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CXCR1/2 dual-inhibitor ladarixin reduces tumour burden and
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BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with few therapeutic options available.
Despite immunotherapy has revolutionised cancer treatment, the results obtained in PDAC are still disappointing. Emerging
evidence suggests that chemokines/CXCRs-axis plays a pivotal role in immune tumour microenvironment modulation, which may
influence immunotherapy responsiveness. Here, we evaluated the effectiveness of CXCR1/2 inhibitor ladarixin, alone or in
combination with anti-PD-1, against immunosuppression in PDAC.
METHODS: A set of preclinical models was obtained by engrafting mouse PDAC-derived cells into syngeneic immune-competent
mice, as well as by orthotopically transplanting patient-derived PDAC tumour into human immune-system-reconstituted (HIR) mice
(HuCD34-NSG-mice). Tumour-bearing mice were randomly assigned to receive vehicles, ladarixin, anti-PD-1 or drugs combination.
RESULTS: CXCR1/2 inhibition by ladarixin reverted in vitro tumour-mediated M2 macrophages polarisation and migration. Ladarixin
as single agent reduced tumour burden in cancer-derived graft (CDG) models with high-immunogenic potential and increased the
efficacy of ICI in non-immunogenic CDG-resistant models. In a HIR mouse model bearing the immunogenic subtype of human
PDAC, ladarixin showed high efficacy increasing the antitumor effect of anti-PD-1.
CONCLUSION: Ladarixin in combination with anti-PD-1 might represent an extremely effective approach for the treatment of
immunotherapy refractory PDAC, allowing pro-tumoral to immune-permissive microenvironment conversion.

British Journal of Cancer (2023) 128:331–341; https://doi.org/10.1038/s41416-022-02028-6

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is one of the most
aggressive and lethal malignancies for which no effective
pharmacological treatments are currently available. For most
PDAC patients, the prognosis is extremely poor because of the
advanced stage at diagnosis and the scarce response to
conventional chemotherapy and radiotherapy [1]. Unfortunately,
also novel immunotherapies targeting the immune checkpoints T-
lymphocyte-associated protein 4 (CTLA-4) and programmed cell
death protein 1 (PD-1) have failed so far to show meaningful
clinical benefit in unselected patients with PDAC [2–4], and this is
primarily due to the fact that PDAC is characterised by an
immunosuppressive tumour microenvironment (TME) that can
hinder immunotherapy effects [5].
Although PDAC is generally considered an immune “cold”

cancer, different PDAC tumour subtypes have diverse immune
TME that might differentially influence immunotherapy respon-
siveness and thus patient survival [6, 7]. Key factors in determining

the immunogenicity of PDAC subtypes, and thus their response to
immunotherapy, are macrophages recruited to the tumour to
become tumour-associated macrophages (TAMs). In response to
specific factors in the TME, TAMs can rapidly switch between
antitumor (M1) or immunotolerant (M2) phenotype. PDAC
subtypes characterised by higher levels of M1 TAMs show a more
positive response to immunotherapy with longer overall survival,
whereas subtypes with higher levels of M2 TAMs display reduced
immunotherapy response and a shorter survival [8].
CXCL8 (IL-8) is one of the primary chemotactic factors that

regulates the biology and functions of neutrophils acting through
its primary receptors CXCR1 and CXCR2 on their surface [9]. In
tumours, IL-8 and its receptors CXCR1-2 have been shown to
foster progression through different mechanisms, including
impairing antitumor immunity by recruiting myeloid-derived
suppressor cells and neutrophils to the TME [10, 11]. Moreover,
level of circulating IL-8 has been linked to immunotherapy
response [12–16]. Therapeutic blockade of CXCR1 and CXCR2 in
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tumour preclinical models has been shown to favour anticancer
immune responses by inhibiting recruitment and accumulation of
immunosuppressive tumour-associated neutrophils (TANs)
[11, 17].
While the effects of IL-8 and its inhibition on TANs have been

widely investigated, little is still known about the effects that IL-8/
CXCR1-2 axis inhibition can have on TAMs and, especially, on how
these effects might potentially affect PDAC pathology and
treatment. Here, we evaluated the effectiveness of a dual
CXCR1/CXCR2 inhibitor (ladarixin), given alone or in combination
with anti-PD-1, against immunosuppression in immunocompetent
PDAC mouse models with distinct degrees of immune coldness,
focusing on its effects on macrophage recruitment and polarisa-
tion. As crucial limitations have emerged studying the biology of
the IL-8/CXCR pathway in murine animal models [18], we then also
evaluated the effects of the different treatments in a patient-
derived xenograft (PDX) model from a PDAC patient sample
transplanted in human immune-reconstituted (HIR) mice. Indeed,
humanised mouse models have proved to be a key tool to study
immunotherapy response [19–21].

METHODS
Cell lines and materials
Cell lines were kindly provided by Dr. D. Tuveson’s lab, at Cold Spring
Harbor Laboratory (New York, USA) and Dr. P. Cappello’s lab, at CeRMS
laboratory (Turin, Italy), and were maintained in their original culturing
conditions [22–24]. hi cells were daily checked by morphology and
routinely tested to be mycoplasma free by PCR assay. Ladarixin was
provided by Dompè Farmaceutici spa (Milano, Italy). Murine anti-PD-1 and
the relative control were purchased from Leinco Tech (Fento, MO, USA).
Nivolumab was from Bristol–Myers Squibb.

Cell proliferation
In total, 1.0 × 103 cells/well were seeded in 96-well plates. At the indicated
hours, sulforhodamine B (SRB) (Sigma-Aldrich, St. Louis, Missouri, USA)
assay was used to obtain relative estimates of viable cell number according
to manufacturer instructions.

RNA isolation and quantitative RT-PCR assay
RNA was obtained using TRizol reagent (Invitrogen Corporation, Carlsbad,
California, USA) according to the manufacturer’s instructions. The cDNA
was evaluated for real-time PCR with QuantStudio 3 (Thermo Fisher
Scientific, Waltham, Massachusetts, USA) using a specific primer and SYBR
Green. QuantiTect Primer Assays (Qiagen, Hilden, Germany) were used to
quantify mouse cDNA levels of Arg1, CD80, CD86, CXCR1 and CXCR2. Gene
expression was calculated using 2−DDCT method and normalised to β-actin
expression.

Bone marrow-derived macrophage isolation, migration and
attraction assays
Bone marrow-derived macrophages (BMDMs) were differentiated in vitro as
previously described [25]. Briefly, bone marrow precursors were flushed
from long bones of C57BL6 mice and cultured in RPMI supplemented with
10% heat-inactivated-FBS, in the presence of 100 ng/ml of mM-CSF
(Miltenyi, Bergisch Gladbach, NRW, Germany) for 7 days with medium
change after 4 days. At day 7, adherent cells were cultured with
conditioned medium from tumour cells or with complete media containing
specific cytokines for macrophages polarisation as control (M1: 100 ng/ml
LPS; M2: 10 ng/ml mIL-4, 10 ng/ml mIL-13) (Miltenyi, Bergisch Gladbach,
NRW, Germany). At day 10, cells were harvested and analysed for qRT-PCR.
Migration of macrophages was evaluated by wound-healing assay.

Macrophages were scratched, washed gently with cold PBS 1X, cultured
with conditioned medium from the indicated cancer cell lines and treated or
not with ladarixin (10 μM). Photographs of at least five different points were
taken using phase contrast microscopy immediately and after the indicated
time. The attraction of macrophages by cancer cells was evaluated by using 2
well silicone inserts (Ibidi, Gräfelfing, Germany) with a defined cell-free gap to
create co-culture of tumour cells and macrophages that shared medium. Co-
cultures were treated or not with ladarixin (10 μM), and attraction of
macrophages was assessed after the indicated time.

Syngeneic PDAC mouse models
To generate syngeneic orthotopic PDAC cancer-derived graft (CDG) mouse
models, female recipient C57BL6/J mice (4–6 weeks old) were injected with
murine pancreatic cancer cell derived from KPC (LSL-Kras G12D/+; Trp53fl/+;
Pdx1-Cre) and KC (LSL-Kras G12D/+; Pdx1-Cre) engineered mice that
spontaneously develop PDAC. The injection of pancreatic cancer cells was
performed as previously described [26, 27]. Cancer cells were resuspended in
1:1 dilution of Matrigel and cold PBS and were subcutaneously injected on
the animal flank. The injection was considered successful by the develop-
ment of bubble without signs of leakage. Following weekly manual palpation
starting 10 days following transplantation, tumour-bearing mice were
measured by a calliper.
Tumour-bearing mice received Ladarixin (15mg/kg, i.p. daily for

2 weeks), anti-PD-1 (6 mg/Kg or IgG, i.p. twice a week for 2 weeks) as
single agents or in combination settings. Ladarixin dosage was chosen
based on previous studies that described pharmacokinetics, pharmacody-
namics and pharmacological characterisation of this compound [28, 29].
PBS ang IgG (15 mg/kg, i.p. daily for 2 weeks) were used as control. No

significant body weight differences were detected upon treatments. The
methods for animal study followed the ARRIVE guidelines 2.0 [30].

Orthotopic human immune-system reconstituted (HIR)
patient-derived xenograft (PDX) mouse model
To establish the HIR-PDX model, we selected an immunogenic subtype
tumour (according to Bailey et al. classification) [31] from ARCNET Tissue
Biobank (University of Verona) showing a compatible HLA with HIR mouse
models (HuCD34-NSGTM) (Jackson Laboratory, USA). We matched PDAC
patient and CD34 donor according to HLA-DR allele, which contributes
most to graft survival in organ transplantation [32]. HIR-PDX mice were
obtained through a two-steps process: (1) increase of patient tumour in
SCID mice, and (2) implantation of tumour in CD34 Human Immune
Reconstituted (HIR) NSG mice” (huNSG-mice).
Briefly, to increase pancreatic cancer tissue, tumour from the patient was

reduced into small pieces (2–3mm) and implanted s.c. in the flanks of
immunodeficient (SCID) mice (n= 3) (Taconic, Germantown, NY) and
propagated by serial transplantation. Mice were monitored for health
(body weight) and tumour growth. Mice were euthanized, and subcuta-
neous tumours were aseptically harvested when a volume of 1000mm3

was reached, according to Institutional Animal Care and Use Committee
guidelines. A subsequent new generation of xenograft models (PDX) were
obtained by orthotopic implantation of tumour cells in the pancreas of
“CD34 Human Immune Reconstituted NSG mice” (huNSG-mice) to obtain
the HIR-PDX mice (n= 20). Briefly, an incision was made in the left
abdominal side at the level of the spleen. Cancer cells were resuspended in
1:1 dilution of Matrigel and cold PBS and were injected into the tail region
of the pancreas using insulin syringes (25 Gauge). The injection was
considered successful by the development of bubble without signs of
leakage. The peritoneum was sutured with short-term absorbable suture
(Vetsuture), and the skin was closed with wound clips. Mice were randomly
assigned to different treatment groups. Following weekly manual
palpation starting 10 days following transplantation, tumour-bearing mice
were subjected to high-contrast ultrasound screening once a week using
the Vevo 2100 System with a MS250, 13–24MHz scanhead (Visual Sonics,
Inc, Amsterdam, NL). In order to determine the early response to
treatments, after eleven weeks, a HIR-PDX mouse of each group (n= 5)
was euthanized by carbon dioxide inhalation. Tumour tissue of each
mouse was collected for molecular characterisation by IHC analysis. All
treatment groups of HIR-PDX mice were monitored for tumour growth to
determine treatments responses. At reaching of cut-off, mice were
euthanized, and abdominal cavity opened for direct visualisation of
tumours. Tumour tissue of each mouse was collected for IHC as described
above. The mice were euthanized using carbon dioxide inhalation when
evidence of advanced bulky disease or ascitic abdominal swelling
developed, and this was considered the day of death for the purpose of
survival evaluation.

Immunohistochemistry and haematoxylin–eosin (H&E)
staining
Tissue sections were subjected to H&E, and immunohistochemical staining.
A pathologist, who was blinded to treatment allocation of the mice,
reviewed the H&E-stained slides of cancer tissues. The following antibodies
were used for immunohistochemical staining with established procedures:
for murine tissue IHC analysis: CD3 (ab56313), CD11b (ab133357),
granzyme (ab53097), CD8 (ab217344), CD68 (ab283654); for human tissue
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IHC analysis: CD68(ab213363), CD3 (ab52959), CD8 (ab237710), PRF1
(ab75573) from Abcam (Cambridge, UK). Ki67 (D3B5, 9129s) from Cell
Signaling Technology (CST, Danvers) was used for both animal and human
tissues.

Flow cytometry analysis of tumour-infiltrating immune cells
Flow cytometry-based immune phenotype of tumours was performed
according to already published protocols [33]. One million of cells were
stained with the appropriate antibodies: T cells, CD45+ CD3+; Macro-
phages, CD45+, CD11b+, f4/80+; NK cells, CD45+ CD49b+. Antibodies: CD3
(FITC, 100204), CD45 (BV421, 103134), CD86 (PE, 105106) CD11b (PERCP,
101228) from Biolegend (Biolegend, San Diego, California, USA), F4/80 (48-
4801-82) from ebioscience (Thermo Fisher Scientific, Waltham, Massachu-
setts, USA). Samples were acquired on a FACS Canto II (BD Biosciences, San
Jose, California, USA) and analysed with FlowJo software (FlowJo LLC,
Ashland, Oregon, USA).

RNA-sequencing (RNAseq)
RNA integrity number (RIN) was measured on an Agilent Bio Analyzer
2100 system. Only RNA samples with a RIN > 7 were used for cDNA library
construction. All cDNA libraries were sequenced using paired-end strategy
(read length 150 bp) on an Illumina HiSeq 2000 platform.
Quality of raw reads was checked with FASTQC. Transcripts were

quantified with the alignment-free method implemented in Salmon 0.11.3
[34]. Mouse genome and transcriptome from Genecode Release M18
(GRCm38.p6) were used. Differential expression analysis was performed
with NOISeq R package [35]. Gene Set Enrichment analysis of deregulated
genes was performed using enrichR package [36].

Statistical analysis
Differences in survival duration were determined using a log-rank test. All
statistical tests were two-sided, and a P value less than 0.05 indicated
statistical significance. All statistical analyses and Kaplan–Meier curves
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were performed using GraphPad Prism 5 software (GraphPad Software,
San Diego, CA). For differential expression analysis with NOISeq package
we filtered out the genes with a log2 fold change <1.5 and a variance
difference (Cohen’s d) <0.85. For the enrichment analysis, only the
pathways with a FDR > 0.05 were considered. Mice sample size estimation
was based on our previous papers [24, 26, 37].

RESULTS
PDAC CDG mouse models recapitulate the human
transcriptomic and immunological features
To evaluate the potential therapeutic effects of CXCR1/2 inhibition
in different PDAC subtypes, we took advantage of our previously
described in vivo cancer models which resemble human PDAC
subtypes and display high-, low- and no- immunogenic potential
based on the ability of these cells to evoke an immune response
when orthotopically implanted in syngeneic recipient mice [24].
CDGs with different immunogenic and molecular features

(Fig. 1a) were obtained injecting PDAC-derived cell lines into the
pancreas of recipient syngeneic C57BL6/J mice and observed until
evidence of tumour bulk formation. Notably, IHC analysis of
MicroSatellite Instability (MSI) markers demonstrated that all
models were microsatellite stable (data previously published) [24].
By cytofluorimetric analysis, we then characterised each excised

tumour for immune features and confirmed that models with best
prognosis (DT4313 and DT6606) were also those that retained the
ability to evoke a moderate immune response, while models with
worst prognosis (FC1245 and CR705) displayed no-immunogenic
potential. In particular, these latter more-aggressive models
displayed a lower percentage of T and NK cells with respect to
the others (Fig. 1b). Moreover, bulk RNA-seq analysis of both
orthotopic (Fig. 1c) and subcutaneous (Supplementary Fig. 1)
tumours with high-, low- and no-immunological potential showed
a marked increase of markers of M1 macrophages polarisation
(Stat1, Nos2, Socs3, Cxcl9, Cxcl10, Cxcl11, IFNγ) in high-
immunological potential CDGs compared to the others.
Altogether these data demonstrated that high percentage of

M1 TAMs and the existence of a high-immunogenic potential are
strictly correlated with a better prognosis in our models.

In vitro characterisation of Ladarixin effects
Ladarixin affects tumour-mediated M2 polarisation and migration of
bone marrow-derived macrophages (BMDM). We have recently
demonstrated that pancreatic neoplastic progression is associated
with an increased accumulation of macrophages [37]. Thus, we
investigated whether tumour-secreted factors in conditioned
medium from our models (Fig. 2a), as well as the direct co-
culture of BMDM and PDAC cells (Fig. 2b), can affect macrophage

migration, and tested the potential effects of ladarixin treatment
in these contexts. In both cases, we observed that macrophages
had similar migration and attraction rates when stimulated with
conditioned medium from CDG cells with different immunological
potential or co-cultured with them, and notably, CXCR1/2
inhibition by ladarixin reverted these effects (Fig. 2a).
As no significant differences were observed in the ability of

different CDG cell types to induce the migration of macrophages
or to attract them, we then tested the capability of CDG-secreted
factors to influence M1/M2 macrophage polarisation. C57BL6
BMDM were thus cultured with conditioned medium from CDG
cell lines using LPS and IL-4/IL-13 as positive controls of M1 and
M2 polarisation, respectively. Real-Time qPCR analysis showed that
conditioned medium from high-immunogenic, less-aggressive
DT4313 model clearly induced a macrophage switch toward an
anti-tumour M1 phenotype (high CD86 and CD80, low ARG1),
while conditioned medium from low- or no-immunogenic, more-
aggressive FC1242 and FC1245 models directed the switch toward
an M2 phenotype (Fig. 2c). Treatment with ladarixin was able to
revert this M2 macrophage polarisation, and, notably, in FC1245
ladarixin also significantly induced the expression of both M1
markers CD86 and CD80 (Fig. 2d).
To investigate the possible direct effects of ladarixin on tumour

cells, CDG cell lines were treated in vitro with increasing doses of
ladarixin for 72 h and analysed for proliferation and migration
ability. Although CXCR1 and CXCR2 are expressed also on tumour
cells (data not shown), ladarixin treatment did not affect cancer
cell proliferation (Fig. 3a) and influenced spontaneous migration
of only DT4313 (Fig. 3b). To investigate possible effects of a
CXCR1/2 agonist on CXCR1/2 expression on tumour cells, CDG cell
lines were treated in vitro with IL-6 (100 ng/mL) and analysed for
expression at specific timepoints. Although CXCR1 and 2 are
poorly expressed in cancer cells (difference in expression with
b-actin of about 20 cycles DCT= 17–20), IL-6 slightly affected their
expression (Supplementary Fig. 2).

In vivo characterisation of Ladarixin effects in PDAC models
Ladarixin induces tumour shrinkage in CDG PDAC mouse models
promoting a suppressive to permissive immune transition and
increasing anti-PD-1 treatment efficacy. To evaluate whether
CXCR1/2 inhibition by ladarixin could reduce tumour growth
and ameliorate the immune state of PDAC models with different
immunogenic potential, C57BL/6J mice were subcutaneously
injected with DT4313 and FC1245 CDG (n= 8 for each cell line)
and randomly assigned to receive ladarixin (15 mg/Kg, i.p. daily for
three weeks) or vehicle, as control, and anti-PD-1 (6 mg/Kg or IgG,
i.p. twice a week for two weeks) alone or in combination with
ladarixin. Treatment with anti-PD-1 was started one week after
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Mean and SD are shown. ***P < 0.001, NS not significant, by two-tailed unpaired Student’s t test.
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Fig. 4 Pancreatic cancer CDG mouse models. C57BL6/J mice bearing DT4313 (a) and FC1245 (b) CDGs were randomly assigned to four
groups to receive ladarixin (15mg/Kg, i.p. daily) or vehicle, as control, and anti-PD-1 (6 mg/Kg or IgG, i.p. twice a week for 2 weeks) alone or in
combination with ladarixin; differences among survival duration of mice in each group were determined by log-rank test; Mean and SEM are
shown (***P < 0.001, **P < 0.005; *P < 0.05). c, d Upper panels: immunohistochemical analysis of CDGs excised tissues; lower panels of figure,
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ladarixin administration. As expected, anti-PD-1 treatment showed
a great efficacy in inducing the shrinkage of DT4313 high-
immunological potential tumours, but, quite surprisingly, also
ladarixin as single agent significantly reduced tumour growth of
this CDG model (ctr vs lad, P= 0.001; ctr vs comb, P < 0.001; lad vs
comb, P= 0.004; ctr vs anti-PD-1, P= 0.001) (Fig. 4a).
In non-immunogenic FC1245 model on the contrary, anti-PD-1

treatment had no effect on tumour volume, while ladarixin alone
and, more efficiently, the combination treatment of ladarixin with
the anti-PD-1 significantly increased tumour volume shrinkage (ctr
vs lad, P= 0.049; ctr vs comb, P= 0.003; lad vs comb, P= 0.043;
anti-PD-1 vs comb, P= 0.001) (Fig. 4b).
To study the mechanisms underlying ladarixin effects on tumour

growth, immune cell infiltration analysis by IHC was performed in
the different CDG models. At baseline, DT4313 model was

characterised by a significant inflammatory immune infiltration into
the tumour bulk. Ladarixin treatment increased the number of
CD8+ tumour-infiltrating lymphocytes (TILs), while only slightly
increased the percentage of CD11b+ cells as well as of GRZB+

cytotoxic effector cells and decreased CD68+ macrophages. On the
contrary, anti-PD-1 as single agent increased the percentage of TILs
as well as of GRZB expression and decreased Ki67+ cells, while the
combination further increased the percentage of CD11b+ and TILs
compared to anti-PD-1 treatment alone and reduced CD68+ cells,
indicating the positive contribution of ladarixin to anti-PD-1 efficacy
(Fig. 4c). Untreated non-immunogenic FC1245 model showed only
a modest infiltration of T cells (Fig. 4d), and ICI as single agent did
not have any effect on the percentage of Ki67+ and CD68+ cells,
TILs and GRZB expression. Ladarixin alone instead increased the
percentage of TILs and also slightly increased the percentage of
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Fig. 5 Orthotopic patient-derived xenograft (PDX) in human immune-reconstituted (HIR) mice. a hu-CD34+ mice were orthotopically
injected with PDAC patient-derived cancer tissue. HIR-PDX mice were randomly assigned to receive vehicle, ladarixin (15mg/Kg, i.p. daily), and
Nivolumab (ICI, 6 mg/Kg or IgG, i.p. twice a week for 2 weeks) alone or in combination with ladarixin (15mg/Kg daily). CTR vs LAD, P value:
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was calculated by Student’s t test. *P < 0.05; **P < 0.01; ***P < 0.001.
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CD11b+ cells and GRZB expression, while reduced the percentage
of Ki67+ cells. Finally, the combination treatment strikingly reduced
Ki67+ and CD68+ cells and increased the number of TILs and GRZB
expression (Fig. 4d).
These results demonstrated that, regardless of the immunogenic

potential, ladarixin promotes the entry of cytotoxic T cells into the
tumour, ultimately acting synergistically with anti-PD-1 to increase
tumour shrinkage. However, the subsequent recognition of tumour
cells by TIL is strictly dependent by intrinsic characteristic of
cancer cells, thus resulting in a more moderate response in CDG
with no-immunogenic potential respect to high-immunogenic
potential ones.

Combination of ladarixin plus ICI (nivolumab) reduces tumour
growth and increases survival of HIR-PDX mice. We established a
patient-derived xenograft (PDX) model by implanting in BALB/c
nude mice a human PDAC tumour of the immunological subtype,
according to Bailey classification. After tissue expansion, frac-
tioned PDX pieces were orthotopically injected in human
immune-reconstituted (HIR) mouse models (n= 20) (hu-CD34+
NSG mice). We matched PDAC patient and CD34 donor according
to HLA-DR allele to generate hu-CD34+ NSG tumour-bearing
mice. Peripheral blood samples from each HIR mouse were
checked for immune cell components along with recipient BALB/c
nude mouse before the orthotopic injection (Supplementary
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Tables 1 and 2). In order to prevent issues due to the development
of incorrect percentage ratio of the immune subpopulation, we
monitored the percentage of human and mouse B (CD19+) and T
(CD3+) cells over the time and randomised mice in each
treatment group according to their immune-system status to
prevent group variability. HIR-PDX mice were randomly assigned
to receive vehicle, ladarixin (15 mg/Kg daily), and Nivolumab
(6 mg/Kg or IgG, i.p. twice a week for two weeks) alone or in
combination with ladarixin as in Fig. 4a, b.
In HIR-PDX mice, nivolumab treatment showed a great efficacy

in inducing volume shrinkage of high-immunogenic potential
human tumour (Fig. 5a), and in line with data obtained in CDG
PDAC mouse models, also ladarixin as a single agent showed a
reduction of tumour volume near to that obtained with ICI
treatment (Fig. 5a). Notably, the combination of ladarixin with
nivolumab led to a statistically significant reduction of tumour
volume compared to nivolumab or ladarixin alone (Fig. 5a).
The effect of Ladarixin, nivolumab and combination treatment on

median survival rate was also examined (Fig. 5b). We found that
nivolumab treatment failed to prolong HIR-PDX mouse median
survival (49.5 days vs 57 days; P= 0.549), while ladarixin as single
agent slightly increased median survival (49.5 days vs 74.5 days;
P= 0.044). Once again, the combination treatment was more
effective than both treatments alone and significantly extended
mouse median survival (49.5 days vs 150 days, P= 0.0108) (Fig. 5b).
To analyse the effects of ladarixin on immune TME, we initially

evaluated the retention of morphopathological and immune
infiltrate characteristics of HIR-PDX model, comparing this model
with tumour specimen from patients (Fig. 5d, upper side). Analysing
the effects of the different treatments on the HIR-PDX model of
PDAC, we then found that anti-PD-1 as single agent induced only an
increase of perforin 1 expression and a reduction of CD68 positive
cells compared to vehicle, while it did not change the percentage of
Ki67+ tumour cells and CD8 infiltration. On the other hand, ladarixin
alone reduced Ki67+ tumour cells and the number of CD68+

macrophages infiltrating the tumour and increased the percentage
of TILs and perforin 1 into the tumour. Finally, combination
treatment reduced the percentage of Ki67+ tumour cells and the
number of CD68+ macrophages infiltrating the tumour, while it
dramatically increased the number of TILs and perforin 1 release
(Fig. 5c).
Having assessed the effects of the treatments on immune TME,

we then analysed the effect of ladarixin and combination treatment
on tumours by RNA-sequencing and Gene Ontology (GO) analysis
(Fig. 6). As expected, nivolumab mainly up-regulated genes
involved in inflammatory response with induction of T cells
proliferation, while ladarixin modulated genes involved in a type
of immune response driven by interferon (Supplementary Fig. 3).
More importantly, gene enrichment analysis showed an increase in
T cells proliferation, activation and cytotoxicity, and positive
regulation of myeloid leucocyte differentiation in the combination
treatment compared to nivolumab and ladarixin alone (Fig. 6). Thus,
the addition of ladarixin to nivolumab treatment is able to reduce
tumour growth and increase immune cells activation amplifying the
effect of single agents.

DISCUSSION
No effective pharmacological approach is currently available for
the treatment of aggressive PDAC [7, 38]. Receptors CXCR1/2 have
proved to be crucially involved in tumour progression, treatment
resistance and metastasis [39]. In line with this, inhibitors of
CXCR1/2, including small molecules or specific antibodies, showed
great efficacy in treating tumours, such as cutaneous and uveal
melanomas, where the inhibition of CXCR1/2 and their ligands
(CXCL1/2/3/7/8) yielded promising results [40].
In this study, we demonstrate that ladarixin, a potent CXCR1-2

inhibitor, can effectively block macrophage attraction and M2

polarisation, and thus trigger an immunosuppressive to immuno-
permissive transition in PDAC mouse and human models,
providing the rational for its use in combination with an
immunocheckpoint inhibitor, especially for the treatment of
non-immunogenic, highly aggressive PDAC subtype.
We initially evaluated the ability of pancreatic cancer models

with different immunogenic features (high-, low- and no-
immunogenic potential) to evoke an immune response and to
attract macrophages. Analysing the gene expression, we found
that M1 polarisation marker expression was strongly correlated
with the immunogenic potential of our cancer models and with a
better prognosis, while a predominant M2 marker expression was
observed in models with no or low immunogenic potential which
also presented a worse prognosis. In vitro, CDG pancreatic cancer
models comparably induced macrophages mobilisation (if cul-
tured with conditioned medium of each CDG model) or attraction
(if co-cultured with each CDG model). However, cells with no or
low immunogenic potential (FC1242 and FC1245) strongly
directed the polarisation of macrophages towards the M2
immunosuppressive type, while high-immunological potential
DT4313 CDG model showed increased gene expression of CD80
and CD86 M1 markers and a reduction of ARG1 M2 marker. In this
setting, ladarixin as a single agent was surprisingly able to reduce
the attraction and migration of macrophages, as well as to impair
M2 polarisation induced by tumours, and in particular that
induced by those with no or low immunogenic potential. As IL-8
is known to selectively attract neutrophils [41] while having little
or no effect on monocytes [42], these effects were quite
unexpected and can be explained considering the potential
involvement of other chemokines and cytokines of the TME, which
might act synergistically in regulating the recruitment of mono-
nuclear cells [43]. Studies have demonstrated in fact that IL-8-
mediated chemotaxis can be induced in monocytes following
exposure to two cytokines, IL-4 and IL-13, which are produced by
multiple components in the TME of pancreatic cancer [44] and
were shown to induce the up-regulation of CXCR1 and CXCR2
expression in macrophages, thus triggering a biological pro-
gramme that reorients the action of IL-8 to monocytes and
contributes to the formation of the mononuclear phagocyte
infiltrate [42]. Although we have observed only the result of this
possible cooperation between cytokines and chemokines, the fact
that, on the contrary, ladarixin did not affect cancer cell
proliferation and only weakly influenced their migration (despite
the expression of CXCR1 and CXCR2 by tumour cells), further
indicates the crucial role of the interaction of the other
components of the tumour milieu in inducing macrophage to
respond to IL-8 (i.e., migration and M1/M2 polarisation). in our
cancer models and [45] highlights the remarkable potential
impact of IL-8 inhibition for cancer treatment. Driven by the
results obtained in vitro, we then evaluated the effects of ladarixin
in vivo in our CDG models with high- and no- immunogenic
potential. While effectively inducing tumour shrinkage in the
syngeneic high-immunogenic model (DT4313) [24], the anti-PD-1
treatment had no effect on tumour growth in syngeneic tumour
model with no-immunogenic potential (FC1245), where, however,
ladarixin as single agent showed slight efficacy, and the
combination treatment with ladarixin and anti-PD-1 significantly
reduced tumour volume, displaying an appreciable efficacy in this
aggressive PDAC subtype [24, 38, 46, 47].
The impairment of macrophage attraction and M2 polarisation

obtained with ladarixin treatment was thus instrumental to
increase the susceptibility of tumour to the immune system,
which could be then further helped by the inhibition of immune
checkpoints (anti-PD-1 treatment). These results are of particular
significance because obtained with FC1245 CDG cells, which
constitute a very aggressive PDAC model because of its capacity
to escape from the immune system [24] further support previous
data showing that systemic ladarixin treatment of melanoma-

G. Piro et al.

339

British Journal of Cancer (2023) 128:331 – 341



bearing mice polarised intratumoral macrophages to M1 pheno-
type, abrogated intratumoral de novo angiogenesis and inhibited
melanoma self-renewal [40]. In addition to the effects mediated by
the macrophages, we can also hypothesise that the tumour
shrinkage that we observed following ladarixin treatment could
also be due to other effects of the compound on the immune
system, as for example [48] the inhibition of CXCR2-mediated
biological aging of neutrophils, which has been recently shown to
effectively compromise the progression of malignancies and has
been proposed as a potential new strategy for the treatment of
oncological disorders [49].
In order to improve the relevance of our data to the human

disease and accelerate the clinical translation of our findings, we
then used human immune-reconstituted (HIR) mouse models, a
forefront preclinical model to support studies on immune-based
therapies. Unlike patient-derived xenograft (PDX) model obtained
engrafting human tumours in immune-deficient mice that
reproduce main feature of human host tumour, but fail to
recapitulate immune context [50], and syngeneic tumour mouse
models that not fully reproduce all human-specific pathways and
lack the direct connection with personalised medicine, HIR models
provide in fact a relevant in vivo context to understand human-
specific tumour-immune interaction as they combine human
immune-system repopulation with PDX models [51]. This feature is
particularly important when studying the biology of the IL-8
pathway as several differences exist between the human and the
murine IL-8/CXCR axis [18, 52]. As expected, the human
immunogenic subtype of PDAC had almost the same response
of the high-immunogenic potential syngeneic cancer model to ICI
and ladarixin as single agents and in combination. As in the
corresponding syngeneic models, ladarixin reduced the macro-
phage population into the tumour, and increased M1 macrophage
polarisation, ultimately hampering tumour growth in HIR mice,
thus confirming the induction of an immunopermissive TME by
ladarixin and demonstrating the efficacy of a combined CXCR1/2
inhibitor and anti-PD-1 treatment in a mouse model bearing
human immune system and orthotopically injected with a patient-
derived PDAC immunogenic subtype. These results confirm
recently published ones [16], but adding, notably, the novel
aspect of the effects of CXCR1/2 inhibition on macrophage
infiltration and polarisation in the tumour, and how these
phenomena affect PDAC pathogenesis.
In conclusion, previous studies have discussed and prospected

the use of novel immunoadjuvants for pancreatic cancer
treatment [53, 54] but no evidence on immune-system activation
by ICI in low or no-immunogenic subtypes of PDAC has been
provided so far. Here, we discovered the ability of ladarixin to
convert a pro-tumoral into an immunopermissive microenviron-
ment by also, unexpectedly, affecting infiltration and polarisation
of macrophages in the TME, thus highlighting the effects of IL-8/
CXCR1-2 axis inhibition on TAMs and, especially, how these effects
might potentially affect PDAC pathology and treatment. Using
both syngeneic and HIR mouse models, we in fact demonstrated,
for the first time, that ladarixin and ICI combination has synergistic
anti-tumoral effects and can be an effective approach for the
treatment of PDAC, especially significant when treating PDAC
subtypes that are usually refractory to immunotherapy.

DATA AVAILABILITY
The data of this study are available from the corresponding author upon request.
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