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Pancreatic neoplasms, including pancreatic ductal adenocarcinoma (PDAC), intraductal papillary mucinous neoplasm (IPMN) and
pancreatic cystic neoplasms (PCNs), are the most puzzling diseases. Numerous studies have not brought significant improvements
in prognosis and diagnosis, especially in PDAC. One important reason is that previous studies only focused on differences between
patients and healthy individuals but ignored intratumoral heterogeneity. In recent years, single-cell sequencing techniques,
represented by single-cell RNA sequencing (scRNA-seq), have emerged by which researchers can analyse each cell in tumours
instead of their average levels. Herein, we summarise the new current knowledge of single-cell sequencing in pancreatic neoplasms
with respect to techniques, tumour heterogeneities and treatments.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is one of the most
malignant cancers, with a 5-year survival rate of 9% and nearly no
improvement over recent decades [1]. PDAC is predicted to
become the second major cause of cancer-related deaths in
developed countries by 2030 [2]. The dominant cause of the poor
survival rate is tumour heterogeneity, leading to delayed disease
detection and limited effectiveness of systemic therapies [3]. High
intratumor cell variability is commonly observed in PDACs, which
results from a combination of genetic, epigenetic, and macro-
environmental factors [4]. The loss of specific molecular markers
and various genetic mutations in tumour cells make early
diagnosis and standardised treatment very difficult. Another
feature of PDAC is a complex matrix and stromal cells, including
cancer-associated fibroblasts (CAFs) and immune cells. As a major
component of the extracellular matrix, the deletion of CAFs shows
dramatically opposite effects on PDAC progression; in some
models, it accelerate tumour cell growth, while other models slow
it [5]. Pancreatic cancer is an evolutionary disease that develops
from precancerous lesions to carcinoma in situ and finally to
metastatic disease. Noninvasive precursor lesions include pan-
creatic intraepithelial neoplasia (PanIN), intraductal papillary
mucinous neoplasm (IPMN), and mucinous cystic neoplasm
(MCN), and patients can achieve a favourable prognosis compared
to PDAC if the disease is detected early enough. At present,
because of the low incidence in an unselected population,
screening for pancreatic cancer in an early stage is still difficult
and impractical through existing techniques such as multidetector
CT angiography using a dual-phase pancreatic protocol, MRI,

endoscopic ultrasound, endoscopic retrograde cholangiopancrea-
tography, serum biomarkers CA19-9, CEA, CA125 [6]. In sum,
uncovering each subset cell type in pancreatic neoplasms will
understand their heterogeneity from premalignant lesions to
cancer, and clarifying the interaction between neoplastic or cancer
cells with the tumour stroma and tumour microenvironment may
bring us to a new era of pancreatic neoplasm diagnosis and
treatment.
Traditionally, the most widely used techniques for gene-

expression and molecular profiling analysis include quantitative
PCR, microarrays, and bulk RNA sequencing, which influence the
average transcriptome in all cells from whole bulk tissue. Thus,
huge differences in gene-expression mutations and dysregulation
between different subtypes of tumour cells can be covered,
especially in specimens like PDAC with a high degree of cellular
and transcriptomic heterogeneity [7]. The advent of single- cell
sequencing has solved these limitations by revealing the
transcriptome of every cell in the given sample at a high
resolution and throughput [8, 9]. Single-cell sequencing provides
the analysis of cellular heterogeneity, funding new subtypes of
cells and cellular states, and elucidation of dynamic cellular
transitions during tumour evolution and differentiation [10]. Thus,
single-cell sequencing has had widespread application in the field
of pancreatic neoplasm research.
In this review, we describe the single-cell sequencing workflow

and techniques that have been using in pancreatic neoplasm
research. Then, we summarise findings of cancer cellular hetero-
geneity, circulating tumour cells, cancer-associated fibroblasts,
immune microenvironment, and pancreatic precancerous lesions
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explored by single-cell sequencing, which are expected to
increase our knowledge about pancreatic neoplasms and improve
their diagnosis and prognosis (Fig. 1).

SINGLE-CELL SEQUENCING TECHNIQUES: THE PRINCIPLE AND
PROGRESS
History and basic workflow
The first single-cell RNA sequencing was performed with only a
single-mouse blastomere in 2009, and the researchers detected
the expression of 75% (5270) more genes than microarray
techniques and identified 1753 new splice junctions, which
showed remarkable sensitivity compared with previous methods
[11]. Since then, various single-cell sequencing techniques have
been developed and widely used, particularly in cancer-associated
research. Recently, single-cell sequencing has provided DNA,
mRNA, and protein analysis, although each method has several
differences in detail, all techniques have a common workflow:
preparation of single-cell suspensions, single-cell capture and lysis,
reverse transcription and amplification, library preparation,
sequencing, and analysis [10] (Fig. 2). Despite single-cell RNA
sequencing (scRNA-seq) is the fastest-developing and most widely
used single-cell resolution method, the growing number of analysis
methods (nearly 600 as of July 2022) become a barrier for novices to
choose correct algorithms. In most cases, soft packages, such as
Seurat, scanpy and SINCERA, can provide whole clustering
processes, meanwhile, drawing on the methodology in high-
quality papers is a viable approach. However, a further challenge is
how to validate a correct method could be copied from one class
dataset to other category datasets. In other words, datasets used to
test a method are quite small, which means that the method may
lack universality. This problem appears to be more prominent in
PDAC analysis because the extremely complicated heterogeneity of
PDAC acquires more accurate algorithms and parameters. We

summarise a general and practical approach as a novice tutorial for
scRNA-seq, and then we introduce several analysis techniques,
which have been validated in PDAC research.

Single-cell capture and sequencing methods
The method of how to prepare single-cell suspension has already
well reviewed [12], and the following important issue is choosing
an appropriate capture method. Droplet-based and plate-based
methods are two main strategies. The plate-based technology
isolates cells into wells, while the droplet-based technology
captures each cell through microfluidic droplet. The droplet-
based technology is a high-throughput method but has more
technical noise than the plate-based technology because of its
low-sequencing depth [13]. Therefore, the plate-based method is
preferable when samples have rare cell types.
Based on the strategy of sequencing methods, scRNA-seq

protocols can be divided into full-length protocols (e.g., Smart-seq
[14] and Smart-seq2 [15]), which attempt to sequence full-length
for each transcript, and tag-based protocols (e.g., Drop-seq [16],
MARS-seq [17] and CEL-seq2 [18]), which only sequence 3’-end or
5’-end transcripts and combine with unique molecular identifiers
(UMIs) to reduce the technical noise. At present, the study of cell
atlas is based on the method of UMI methods (e.g., drop-seq)
because of the measurement of a large number of cells (>10,000).
The sequencing depth is recommended about 1 million reads/
cells. Cell atlas usually focus on cells classification and identifica-
tion of marker genes, so the information provided by UMIs is
sufficient. While if we are interested in more biological information
to do transcriptome annotation, different splice forms quantifica-
tion or sequence variants identification, adopting full-length
protocols, especially the Smart-seq2, is more appropriate [19].
In conclusion, choosing strategies of different single-cell

capture and sequencing methods depends on research targets
and the number of cells.
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Fig. 1 Application of single-cell sequencing in PDAC studies. a Heterogeneity of PDAC cancer cells. b The evolutionary process from
precursor lesion to PDAC. c, d Tumour microenvironment contains fibroblast and immune microenvironment. e Targeted therapy is becoming
more and more important because of the poor prognosis of surgery resection. f The heterogeneity and process from CTCs to metastasis.
g Heterogeneity of metastasis is related to lesion location and prognosis.
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Quality control and normalisation
After acquiring gene-expression matrix, the consequent step is
quality control (QC), which applies a filter for removing low-quality
cells and ensure that the data is sufficient for downstream
analysis. However, adjusting the parameters repeatedly may be
necessary when analysing data, because the judgement of
whether data quality is good or not is just based on results of
downstream analysis. Thus, it is beneficial to start with permissive
QC. To remove the effect of count sampling and reduce technical
and biological bias, normalisation and imputation is important.
The most commonly used normalisation method is the linear,
global scaling method, in which counts per million (CPM) is the
simplest method, while Scran [20] has been confirmed to perform
better for batch correction than other tested methods [21, 22]. The
next type of technical bias is dropout. Several tools have been
developed recently to reduce this noise, such as MAGIC [23], scVI
[24], SAVER [25]. The batch effect is also the most common
variation, which results from multiple collection and processing of
samples in one experiment. This phenomenon is prominent in the
10× protocol or when merging data from different studies. The
best way to circumvent batch effects is reasonable designs and
consistent operations, while it is often difficult. Therefore,
bioinformatics techniques including Harmony [26], seurat3 [27],
BBKNN [28] are used for post-sequencing remediation.

Clustering and annotation
Clustering and annotation are the typically steps of any single-cell
analysis. Before clustering, the first step is dimensionality
reduction (DR). Although the gene-expression matrix normally
contains more than 20,000 genes, many of these genes lack
analytical value, for they have zero counts or similar expression
values in all cells. Hence, selecting the top 1000 to 5000 highly
variable genes for subsequent analysis is suitable for most of cases

[29]. Then, the selected expression matrix changes into a low-
dimensional space by performing specialised dimensionality
reduction algorithms. Principal component analysis (PCA) is a
typically liner approach, which is commonly used to investigate
the performance of previous steps (e.g., QC, feature selection and
normalisation). For visualisation purpose, the non-linear dimen-
sionality reduction, including t-SNE [30] and UMAP [31], are the
standard method.
Cell clustering is generally considered as a classical unsuper-

vised machine learning problem. The recommended practice is
that using ĸ-Nearest Neighbour approach to obtain a KNN graph,
and then performing the Louvain algorithm [32] to cluster. The
above steps can be implemented via the Seurat package. After a
successful cell clustering, the upregulated genes were used for
cluster annotation.
Although there is a standard process for cell clustering and

annotation, it is still too difficult for novices to understand and
complete it. First, the DR and resultant clustering are model- and
parameter- depend, which means different models and para-
meters could gain different clustering results, and the annotation
depends on the researcher’s knowledge of molecular markers
[33–35]. Therefore, cell types, especially rare but critical cell types,
may be ignored by investigators without sufficient background
knowledge. Second, the cell types are not actually characterised
by single-cell but cluster, so re- or sub-clustering and re-
annotation are very common but can be time-consuming.
To overcome the above problems, Peng Xie et al. [36]

developed the first scRNA-seq analytical framework named
“SuperCT”, which employed artificial neural-network (ANN)
structures as one of the options of SC and the learning algorithm.
Super CT is more accurate and efficient than other algorithms. For
example, when analysed a KPC mice dataset, the Seurat yielded 12
putative cell clusters, while SuperCT characterised a total of 17 cell
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Fig. 2 The basic workflow of single-cell sequencing. a Gaining bulk fresh tumour samples through surgical resection. b–d First, we should
prepare samples into single-cell suspensions, and next barcoding and library construction is the key step, finally sequencing on the computer.
We can build the platform ourselves or choose the finished products that have been commercialised like 10× Genomics, Smart-seq2, Drop-seq
and so on. e After sequencing, we have huge data to do all kinds of analysis, among which cells clustering, pseudo-time analysis, and genes
analysis are the most basic. Meanwhile, a lot of new algorithms have been developed and single-cell analysis is the most active area.
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types and the primary epithelial tumour cells had been assigned
to the ‘Epithelial’ type successfully. SuperCT has a continual
learning mechanism, and its prediction is independent of the
result of clustering or human interpretation. Meanwhile, insuffi-
ciency of cells and batch effect cannot impede the accurate
characterisation of the cell types. However, SuperCT still has
several drawbacks. The different cell-types identified by the UC
method may be merged as one cell-types and some obvious
clusters were categorised as ‘unknown’ by SC.
Recently, automated cluster annotation has become popular.

The most common issue for automated cluster annotation is that
none of them can provide an exactly correct annotation. For
example, Scamp [37], a widely used approach, can assign new
cells to a known type or reject them into a “unknown” type, while
it is powerless to identify subclusters within this “unknown”
category. Targeting these problems, Zanini et al. [38] developed
an algorithm called ‘northstar’ to classify single-cell transcriptomes
and discover new cell types. When analysed 1622 single cells from
11 pancreatic tumours, northstar annotated cell types differently
and these differences were consistent with the biological
characteristics of the samples as expected. scVI [24] is another
popular package for single-cell analysis. scVI is around 100 times
slower than northstar, and often splits the atlas clusters into
different subcluster or mix them, when performed in the face of
an incomplete atlas. On the contrary, clusters will never be spilt or
merged by northstar. However, northstar may get inaccurate
annotations when similar cell types separate insufficiently. For
instance, the author found that northstar assigned NK cells to
T cells. Therefore, although northstar shows a superior ability to
assign cell types and higher accuracy than scVI and scmap,
manual annotation adjustments are still required after automatic
annotations.
However, it is sometimes difficult to distinguish normal cells

from tumour cells by biomarkers and gene-expression profiles
alone because they often express the same epithelial markers. The
identification of aneuploid copy number profiles is another
effective approach that can be observed in most human tumours
(88%) [39]. Previous methods to calculate copy number profiles,
including inferCNV [40] and HoneyBadger [41], involved low
throughput and higher coverage depth, which was not suitable
for single-cell sequencing data. To solve this problem, Ruli Gao
et al. [42] developed an integrative Bayesian segmentation
approach called copy number karyotyping of aneuploid tumours
(CopyKAT), which can obtain a genomic copy number profile at a
resolution of 5 Mb in high-throughput scRNA-seq data and
delineate the clonal substructure. In this study, CopyKAT success-
fully identified aneuploid tumour cell clusters in 9717 single-cell
transcriptomes from five individuals with PDAC. A remarkable
limitation of CopyKAT is that some paediatric cancers and
hematopoietic cancers have few aneuploid copy number events,
which means CopyKAT may not be suitable. Meanwhile, CopyKAT
cannot provide reliable copy number information due to the
technical variability. This makes CopyKAT incorrect when analys-
ing extremely rare subpopulations.
In summary, tons of algorithms have been developed for

scRNA-seq, while all of them still face several challenges, including
technical, biological and computational challenges [43]. Except for
most common noise like dropouts, doublets and batch effect,
technical confounders also contain mitochondrial RNA, ribosomal
genes, sequencing depth and so on. This noise can mistakenly
identify rare cell subclusters that have no biological significance.
Sometimes, however, these differences may represent the actual
state of cells. For example, dropouts usually result from low-
sequencing depth, which leads to failure report of transcripts; on
the other hand, the cell may not be transcribed and zero is the
true state. Similarly, the biological signature such as cell-cycle
phase, overall RNA content and cell size can confound clustering
analysis. Although many algorithms are developed to handle

these problems, which one should be chosen, how to adjust
parameters and how to interpret analysis results still require the
experience and subjective judgement of the researcher. In other
words, there is no perfect programme, which is suitable for every
task, while there still exists a universally applicable protocol, and
some methods perform better for personality analysis of PDAC.

HETEROGENEITY OF PDAC CANCER CELLS
PDAC has obvious differences in resectable rates and chemother-
apy resistance due to the intratumoral heterogeneity of PDAC
cancer cells. Recently, two main PDAC types have been identified:
one is the classical subtype, which has a higher resectable rate
because of better differentiation, and the other is the basal-like
subtype, which presents worse prognosis and loss of differentia-
tion [44]. Although this binary classification was widely accepted,
people developed more accurate classifications with the applica-
tion of single-cell analysis.

Cancer cells in PDAC in situ
Genomic and transcriptomic studies revealed that various gene
mutations occur in the PDAC progression, including KRAS, TP53,
SMAD4, CDKN2A and other novel recurrent mutations [45]. These
studies suggested that cancer cells in PDAC are not homogeneous
but can be divided into different subclusters. Recently, Peng et al.
[46] generated single-cell RNA-seq profiles from 24 PDAC tumour
samples and 11 normal pancreases, and then identified 10 main
clusters including ductal, acinar, fibroblast, and immune cells. They
clustered two types of ductal cells named type 1 and type 2 cells.
Type 1 ductal cells were demonstrated to be relatively normal
ductal cells, whereas type 2 cells expended in PDAC only were
malignant. Notably, type 2 ductal cells were highly heterogeneous
and were further clustered into 7 subgroups through t-SNE
analysis. Subgroups 3 and 7 could be detected in most patients.
Subgroup 3 was the major and shared population in PDAC
patients, while subgroup 7 was a low population but had
important functions related to cell proliferation and the cell cycle.
Juiz et al. [47] utilised three-dimensional ex-vivo culture [48] to
obtain biopsy-derived pancreatic cancer organoids (BDPCOs) that
only had pure epithelial transformed cells without the presence of
stromal and immune cells. Four different cell clusters were
identified and named C0 to C3 and the aggressiveness of the
four clusters can be ordered from the most to the least as follows:
C1, C0, C3, and C2.
Almost all studies have simply presented static atlas of tumour,

but it is not satisfactory because dynamic evolutions of cancers
may have more biological significance. Recently, Hosein et al. [49]
demonstrated that phenotypic cancer cell heterogeneity is a late
event and an ongoing acinar-to-ductal metaplasia state exists
during the progression of PDAC. Specifically, early neoplastic KIC
cells highly expressed normal pancreatic acinar genes, and cancer
cells of late KIC downregulated normal pancreatic function genes
and upregulated genes associated with ribosome, glycolysis/
gluconeogenesis, and amino acid biosynthesis. This study
provides more evidence from an evolution perspective, while
there is still a lack of studies to uncover heterogeneity changes by
comparing PDAC originating in different sites and before and after
drug therapy [46].
Table 1 presents recent studies of the heterogeneity of primary

PDAC cancer cells [46].

Heterogeneity of metastasis tumour
Multiple omics have validated that epithelial-mesenchymal
transition (EMT) promotes tumour metastasis and therapy
resistance both in PDAC [50] and other malignant tumours [51].
The high percentage of EMT+ tumour cells and basal-like or quasi-
mesenchymal gene-expression subtypes in PDAC is associated
with a worse clinical prognosis [52]. Lin et al. [53] was the first to
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perform scRNA-seq on fresh biopsies from PDAC metastasis and
primary tumours. Despite interpatient differences, tumour cells
can be clustered into two major subclusters: epithelial cells,
which expressed epithelial cell adhesion molecule (EpCAM) and
cytokeratin 19, and cells with EMT characteristics. Based on the
same dataset, Xu et al. [54] clustered five types of ductal cells, in
which type 5 ductal cells were significantly related to EMT. The
type 5 cells expressed marker genes REG4 and CEACAM 5.
Through cell-cell communication and EMT, these cells had a
better metastasis and therapy resistance capacity. These
researches provided robust evidence again that patients with a
high number of EMT+ cells have a poorer survival rate. However,
previous studies have showed that the majority of pancreatic
metastasis cancer are epithelial [55], and it has no effect on
PDAC metastasis in mice with the depletion of EMT driver [56].
Considering EMT is not a simple binary process, but instead a
plastic continuum of partial EMT (pEMT), Carstens et al. [57]
found that the human and KPC mice PDAC cancer cells was a
continuum of over 50 different EMT phenotypes though scRNA-
seq. Then, they demonstrated that inhibition of EMT leads to
epithelial stabilisation, which results in promotion of tumour
metastasis. There are two explanations for this paradox, one is
the metastasis goes through the EMT and TME processes
successively [58, 59], the other is cancer cells at the metastasis
sites have never undergone EMT [56].
Studies on the bulk tissue and cell lines suggested that MEG3, a

LincRNA, was lowly expressed in PDAC and it can inhibit tumour
progression. Nonetheless, Pan et al. [60] demonstrated that MEG3
was highly expressed in a distinct metastatic cancer cell cluster,
and MEG3 enhanced PDAC metastasis. The authors considered
that PDAC tissues have complex cell components while cell lines

cannot fully mimic the PDAC features. The advantages of single-
cell sequencing will be better demonstrated.

IMMUNE MICROENVIRONMENT OF PDAC
Neither traditional surgical approaches nor multidisciplinary can
contribute to long-term prognosis [61]. One of the major reasons
is that the complex immune microenvironment contains macro-
phages, T cells, B cells, natural killer cells, dendritic cells and so on.
Similar to cancer cells, heterogeneous immune cells play a role in
tumour occurrence and development, which is a potential
therapeutic breakthrough point. Table 2 shows the heterogeneity
of immune cells of PDAC.

T cell
Chen et al. [62] identified 11 distinct T-cell types based on specific
cell markers, including CD8+ T cell, CD4+ T cell, Th1/2 cells,
cytotoxic T cells, effector T cells, Tregs, exhausted T cells, and
memory T cells. DUSP4 (a member of the dual specificity protein
phosphatase subfamily) is a significant marker for the diagnosis
and prognosis of PDAC that shows a unique expression pattern in
Tregs and exhausted T cells. Analysed by TCGA database revealed
that the patients with high expression levels of DUSP4 had
obviously worse survival. The major dynamic changes in PDAC
were that the proportion of cytotoxic T cells, effector T cells, Tregs,
exhausted T cells, and memory T cells increased notably with the
progression of PDAC. Moreover, pseudo-time analysis showed that
the order in which T-cell subtypes evolved was naive T cells,
effector T cells, Tregs, and exhausted T cells, which demonstrated
that the T-cell state transition from activation to suppression and
exhaustion gradually with PDAC worsen. Peng et al. [46] also

Table 1. Heterogeneity of primary PDAC cancer cells.

Reference Samples Number of
clusters

Specific genes in each
cluster

Gene functions

Peng et al.
(2019) [46]

24 Human tumours 7 C1: Not listed Detoxification

C2: Not listed Epithelial cell differentiation

C3: Not listed Translation

C4: Not listed Migration-related terms

C5: Not listed d Neutrophil activation

C6: Not listed Migration-related terms and GO terms

C7: CCNB1 CCNB2
MK167 TOP2A

Cell cycle
Cell proliferation

Moncada et al.
(2020) [84]

2 Human tumours 2 C1: TM4SF1 Marker

C2: S100A4 Marker

Juiz et al.
[47] (2020)

20 Biopsy-derived
pancreatic cancer
organoids

4 C0: Low expression of
other clusters’
marker genes

C1:
High expression:
PDE3A
HFM1 DLG2
SLCO5A1
Low expression:
INO80
CSMD1

Phosphodiesterase
Helicase
Encoding a solute carrier organic anion
transporter.
Encoding a component of the telomere
nucleoprotein complex.
A potential tumour suppression gene.

C2: NEAT1 Regulating transcription of genes involved in
cancer progression.

C3: ANKRD36/36C/36B Encoding cell cycle-regulated kinases involved in
microtubule formation or stabilisation at the
spindle pole during chromosome segregation.

This table summarises recent studies of the heterogeneity of primary PDAC cancer cells.
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observed two clusters of CD8+ T cells and three clusters of CD4+

T cells. In contrast to the high level of proliferative ductal markers,
the expression level of T-cell markers was low, and both the
existence of proliferative ductal cells and loss of T-cell activation
resulted in poor prognosis. However, C5-CD8+ cells, which highly
expressed cell-cycle related genes still had proliferating capacities.
As the PDAC progresses, both the proportion of Treg [62] and the
expression of CTLA4 in Tregs [63] are increased. The number of
intratumoral T cells in PDAC, which were treated with anti-CTLA4
antibody was 5 times that of the control group [63]. Compared
with primary cancers, there was no specific T-cell subcluster with
unique function in metastasis cancers, because T cells from
primary cancers and metastasis cancers were mixed together in
study by Wei Lin et al. [53].

B cell
In the early stage of PDAC, no infiltration of B cells was found,
while six distinct subclusters were identified in the PDAC
progression stage. This discovery suggested that B cells infiltrated
the tumour microenvironment gradually and evolved into
different subtypes to play protumor or antitumor functions,
respectively. Interestingly, regulatory B cells were absent and
two main forms of B cells in six populations were plasmacytes and
memory B cells, which highly expressed CD27 [62]. In the KRC
mice, Hosein et al. [63] observed that a small number of B cells
presented in early tumours and a large amount of plasma cells in
KRC moribund stage, while there were only a few plasma cells in
moribund KPC mice. These data indicate that the expansion and
maturation of an adaptive B cell response is diverse in patients
and different mouse models.

Macrophage
The canonical binary classification of macrophages includes
classically activated macrophages (M1) and alternatively activated
macrophages (M2) [64]. However, more subpopulations of macro-
phages have been uncovered by a variety of techniques, especially
single-cell sequencing. Kai Chen et al. [62] revealed 4 distinguish-
able macrophage subpopulations, including M1/M2 macrophages,
tumour-associated macrophages (TAMs), CD169+ macrophages
and TCR+ macrophages. The proportion of M1 macrophages, M2
macrophages and TAMs increased with the development of PDAC;
M1 macrophages were antitumor components, while, M2 macro-
phages and TAM are protumor components. This phenomenon
suggests that PDAC has a complex and contradictory immune
microenvironment. In contrast to tumour-infiltrating lymphocytes
(TILs), Wei Lin et al. [53] found that macrophages from primary and
metastatic tumours clustered separately. Macrophages from
primary tumours exhibit characteristics of M2-like macrophages,
which highly express genes related to the cellular matrix and
late stage of the wound healing-related process. Meanwhile,
macrophages in the metastasis expressed genes related to
antigen-presenting function, such as CD74, FCER1G and MHC I/II-
related genes.

Myeloid-derived suppressor cell
Myeloid-derived suppressor cells (MDSCs) are a group of immune
cells that originate from the bone marrow and suppress immune
response in various diseases including PDAC [65]. Previous studies
demonstrated that over expression of CXCL5, which is a pivotal
chemokine to mediate the cellular composition [66], was
associated with a poor prognosis in PDAC. Hosein et al. [63]
identified that MDSCs were unique population of expressing
CXCL5 receptor and CXCR2 in both the KRC and KPC GEEMs.
Inhibition of CXCR2 increased T-cell infiltration and sensitisation to
ICB. Chen et al. [67] found a specific MDSC subtype, which
expressed high levels of CD206, F4/80, argninase-1, CCL2, and
interleukin-18. These MDSCs were recruited in the low stromal
Col1 microenvironment and induced the expression of CXCL5 and

finally contributed to immunosuppressive microenvironment in
PDAC. Meanwhile, Lee et al. [68] uncovered a type of macro-
phages marked by migration inhibitory factor (MIF). These
macrophages promoted myeloid-derived suppressor cell-
mediated immunosuppression. These findings establish possible
logical links between macrophages infiltration and MDSCs
in PDAC.

FIBROBLASTS IN TUMOUR MICROENVIRONMENT
There is a consensus that fibroblasts especially cancer-associated
fibroblasts (CAFs) play an important role in tumour aggressiveness
and resistance to chemotherapy. CAFs are involved in the formation
of dense stroma in the tumour microenvironment (TME) [69], and
release cytokines and growth factors that regulate the growth of
pancreatic cancer cells and infiltration of immune cells into the TME
[70]. However, with more in-depth researches, the exact functions of
CAFs in PDAC continue to be puzzling. In some PDAC models,
depletion of a specific CAF subpopulation improves antitumor
immunity and suppresses PDAC progression [71], whereas in other
models, depletion of CAFs accelerates PDAC progression [72]. The
major reason is the heterogeneity of mesenchymal cells; therefore,
researchers applied scRNA-seq to address this tissue.
In previous studies, researchers demonstrated two distinct

subtypes of CAFs in PDAC: myofibroblastic CAFs (myCAFs) that
expressed high levels of αSMA, and inflammatory CAFs (iCAFs)
that expressed high levels of cytokines and chemokines. Elyada
et al. [73] found a new subcluster named “antigen-presenting
CAFs” (apCAFs), which expressed genes belonging to the MHC
class II family. Functions of apCAFs were enriched in the pathways
of antigen presentation and processing, fatty acid metabolism,
MYC targets and MTORC1 signalling. Hosein et al. [63] also
observed this unique fibroblast population in KIC mice. In the
latest research, Huang et al. [74] demonstrated that apCAFs
cannot induce full CD4+ T cells activation and clonal expansion,
but induce naive CD4+ T cells into Tregs through IL1 and TGF-β
signalling pathways, because apCAFs lack co-stimulatory mole-
cules. Therefore, it is reasonable to infer that apCAFs can promote
tumour growth. New evidence revealed that apCAFs originate
from mesothelial cells, and wound-associated tumour paracrine
signals from the tumour niche induce the transition from
mesothelial cells to apCAFs, while this transition can be inhibited
by an anti-mesothelin antibody [74]. In addition, when cultured in
a two-dimensional monolayer, apCAFs lost their MHC II expression
and upregulated myCAFs markers [73]. These findings indicate
that apCAFs are a dynamic fibroblast population and require
environmental cues to be maintained as a subpopulation.
Similarly, there is also a debate whether fibroblast activation
protein (FAP)+ CAFs and αSMA+ CAFs are the same population.
McAndrews et al. [75] identified that they were distinct
subpopulations in both human PDAC samples and transgenic
mouse models. They found the αSMA+ CAFs restrained PDAC,
while FAP+ CAFs promoted PDAC. In addition to the hetero-
geneity of cell types, different extents of desmoplasia also affect
prognosis and response to therapy. In previous studies, low
desmoplasia has been shown to contribute to poor prognosis [76],
while others found low density of stroma benefited patients [77].
Wang et al. [78] observed a novel subtype of CAFs with a highly
activated metabolic state (meCAFs) in loose type PDAC. meCAFs
was a double-edged sword, which led to poor clinical outcomes in
PDAC patients but improved immunotherapy responses. Dom-
inguez et al. [79] also identified a specifical TGFβ-driven CAFs,
which specifically expressed LRRC15+, and LRRC15+ CAFs next to
the tumour islets were observed to promote tumour growth. This
phenomenon is consistent with a previous study showing that
TGFβ-associated stroma is correlated with poor prognosis [80, 81].
Table 3 summarises the heterogeneity of fibroblasts in the

tumour microenvironment.

G. Lv et al.

212

British Journal of Cancer (2023) 128:206 – 218



SCRNA-SEQ COMBINES WITH SPATIAL TRANSCRIPTOME
Although single-cell sequencing has unprecedented resolution,
the disintegration of tissue before sequencing results in the loss of
spatial information, which is critical to our understanding of
cellular interactions. More recently, the spatial transcriptomics (ST)
method [82] can provide an unbiased map of expressed
transcripts in a given cryosection. However, ST also has a main
limitation in that ST has a low resolution: each ST spot contains
~10–200 cells depending on the different tissues [83]. Aiming to
address each approach’s limitation, Reuben Moncada et al. [84]
developed a key method “multimodal intersection analysis (MIA)”
to integrate scRNA-seq and ST datasets. MIA computed the
overlap between each pair of cell type-specific and tissue region
specific gene sets, and then, a hypergeometric test was performed
to assess significant enrichment or depletion. Finally, an MIA map
was generated with robust utility to provide spatial and functional
annotations for the scRNA-seq-clustered cell populations. MIA was
further applied in the identification and mapping of cell type
subpopulations across tissue regions. Four ductal subpopulations
were found in PDAC; however, only the hypoxic and terminal
ductal cell populations were significantly enriched in the cancer
region. By mapping distinct malignant populations across PDAC
tissue sections and deconvolving each cell state relationship in the
tumour microenvironment, MIA ultimately uncovered a relation-
ship between cancer cells that express a stress-response gene
module with inflammatory fibroblasts. Thus, MIA can provide a
more comprehensive characterisation of cell types regarding their
native environment and mutual relations.
Intersecting scRNA-seq with ST capture sites is sufficient to

identify normal or cancerous areas and infer cell types; however, it
still lacks the resolution of single cells and capture locations are
cellular heterogeneous in many times. To address these limita-
tions, Elosua-Bayes et al. [85] developed SPOTlight, a deconvolu-
tion algorithm that utilises a nonnegative matrix factorisation
(NMF) regression algorithm and adds prior information to the
model to improve sensitivity and robustness. Moreover, SPOTlight
can unveil cell composition at each capture location by using
nonnegative least squares (NNLS), and a unit-variance normal-
isation step enables it to analyse both paired and unmatched ST
and scRNA-seq data. Performing SPOTlight on the Peng’s [46]
dataset, they also detected the hybridisation of two types of
tumour cells in a cancer region and enrichment of ductal cells with
a hypoxia gene signature. Moreover, SPOTlight shed light on the
distribution of immune cells in the tumour sections and clearly
showed that PDAC also had striking segmentation of immune cell
states similar to the regional distribution of normal and cancer
cells. Preexhausted CD8+ T cells and activated CD4+ T as well as
pro-inflammatory TAMs and proliferative CD8+ T cells were
significantly increased. The above example illustrates the bene-
ficial effect of SPOTlight and that can be used to detect the cell
type location and composition of ST spots.

CIRCULATING TUMOUR CELLS
Compared with canonical screening tests such as fine-needle
aspiration biopsy (EUS-FNA) and imaging diagnosis, liquid biopsy
including circulating tumour cells (CTCs) and circulating tumour
DNA (ctDNA) has huge potential for early diagnosis of pancreatic
cancer. CTCs escape from the primary tumour into the blood-
stream ultimately resulting in distinct metastasis. Consistent with
primary or metastatic cancer cells, CTCs show great heterogeneity.
However, CTCs are extremely rare in the peripheral circulation,
with an estimated one to ten CTCs per 108 normal blood cells in a
millilitre of peripheral blood [86]. Meanwhile, CTCs have low
expression of EPCAM, which makes it difficult to isolate and
identify this rare population. To overcome these limitations,
scientists developed single-cell analysis and other supporting
techniques to investigated CTCs of PDAC.Ta

bl
e
3.

H
et
er
o
g
en

ei
ty

o
f
fi
b
ro
b
la
st
s
in

tu
m
o
u
r
m
ic
ro
en

vi
ro
n
m
en

t.

R
ef
er
en

ce
Sa

m
p
le
s

N
um

b
er

of
cl
us
te
rs

Sp
ec
ifi
c
g
en

es
in

ea
ch

cl
us
te
r

G
en

e
fu
n
ct
io
n
s

C
h
en

et
al
.(
20

21
)
[6
2]

11
H
u
m
an

tu
m
o
u
rs

3
C
la
ss
ic
al

C
A
Fs
:C

O
L1
A
1
LU

N
1
M
M
P1
1
FA

P
SF
RP

2
In
vo

lv
in
g
in

ex
tr
ac
el
lu
la
r
m
at
ri
x
d
ep

o
si
ti
o
n
.

cs
C
A
Fs
:C

3
C7

CF
B
CF

D
CF

H
CF

I
R
eg

u
la
ti
n
g
im

m
u
n
e
an

d
in
fl
am

m
at
io
n
re
sp
o
n
se
.

Pa
n
cr
ea
ti
c
st
el
la
te

ce
lls
:R

G
S5

A
D
IR
F
CR

IP
1

N
D
U
FA

4L
2
N
O
TC

H
3
PD

G
FA

M
ar
ke
rs

El
ya
d
a
et

al
.(
20

19
)
[7
3]

6
H
u
m
an

tu
m
o
u
rs

2
IC
A
Fs
:I
L6

IL
8
CX

CL
1
CX

CL
2
CC

L2
CX

CL
12

M
ar
ke
rs

m
yC

A
Fs
:α

SM
A

M
ar
ke
rs

4
K
PC

tu
m
o
u
rs

3
iC
A
F:

Co
l1
4a

1
En

co
d
in
g
h
ya
lu
ro
n
an

sy
n
th
as
e
H
as
1
an

d
sp
ec
ifi
c
co

lla
g
en

s

m
yC

A
Fs
:

A
ct
a2

Ta
gl
n

Ig
fb
p3

Th
y1

Co
l1
2a

1
Th
bs
2

Sm
o
o
th

m
u
sc
le

g
en

es
M
ar
ke
rs

ap
C
A
Fs
:

H
2-
A
a
H
2-
A
b1

Cd
74

Sa
a3

Sl
pi

B
el
o
n
g
in
g
to

th
e
M
aj
o
r
H
is
to
co

m
p
at
ib
ili
ty

C
o
m
p
le
x
(M

H
C
)

cl
as
s
II
fa
m
ily
.

im
p
lic
at
ed

as
a
p
ro
-t
u
m
o
ri
g
en

ic
fa
ct
o
r
in

p
an

cr
ea
ti
c.

id
en

ti
fi
ed

as
a
p
ro
-in

fl
am

m
at
o
ry

g
en

e.

Li
n
et

al
.(
20

20
)
[5
3]

10
H
u
m
an

tu
m
o
u
rs

3
C
0:

PO
ST
N
M
M
P1
1

R
ep

re
se
n
ti
n
g
m
yo

fi
b
ro
b
la
st
s.

C
1:

n
o
t
lis
te
d

A
ss
o
ci
at
ed

w
it
h
q
u
ie
sc
en

t
C
A
Fs
.

C
2:

RG
S5

N
O
TC

H
3
CS

RP
2

R
es
em

b
lin

g
sm

o
o
th

m
u
sc
le
s
ce
lls
.

Th
is
ta
b
le

su
m
m
ar
is
es

th
e
h
et
er
o
g
en

ei
ty

o
f
fi
b
ro
b
la
st
s
in

th
e
tu
m
o
u
r
m
ic
ro
en

vi
ro
n
m
en

t.

G. Lv et al.

213

British Journal of Cancer (2023) 128:206 – 218



To better gather and isolate circulating tumour cells from KPC
mice, David et al. [87] applied an inertial focusing-enhanced
microfluidic device (CTC-iChip), which effectively eliminated
normal blood cells, and enhanced the CTC concentration to 118
CTCs/ml. Finally, they generated a total of 75 CTCs of sufficient
quality for further analysis and found that they formed three
major CTC clusters named “classical CTC” (CTC-c), CTC-plt and CTC-
pro. CTC-c had highest percentage (55%), while CTC-plt (32%) and
CTC-pro (13%) were characterised by platelet derived markers and
proliferative signatures, respectively. Further analysis of CTC-c
showed that two sets of genes were highly expressed compared
with primary tumours; one set was stem cell-associated genes
such as Aldh1a2, Klf4, Igfbp5 and Dcn, and the other was
extracellular matrix (ECM) genes, especially core matrisome
protein (SPARC) genes. In addition, CTC-c cells lost the epithelial
markers E-cadherin (Cdh1) and Muc1. These transcript changes
contributed to CTC generation, survival, and metastasis. Similarly,
Morten Lapin et al. [88] used a multimarker negative depletion
strategy [89] to analyse CTCs from human peripheral blood and
generated epithelial-like CTC clusters (CTC-E) and mesenchymal-
like CTC clusters (CTC-M). High SPARC expression was also
detected in all CTCs, and notably, CSC markers, including CD24,
CD44, and ALH1A1, were highly expressed and related to high
metastatic potential. After combining and analysing publicly
available datasets of CTCs, Lei Zhu et al. [90] found the novel
biomarker GAS2L1. In the murine pancreatic CTC dataset
GSE51372-75, GAS2L1 successfully identified 70 cells from a total
of 73 cells, and the sensitivity was 93.3%. Meanwhile, in the
human pancreatic CTC dataset GSE60407-7, 3 cells were identified
from 7 cells. This result indicated that, similar to other known CTC
biomarkers, GAS2L1 can identify only a subset of CTCs. However,
when combined with another marker, EPCAM, the sensitivity
distinctly increased to 97.3% and 100%, respectively. Thus,
GAS2L1 combined with EPCAM may be a potential strategy in
identifying pancreatic CTCs. Dimitrov-Markov et al. [91] observed
high expression of antiapoptotic genes, including BIRC5 (survivin),
which plays an important role in the early stage of cancer cell
culture. Further studies found that both BIRC5 knockdown and the
BIRC5 inhibitor YM155 can induce cell death, decrease tumour
burden, and improve prognosis.

PRECURSOR LESIONS OF PDAC
Surgical resection remains the only curative option for pancreatic
cancer. However, only 10-15% of newly diagnosed patients have
opportunities for surgery [92]. PDAC is an evolutionary disease
that takes ~11 years for PDAC precursor lesions to evolve into
infiltrating cancer and an additional 6.8 years to evolve into
distant metastasis [93]. Therefore, the patient has enough time to
be operated on before the disease becomes malignant and gains
a prominently enhanced prognosis. scRNA-seq is a powerful
method that can be used to profile the complex evolution
processes for precursor lesions in PDAC and find new potential
markers and therapeutic targets.

Intraductal papillary mucinous neoplasms (IPMNs)
IPMNs, the most common cystic neoplasms, are a bona fide
precursor to PDAC [94]. Most IPMNs harbour low-grade
dysplasia (LGD) and high-grade dysplasia (HGD), and can even
harbour invasive components (PDAC). Bernard et al. [95]
analysed pancreatic tumours in different stages, including 2
PDACs, 2 HGD-IPMNs, and 2 LGD-IPMNs. LGD lesions present
with a small population of cells with high expression of
proliferation-related genes; 8.9% of epithelial cells had the
same transcript and phenocopy features as HGD-IPMNs, and
1.2% of cells presented with features of pancreatic cancer. As
the disease became more malignant, the proportion of
cytotoxic T cells, CD4+ T cells, and B cells decreased, while

the proportion of myeloid-derived suppressor cells increased.
This study indicated that not only neoplastic cells but also the
microenvironment play a role in pancreatic tumour evolution.
Yuko Kuboki et al. [96] observed that IPMNs had significant
intratumoral heterogeneity after analysing 10 IPMNs. Seven
IPMNs shared KRAS and/or GNAAS mutations, while 2 IPMNs
had two different KRAS mutations, which suggests that IPMNs
had multiple independent origins and genetic heterogeneity.
Meanwhile, in addition to KRAS and GNAS mutations, three
IPMNs presented with RNF43 mutations, and one IPMN
harboured three distinct ARID1 mutations. Therefore, the
mutation of KRAS and GNAS is an early event resulting in
IPMNs, and other gene mutations, such as RNF43 and ARID1A,
induce IPMNs to transform into malignancies.

Acinar to ductal metaplasia
A previous study demonstrated that acinar to ductal metaplasia
leads to the formation of pancreatic intraepithelial neoplasia
(PanIN) and is a principal mechanism for PDAC formation [97].
Schlesinger et al. [98] created posttamoxifen injection (PTI) mice at
six different time points by injecting tamoxifen into PRT mice.
They defined mice after 3 months PTI or later as later-stage
samples because clear PanINs can be observed. In later-stage
pancreases, three distinct epithelial cell types were clustered,
including acinar cells, ductal cells, and metaplastic cells. Meta-
plastic cells expressed high levels of acinar cell markers, such as
tdTomato, but expressed low levels of classical acinar enzymes.
Compared with acinar and ductal cells, transcription factors (TFs)
correlated with tumour growth were significantly and highly
expressed in metaplastic cells, including Id1, Id3, Runx1, Onecut2,
and Foxq1 [98]. Notably, Onecut2 and Foxq1 were only expressed
in late metaplastic cells and correlated with worse outcomes in
PDAC patients. Finally, compared with each stage of cells,
researchers found that Marcksl1, Mmp7, and Igfbp7 were potential
biomarkers for early PDAC diagnosis.

THE ROLE OF SCRNA-SEQ IN TUMOUR THERAPY
Although surgical resection is the only cure for pancreatic cancer,
the rate of resection and prognosis of PDAC are disappointing. To
identify new therapeutic targets, scRNA-seq has been widely used
to uncover mechanisms for the development and metastasis
of PDAC.

Combination with ICPis
Previous studies have demonstrated that immune checkpoint
inhibitors (ICPis) have extensive efficacy in many malignancies;
however, they have not shown activity in PDAC [99, 100] and may
be related to the tumour macroenvironment (TME), especially
immune cells, in PDAC [101, 102]. Pan et al. [103] discovered that
PDAC patients with high tumour-infiltrating macrophages and
high tumour expression of CD47 had poor clinical outcomes.
Researchers applied anti-treatment in syngenetic mouse models
and found that CD47 blockade alone suppressed tumour growth
in Panc02 cells but not MPC-83 cells. Interestingly, when
combined with anti-PD-L1, the tumour burden decreased in
MPC-83 cells. Their scRNA-seq data demonstrated that intratu-
moral macrophages and lymphocytes were obviously remodelled
by anti-CD47 treatment. In all models, pro-inflammatory macro-
phages were increased, and anti-inflammatory macrophages were
reduced, while several key immune activating genes that were
highly expressed in MPC-83 only included Arg1, Pdcd1, Gzmb,
Nos2, and Ifit3.
Similarly, PDAC models are resistant to CDK4/6 inhibitors,

although KRAS, which dominates pancreatic cancer gene muta-
tions, influences the cell cycle through the activation of CDK4/6
kinases [104–106]. Knudsen et al. [107] found that the combina-
tion of MEK inhibitors enhanced the response to CDK4/6 inhibitors
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in PDAC. Through scRNA-seq, they uncovered that this combina-
tion had an obvious effect on altering myeloid populations and
inducing T-cell infiltration. This finding suggests that this
combination treatment potently cooperates with ICPis in RAS-
driven PDAC.

Controlling metastasis
Dimitrov-Markov et al. [91] used scRNA-seq and found that CTCs
highly expressed BIRC5 (survivin), which is a member of the
inhibitor of apoptosis protein (IAP) family. Then, they demon-
strated that the survivin inhibitor YM155 or survivin knockdown
decreased the metastatic burden in PDX models. In addition,
cancer cells highly expressed REG4 and CEACAM5 may respond to
TGF-β inhibitors [54], since TGF-β molecular blockaders have been
demonstrated to reprogramme the contexture of TME and
reshape the anti-cancer immunology [81, 108].

Radiofrequency ablation
Radiofrequency ablation (RFA) is an effective therapy for
metastasis because RFA may release tumour antigens that elicit
a systemic adaptive immune response against tumours [109].
However, the changes in the non-RFA sides after RFA treatment

are still unknown. Fei et al. [110] found that the formation of
immune cells in non-RFA tumours changed sharply, leading to
decreased immunosuppressive cells and increased functional DCs,
CD4+ , and CD8+ T cells. Unfortunately, the infiltration of
CD8+ PD-1+ T cells increased, and the expression of PD-1 and
LAG3 was upregulated at the same time. These data suggested
that RFA combined with immune checkpoint inhibitors may
overcome T-cell exhaustion and enhance the efficiency of RFA in
distant tumours.

CONCLUSION
Pancreatic neoplasms, especially PDAC, remain the most complex
and malignant disease due to their high heterogeneity. Single-cell
sequencing benefits from its single-cell resolution and has
become the most appropriate approach to uncover the under-
lying mechanisms of PDAC. Several frameworks and algorithms of
single-cell sequencing have been applied, such as CopyKAT, MIA,
and SPOTlight, among which scRNA-seq combined with the
spatial transcriptome has presented more obvious advantages.
scRNA-seq enables rapid determination each cellular gene-
expression patterns of thousands of individual cells. By using this
emerging sequencing technology, scientists have revealed high
heterogeneities in cancer cells, the tumour environment, circulat-
ing tumour cells, and the progression from precancerous lesions
to PDAC. Immune checkpoint inhibitors (ICPis) have shown
cooperates in many cancers; however, PDAC is still resistant to
them. Recent studies found that a few new targets and inhibitors
had an obvious ability to suppress PDAC growth when they were
combined with ICPis. In conclusion, single-cell sequencing
provides us with novel insights into intratumoral heterogeneity,
subclusters identification, unique genes mutations, and dynamic
evolution in PDAC. However, some shortcomings limit its large-
scale use. As a high-throughput protocol, scRNA-seq only captures
a fraction of molecules, ranging from 5% to 20% RNA physically
present in cells. Meanwhile, enzymes used to obtain single-cell
suspensions can degrade RNA, which is more pronounced in
PDAC. The batch effect is frequently observed as samples are
collected at different periods. These technical noises mentioned
above generate bias and make it more difficult to differentiate rare
cell types. Meanwhile, there are many algorithms and paraments
for single-cell analysis that make novices too difficult to choose a
correct combination. Another limitation is the expensive cost of
experiments. Ziegenhain et al. [19] summarised a clear list of cost
of each scRNA-seq protocol.
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