based on the macroscopic cross-section 
images is significant and promising to be studied. However, to the best of our knowl-
edge, recognizing more detailed subtypes of the renal masses based on the macroscopic 
cross-section images by using the deep learning technology has not been investigated. 
Automatically distinguishing the macroscopic cross-section images of the renal masses 
may make the diagnosis and treatment process more efficient.

Based on the macroscopic cross-section images of renal tumors, this study aimed to 
develop and evaluate the CNN-based models to automatically differentiate the malig-
nant renal tumor from benign renal tumors and recognize four classes of malignant 
tumor and four classes of benign tumor. Specifically, the CNN-based models in this 
study include the EfficientNet-B4 [40], ResNet-18 [41], and VGG-16 [42] which are the 
prevailing CNN models.

The rest structure of this paper is organized as follows. In “Experiments” section, we 
provide the experimental implementation and analyze the experimental performance. 
The “Conclusions” section concludes the paper. The “Materials and method” section pre-
sents the dataset and method in detail.
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Experiments
Experiments setting

The experimental computer has a Windows 2016 operating system running on an 
Intel(R) Xeon(R) Gold 6234 CPU and a NVIDIA Tesla V100-PCIE-32GB Graphics 
Processing Unit. The CNN-based classification networks were built based on Pytorch 
framework. In the training phase, in order to avoid overfitting to some extent, we 
utilized the transfer learning strategy which is proved to be effective to improve the 
representative of the network. Namely, we initialized the backbone network with 
the pre-trained parameters on the ImageNet dataset and then fine-turned it with 
our dataset. Note that the parameters outside the backbone network are initialized 
with he_normal [43]. The learning rate of the binary classification model, malignant 
multi-class classification and benign multi-class classification are initially set as 1e−3, 
1e−4, and 1e−3, respectively, and scaled by a decay rate of 0.1 every 30 epochs. The 
batch size is set as 16. The network is trained for 200 epochs with ADAM optimizer 
where the decay rate for the first- and second-order moments are set as 0.9 and 0.999, 
respectively. The cross-entropy loss function is adopted to update the network param-
eters for all three models. In training the malignant classification model, the weight of 
the class of other malignant tumors in the cross-entropy loss is set as 3 and other 
classes are set as 1 to address the class imbalance as possible.

Performance measurements

For each class c, the following four results can be found: TP, FN, FP (the examples 
which are falsely predicted as c) and TN (the examples which are truly predicted as 
other class). For the binary classification, we evaluate the performance of the clas-
sification model by AUC, sensitivity (Sn), specificity (Sp), and accuracy (Acc), which 
were computed as:

For the multi-class classification, the model performance was reported as its macro-
averaged sensitivity (ma-Sn), macro-averaged specificity (ma-Sp), micro-averaged AUC 
(mi-AUC), and micro-averaged accuracy (mi-Acc). The mi-Acc are calculated as follows:

where FPi denotes the number of false negatives of the ith class negative sample. Due 
to the imbalance of our dataset, the AUC was considered as the principal evaluation 
metric.

(1)Sn = TP/(TP+ FN),

(2)Sp = TN/(TN+ FP),

(3)Acc = (TP+ TN)/(TP+ FP+ TN+ FN).

(4)mi-Acc = TP/

(

TP+

i
∑

n=i

FPi

)

,
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Results and discussion

In this subsection, based on the three prevailing CNN architectures, after training 
the binary classification model, malignant multi-class classification model and benign 
multi-class classification model, the performances of these models were evaluated 
with the test cohort. Note that for the clinical scenes where recognizing malignant/
benign and subtypes of malignant or benign are required, the evaluation results of 
the multi-class classification model is accumulated from that of the binary classifi-
cation model and the final evaluation results could be calculated by multiplying the 
evaluation results of two steps. For the clinical scenes where it is easy to distinguish 
the malignant/benign renal tumor for the physician, only the multi-class classifica-
tion model is applied to recognize the subtypes of malignant or benign and thus only 
considering the evaluation results of the multi-class classification model. Besides, we 
compared their performance by using DeLong tests evaluated on AUC and p < 0.05 
was considered statistically significant.

Performance of the binary classification model

For the binary classification model, Fig. 1 shows the training loss graph for the three 
CNN models. As shown in this figure, three models converge in the training process 
near the 50th epoch. The average classification performance of the three CNN archi-
tectures is shown in Table  1. Figure  2 presents the receiver operating characteristic 
(ROC) curve of these models. In general, these models obtained great potential in 
identifying the malignant tumors from benign tumors (AUC > 0.85). In terms of Sn, 
the EfficientNet-B4 achieved the best performance. For the performance of AUC, Sp, 
and Acc, the ResNet-18 ranked the first (0.9226, 0.8572, and 0.8972, respectively). 
The lowest classification performance was obtained by the VGG-16 network. As 
Fig. 2 shows, the AUC performance of both of the EfficientNet-B4 and ResNet-18 was 

Fig. 1  Training loss curve of the binary classification models

Table 1  Predictive performance of binary classification model

The top results are marked by bold

CNN models AUC​ Sn Sp Acc

EfficientNet-B4 0.9217 0.9133 0.7959 0.8887

ResNet-18 0.9226 0.9079 0.8571 0.8972
VGG-16 0.8548 0.8699 0.7755 0.8501
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statistically significantly higher than that of the VGG-16 model (p  <  0.05, DeLong 
test), while there was no significant difference between the AUC of EfficientNet-B4 
and ResNet-18 model (p > 0.05). For a detailed comparison of the performance and 
identification of frequent confusion between malignant and benign tumor, the confu-
sion matrix of the binary classification model is illustrated in Fig. 3.

As shown in Fig.  4, we randomly selected examples that were misclassified ((b) 
and (d)) and correctly predicted ((a) and (c)). It can be seen from (b) and (c) that the 
malignant samples that are predicted as benign tumors are visually similar to most 
benign tumors and they are lighter and uniform in color. Due to the diversity of the 
characteristic of the tumor, the texture features from the malignancy are similar to 
that of the benign tumor and then may make the model difficult to distinguish espe-
cially in the situation that they are limited in sample of the data. In contrast to the 
benign tumor, most malignancies tend to be darker and uneven in color. Thus the 
benign tumor with the similar features with the malignancy such as darker color and 
residual blood may be misclassified. This may be because the number of these benign 
tumors is limited and then the model is not able to learn the distinguishable features 
well. Furthermore, the reflections on the image potentially influence the judgment of 

Fig. 2  The ROC curve of three models for the binary classification task

Fig. 3  The confusion matrix of three models for the binary classification task
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model, which remind us that in the follow-up data collection, the shooting environ-
ment can be considered.

As for the binary classification problem, the ResNet-18 and EfficientNet-B4 present a 
similar and satisfactory performance in distinguishing the malignant renal tumor and 
benign renal tumor and they had no statistical difference in terms of AUC. On the other 
hand, the EfficientNet-B4 contains less parameters. Thus the EfficientNet-B4 could be 
considered the suitable model for renal tumor binary classification task. Furthermore, 
can be seen from the confusion matrix (Fig. 3), the vast majority of samples can be accu-
rately predicted. The ResNet-18 performs well in distinguishing malignant tumor from 
benign tumor images with the minimum misclassified samples. Compared to the fact 
that the benign tumors are predicted to be malignant tumors, the malignant tumors 
tend to be labeled as benign tumors and the reason maybe that the context features of 
the malignant tumor is more complex than that of the benign tumor. Besides, the recent 
studies to differentiate the malignant tumor from the benign tumor were mainly based 
on the MRI or CT images and their dataset included only one or a few subtypes for 
malignant tumor and benign tumor, respectively. Lee et al. aimed to differentiate benign 
angiomyolipoma from malignant clear cell renal cell carcinoma from abdominal con-
trast-enhanced CT images [25]. Baghdadi et al. performed the binary classification task 

Fig. 4  The predicted examples for the binary classification task
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to identify the benign renal oncocytoma from chromophobe renal cell carcinoma on 
CT images [31]. Zabihollahy et al. used CNN model to automatically classify RCC and 
benign tumor based on contrast-enhanced CT images, in which the RCC and benign 
tumor included three subtypes and two subtypes, respectively [35]. Our binary classi-
fication task to identify malignant tumor from benign tumor included 19 kinds of renal 
tumor subtypes which reflects an unbiased and consecutive dataset, a real disease distri-
bution in clinical practice.

Performance of the multi‑class classification models

For the malignant multi-class classification model, Fig. 5 shows the training loss graph 
for the three CNN models. The loss of them converge in the training process near the 
60th epoch. The average classification results for all the malignant subtypes are shown in 

Fig. 5  Training loss curve of the malignant multi-class classification models

Table 2  Average predictive performance of each CNN for malignant multi-class classification model

Bold values indicate the top results

CNN models mi-AUC​ ma-Sn ma-Sp mi-Acc

EfficientNet-B4 0.9091 0.5781 0.9120 0.8194
ResNet-18 0.9002 0.5249 0.8760 0.7361

VGG-16 0.9398 0.5774 0.8660 0.7917

Fig. 6  The ROC curve of the malignant multi-class classification model
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Table 2 and Fig. 6. Specifically, the mi-AUC of three CNN models were greater than 0.9 
(0.9019, 0.9002, and 0.9398 for EfficientNet-B4, ResNet-18, and VGG-16, respectively). 
The EfficientNet-B4 achieved the best performance among three models in terms of 
ma-Sn, ma-Sp, and mi-Acc with the values of 0.5781, 0.9120, and 0.8194. Although the 
three models obtained relatively satisfactory performance in terms of mi-AUC, ma-Sp, 
and mi-Acc, their ma-Sn are poor with the values of 0.5781, 0.5249, and 0.5774 for Effi-
cientNet-B4, ResNet-18, and VGG-16, respectively. The ResNet-18 had significant dif-
ference from VGG-16 model with regard to mi-AUC (p < 0.05). The EfficientNet-B4 had 
no significant difference from ResNet-18 and VGG-16 architectures (p > 0.05). Figure 7 
shows the confusion matrix of three CNN models for the malignant multi-class classifi-
cation task.

Figure 8 shows the training loss graph of the three CNN models for the benign renal 
tumor subtypes classification task. Three models converge in the training process near 
the 80th epoch. As shown in Table  3 and Fig.  9, for the benign renal tumor subtypes 
classification model, the mi-AUC of three models obtained relatively satisfactory per-
formance (0.9705, 0.9307, and 0.9575 for EfficientNet-B4, ResNet-18, and VGG-16, 
respectively) and the mi-Acc, ma-Sn, and ma-Sp of the EfficientNet-B4 ranked the first 

Fig. 7  The confusion matrix of the malignant multi-class classification models

Fig. 8  Training loss curve of the benign multi-class classification models

Table 3  Average predictive performance of each CNN for benign multi-class classification model

Bold values indicate the top results

CNN models mi-AUC​ ma-Sn ma-Sp mi-Acc

EfficientNet-B4 0.9705 0.8558 0.9688 0.8947
ResNet-18 0.9307 0.7724 0.9290 0.8421

VGG-16 0.9575 0.7724 0.9567 0.8421



Page 10 of 20Lin et al. BioMedical Engineering OnLine            (2023) 22:3 

with the values of 0.8558, 0.9688, and 0.8947 compared to other two models. Specifically, 
the ma-Sn of the EfficientNet-B4 is about 10% higher than that of the ResNet-18 and 
VGG-16. However, there was no statistical difference between these models in terms of 
mi-AUC (p > 0.05). Figure 10 shows the confusion matrix of three CNN models for the 
benign multi-class classification task.

Specifically, the classification performance of each subtype for three CNN mod-
els is shown in Tables  4, 5, and 6, respectively, with the corresponding ROC curve 
shown in Figs. 11, 12, and 13, respectively. As these tables and figures show, all three 

Fig. 9  The ROC curve of the benign multi-class classification model

Fig. 10  The confusion matrix of the benign multi-class classification models

Table 4  Predictive performance of each class for EfficientNet-B4 architecture

OMT other malignant tumors, OBT other benign tumors

Metrics pRCC​ ccRCC​ chRCC​ OMT AML MCRN-LMP RO OBT

AUC​ 0.8687 0.8362 0.7246 0.8786 0.9872 1.0 0.9375 0.8824

Sn 0.4 0.9123 0.5 0.5 0.9231 1.0 1.0 0.5

Sp 0.9403 0.8 0.9219 0.9857 1.0 1.0 0.875 1.0

Acc 0.9028 0.8889 0.875 0.9722 0.9474 1.0 0.8947 0.9474
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models present the potential in renal tumor multi-subtypes classification task. For 
malignant tumors, the ccRCC with the largest training data achieved the best Sn per-
formance (0.9123, 0.8246, and 0.8596 for EfficientNet-B4, ResNet-18, and VGG-16, 
respectively) and relatively higher AUC (0.8362, 0.8012, and 0.8642 for EfficientNet-
B4, ResNet-18, and VGG-16, respectively). The remaining subtypes with the relatively 
smaller training data obtained worse Sn performance. More specifically, the Sn of the 
pRcc are 0.4, 0.4, and 0.2 for EfficientNet-B4, ResNet-18, and VGG-16, respectively. 
These results may indicate that the imbalance of the data has an effect on the clas-
sification performance. For benign tumors, the data amount proportion is relatively 
balanced than that of malignant tumor. The AML, MCRN-LMP, and RO achieved sat-
isfactory Sn performance for the three models. However, the Sn of the class of other 

Table 5  Predictive performance of each class for ResNet-18 architecture

Metrics pRCC​ ccRCC​ chRCC​ OMT AML MCRN-LMP RO OBT

AUC​ 0.7791 0.8012 0.7656 0.85 0.9487 1.0 0.7292 0.8824

Sn 0.4 0.8246 0.375 0.5 0.9231 1.0 0.6667 0.5

Sp 0.8955 0.7333 0.875 1.0 0.8333 1.0 1.0 0.8824

Acc 0.8611 0.8056 0.8194 0.9861 0.8947 1.0 0.9474 0.8421

Table 6  Predictive performance of each class for VGG-16 architecture

Metrics pRCC​ ccRCC​ chRCC​ OMT AML MCRN-LMP RO OBT

AUC​ 0.7940 0.8643 0.8379 0.9071 0.9872 0.9444 0.8958 0.8529

Sn 0.2 0.8596 0.75 0.5 0.9231 1.0 0.6667 0.5

Sp 0.9552 0.6 0.9375 0.974 1.0 0.9444 1.0 0.8824

Acc 0.9028 0.8056 0.9167 0.9583 0.9474 0.9474 0.9474 0.8421

Fig. 11  The ROC curve of each class for EfficientNet-B4
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benign tumors for three models is as poor as 0.5 and the reason maybe that this class 
includes more than more one subtypes and account for a relatively low proportion in 
dataset, which made the identification more difficult. The overall performance trend 
of the three CNN models is similar, which proves the consistency from different mod-
els when training in the same dataset.

For the malignant subtypes classification task, although three models obtained rela-
tively satisfactory performance in terms of mi-AUC, their ma-Sn are relatively worse 
(ma-Sn<0.6). Because some classes obtained worse Sn, like pRCC, chRCC, and other 
malignant tumors (see Tables 4, 5, and 6), and the one possible explanation is that the 
similarity of these renal malignant subtypes and the imbalance of the dataset make the 

Fig. 12  The ROC curve of each class for ResNet-18

Fig. 13  The ROC curve of each class for VGG-16
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extracted features hard to be distinguished. As can be seen from Figs. 6 and 15, the class 
of pRCC, chRCC, and other malignant tumors account for low training sample size and 
the confusion matrix of the EfficientNet-B4 model showed that 20 percent of pRCC and 
25 percent of chRCC are predicted as chRCC. Similarly, for the other two models, these 
classes also tend to be predicted as ccRCC. Furthermore, the Sn of the ccRCC achieved 
the best (Sn  >  0.8 for three models) because ccRCC account for largest training sam-
ple size (about 78% of training data), and thus the CNN models could learn more rep-
resentative features about it. For the benign subtypes classification task, the mi-AUC 
and ma-Sn achieved more than 0.93 and 0.77 for three models. As for the performance 
of each class, the Sn of the class of other benign tumors is only 0.5 for three models 
and the reason might be that limited by the amount of the dataset, some subtypes were 
combined into the class of other benign tumors, which made it more challenging to 
distinguish. From the confusion matrix of the benign multi-class classification model 
(see Fig. 10), the MCRN-LMP can be accurately predicted by three models and a small 
number of samples for other three classes are misclassified, which reveals the potential 
for CNN model to recognize multi-subtypes renal tumors. From the view of the com-
prehensive performance of all metrics and the statistical significance in AUC, the Effi-
cientNet-B4 could be considered the best among three models for both of malignant and 
benign multi-class classification task, which revealed the advantage of EfficientNet-B4 
and the certain consistency between two multi-class classification task. Besides, the pre-
viously reported studies about renal tumor diagnosis were mainly based on MRI or CT 
images and covered less subtypes compared with our study [27, 29, 33, 35, 39]. In the 
clinical practice, more renal tumor subtypes are desired to be diagnosed and the diag-
nosis process are expected to be as efficient as possible. Our study revealed it is possi-
ble to distinguish more subtypes based on the easily available macroscopic cross-section 
images and established a benchmark for the follow-up studies evaluating the macro-
scopic cross-section images of renal tumor.

Conclusions
In this study, we proposed CNN-based method to distinguish malignant renal tumors 
from benign renal tumors and recognize the multi-subtypes renal tumors. Differ-
ent from the existing studies that the deep learning technique is used to automatically 
diagnose the renal tumors based on CT or MRI, we considered the macroscopic cross-
section image which are easily available. Besides, in order to adapt to different medical 
application scenarios, binary classification model and multi-class classification model 
can be flexibly selected. For the clinical scenes where recognizing malignant/benign 
and subtype of malignant or benign is required, the binary classification model is firstly 
used to distinguish the malignant from benign renal tumor to obtain preliminary clini-
cal decision and then the multi-class classification model is adopted to recognize the 
subtype of renal tumor to make further treatment plan. For the clinical scenes where it is 
easy to distinguish the malignant/benign renal tumor for the physician, only the multi-
class classification model is applied to recognize the subtype of malignant or benign. 
Besides, since the binary and multi-class classification models require very different fea-
tures, separating these two steps could make the training of these models easier to some 
extent especially for the extremely imbalanced data. For the binary classification model 
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and benign multi-class classification model, the experimental results showed that it is 
considerable to use deep learning method to diagnose the renal tumor. For the malig-
nant multi-class classification model, although the Sn performance for some classes is 
poor due to the limitation of the data, it supports the possibility of using deep learn-
ing for the automated recognition of malignant renal tumor subtypes. As the first solu-
tion for diagnosing the renal tumors based on the macroscopic cross-section image, our 
method demonstrates great potential for future clinical applications.

Although this study had achieved relatively satisfactory diagnostic performance for 
renal tumor, there are still several limitations which we aim to overcome in the future. 
First, more data should be collected to improve the prediction performance and gen-
eralization of the classification model due to the data-driven nature of deep learning, 
including increasing the sample size and collecting multi-center patient cohort. Sec-
ond, external datasets are expected to be considered to further validate our method. 
Thirdly, due to the limitation of the consecutive sample in this study (resulting in a low 
proportion of some subtypes), some subtypes were combined into one class. Thus more 
detailed subtypes of renal tumor will be distinguished after increasing the training sam-
ples of each subtype.

Materials and method
Data acquisition

We retrospectively reviewed patients who underwent RN and PN for the renal masses in 
Zhuhai People’s Hospital and Jiangmen Central hospital from January 2015 to December 
2020. Macroscopic cross-section image of formalin-fixed mass and postoperative pathol-
ogy results of each patient were collected. In particular, these macroscopic cross-section 
images were picked by mobile phone or digital camera and stored in PNG format, which 
means that macroscopic cross-sectional imaging is a low-cost, efficient, and convenient 
imaging method. Note that the size of images are 614,768 (from Zhuhai People’s Hospi-
tal) and 480,640 (from Jiangmen Central hospital), respectively. 467 cases with a total of 
467 renal tumors were included in this study. The exclusion criteria were as follows: (1) 
cases without macroscopic cross-section images and those with blurry images; (2) carci-
noma of renal pelvis who underwent radical nephrectomy or nephro-ureterectomy; (3) 
cases with renal tumors in children who were under 18.

Among these tumors, 369 malignant tumors include clear cell renal cell carcinoma 
(ccRCC), chromophobe renal cell carcinoma (chRCC), papillary renal cell carcinoma 
(pRCC), renal sarcoma (RS), MiT family translocation renal cell carcinoma (MITF-
FTRCC), mucinous tubular and spindle cell carcinoma (MTSCC), neuroendocrine car-
cinoma (NEC), clear cell papillary renal cell carcinoma (ccpRCC), tubulocystic renal cell 
carcinoma (TC-RCC), and the remaining 98 benign tumors consist of angiomyolipoma 
(AML), multilocular cystic renal neoplasm of low malignant potential (MCRN-LMP), 
solitary fibrous tumor (SFT), renal oncocytoma (RO), hemangiopericytoma (HPC), 
renal lipoma (RL), juxtaglomerular cell tumor (JGCT), villous adenoma (VA), renal lei-
omyoma (RL), metanephric adenoma (MA). Table  7 presents the information of each 
subtype. One senior physician (Xiaoxu Yuan) delineated the regions of interest (ROI) of 
the tumor using the drawing software (included in the Windows 10 system) and decided 
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which tumor area should be included if there exists more than one in the cross-sec-
tion image, and then another physician (Wenqiang Zhang) confirmed these delineated 
tumors. Figure 14 shows the examples of these renal tumor subtypes.

Data preprocessing

In the designing of binary classification model, the tumors are identified as malignant 
tumor or benign tumor. We performed the fivefold cross-validation for this model. For 
the designing of multi-subtypes classification models, 19 subtypes of renal tumors were 
recombined to 8 subtypes because the dataset is unbalanced as the number of some sub-
types is small. Namely, the MITF-FTRCC, MTSCC, RS, NEC, ccpRCC, and TC-RCC 
were classified into the class of other malignant tumors. The SFT, HPC, RL, JGCT, VA, 
RL, and MA were classified into the class of other benign tumors. Ultimately, the classes 
of malignant tumors include pRCC, ccRCC, chRCC, and other malignant tumors and 
the classes of benign tumors include RO, AML, MCRN-LMP, and other benign tumors. 
Note that due to the limitation of the sample size (resulting in a low proportion of some 
classes), we do not use the cross-validation technique for the multi-class classification 
models. For the malignant multi-class classification, all the malignant tumors are ran-
domly divided into training data and test data. For the benign multi-class classification, 
all the benign tumors are randomly divided into training data and test data. Note that 
these data are divided based on category so as to avoid certain categories from being 
completely allocated to the training set or the test set. The data cohorts of the multi-
class classification task are illustrated in Fig. 15.

Table 7  Description of dataset

Malignant (9 subtypes)

 Subtypes ccRCC​ chRCC​ pRCC​ RS MITF-FTRCC​ MTSCC NEC ccpRCC​ TC-RCC​

 Sample size (n) 288 42 27 3 2 3 2 1 1

Benign (10 subtypes)

 Subtypes AML MCRN-LMP SFT RO HPC RL JGCT​ VA RL MA

 Sample size (n) 66 6 2 16 2 2 1 1 1 11

Fig. 14  Examples of renal tumor subtypes. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article)
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Since the ROI accounts for less areas of the image, we cropped the ROI and then 
resized it into the size of 480 × 480. The training data were augmented by the operation 
of random horizontal flip (p = 0.4), random vertical flip (p = 0.4), 90◦ random rotation, 
color jitter (contrast = 0.2), and random grayscale (p = 0.2) during the model training 
to avoid overfitting to some extent. The flowchart of the data preprocessing is shown in 
Fig. 16.

Classification models

In this study, we adopted the EfficientNet-B4, ResNet-18, and VGG-16 as the backbone 
networks, respectively, for both of the binary and multi-class classification models and 
these architectures are open source. Specifically, we modified the 1000 category in the 
last layer of these networks as two category for binary classification, four category for 
malignant tumor subtypes classification and four category for benign tumor subtypes 
classification, respectively. These models were pretrained with ImageNet dataset [44] 
and then fine-tuned with our training dataset with transfer learning method [45]. The 
transfer learning process is shown in Fig. 17 and the introduction of these architectures 
are as follows.

EfficientNet‑B4

The EfficientNet architecture makes full use of three scaling dimensions (including the 
width of the network, the depth of the network and the resolution of the input image) 
to obtain a more suitable network and then to optimize the precision and efficiency of 
the network. Specifically, a wider network could capture finer-grained features and is 
easier to train, but extremely wide for the shallow networks making it difficult to capture 
higher level features. There is a need to coordinate the scales of width and depth. The 

Fig. 15  The data cohorts of the multi-class classification task

Fig. 16  The flowchart of the data preprocessing
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depth of the network affects the ability of extracting the representative features to some 
extent. However, when training the network, the deeper network could lead to gradi-
ent vanishing and then degenerate the performance. The high resolution of the input 
image contributes to the capture of more finer-grained pattern [40]. These dimensions 
are adjusted by a composite coefficient to generate a series of EfficientNet architectures 
(EfficientNet-B0 to B7) and each architecture has parameters from 5.3 to 66 M. There is 
a certain relationship between the different dimensions and thus properly coordinating 
these dimensions is needed for developing a robust network. Among all these architec-
tures, for our classification task, we adopted the EfficientNet-B4 as the backbone of the 
classification model with the width coefficient, depth coefficient, and input resolution of 
1.4, 1.8, and 380. The scaling strategy is shown as (a) in Fig. 18.

ResNet‑18

The “residual block” was proposed in ResNet architecture to efficiently avoid the gra-
dient vanish to some extent and accelerate the training process and this architecture 
obtained the champion in the ImageNet Large-Scale Visual Recognition Challenge 
(ILSVRC) 2015 competition. Specifically, a so-called “short-connection” was imple-
mented between the input and the output of the “residual block” [41]. Here we chose the 
ResNet-18 as the backbone of our classification task and it contains one general convo-
lutional layer, eight “residual block” modules, one pooling layer, and one full connected 
layer. Each “residual block” is the stack of two convolutional layers. The “residual block” 
is shown as (b) in Fig. 18.

VGG‑16

VGG network was proposed in ILSVRC 2014. It claimed to increase the depth of the net-
work by using very small convolution kernels and consisted of a stack of convolutional 
layers, maxpooling layer, and full connection layers [42]. In the family of VGG archi-
tecture, the VGG-16 was chosen and modified for our task and it has 13 convolutional 

Fig. 17  The transfer learning process
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layers, five pooling layers, and three full connected layers. The network structure dia-
gram is shown as (c) in Fig. 18.

Abbreviations
ccRCC​	� Clear cell renal cell carcinoma
chRCC​	� Chromophobe renal cell carcinoma
pRCC​	� Papillary renal cell carcinoma
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MTSCC	� Mucinous tubular and spindle cell carcinoma
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ccpRCC​	� Clear cell papillary renal cell carcinoma
TC-RCC​	� Tubulocystic renal cell carcinoma
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Fig. 18  Details for the CNN frameworks
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