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1. HETEROGENEOUS MODELING

Many of today’s engineered systems combine heterogeneous and often complex subsys-
tems. A modern car, for example, may combine a complex engine, electronic control units
(ECUs), traction control systems, body electronics (for controlling windows and door
locks), entertainment systems, climate control and ventilation, and a variety of safety
subsystems (such as airbags). Each subsystem may be realized with a combination of
software, electronics, and mechanical parts. Engineering such complex systems is quite
challenging, in part because even the smallest subsystems span multiple engineering dis-
ciplines.

These complex systems also challenge the design tools that engineers use to specify, de-
sign, simulate, and analyze systems. It is no longer sufficient to sketch a mechanical struc-
ture and write down a few equations describing the interactions of the mechanical parts.
Neither is it sufficient to rely entirely on software tools for 3D modeling of mechani-
cal parts or tools for model-based design of software systems. The complex interplay
across domains (mechanics, software, electronics, communication networks, chemistry,
fluid dynamics, and human factors) reduce the usefulness of tools that address only a
single domain.

The focus of this book is on cyber-physical systems (CPS) (Lee, 2008a, 2010a; Lee and
Seshia, 2011), which combine computing and networking with physical dynamics. Cyber-
physical systems require model combinations that integrate the continuous dynamics of
physical processes (often described using differential equations) with models of software.
Diverse models are most useful in applications where timed interactions between compo-
nents are combined with conventional algorithmic computations.! They can also be used
in traditional software systems that have concurrent® interactions between algorithmic
components.

' An algorithm is a finite description of a sequence of steps to be taken to solve a problem. Physical
processes are rarely structured as a sequence of steps; rather, they are structured as continuous interactions
between concurrent components.

2Concurrency, from the Latin verb concurrere meaning “run together,” is often taken in computer science
to mean the arbitrary interleaving of two or more sequences of steps. However, this is a rather specialized
interpretation of a basic concept. In this book, we take concurrency to mean simultaneous operation, with no
implication of either interleaving nor sequences of steps. In particular, two continuous processes can operate
concurrently without being directly representable as sequences of steps. Consider, for example, a resistive
heating element immersed in a vat of water. Increasing the current through the heating element will cause
the temperature of the water to rise. The electrical flow is one continuous process, as is the temperature of
the water, and these processes are interacting. But neither process is reasonably representable as a sequence
of steps, nor is the overall process an interleaving of such steps.
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Sidebar: About the Term “Cyber-Physical Systems”

The term “cyber-physical systems” emerged around 2006, when it was coined by He-
len Gill at the National Science Foundation in the United States. We are all familiar
with the term “cyberspace,” attributed William Gibson, who used the term in the novel
Neuromancer to refer to the medium of computer networks used for communication
between humans. We may be tempted to associate the term cyberspace with CPS, but
the roots of the term CPS are older and deeper. It would be more accurate to view
the terms “cyberspace” and “cyber-physical systems” as stemming from the same root,
“cybernetics,” rather than viewing one as being derived from the other.

The term “cybernetics” was coined by Norbert Wiener (Wiener, 1948), an American
mathematician who had a huge impact on the development of control systems theory.
During World War II, Wiener pioneered technology for the automatic aiming and firing
of anti-aircraft guns. Although the mechanisms he used did not involve digital comput-
ers, the principles involved are similar to those used today in a huge variety of computer-
based feedback control systems. Wiener derived the term from the Greek kv BepvnTng
(kybernetes), meaning helmsman, governor, pilot, or rudder. The metaphor is apt for
control systems.

Wiener described his vision of cybernetics as the conjunction of control and commu-
nication. His notion of control was deeply rooted in closed-loop feedback, where the
control logic is driven by measurements of physical processes, and in turn drives the
physical processes. Even though Wiener did not use digital computers, the control logic
is effectively a computation, and therefore cybernetics is the conjunction of physical
processes, computation, and communication.

Wiener could not have anticipated the powerful effects of digital computation and net-
works. The fact that the term “cyber-physical systems” may be ambiguously interpreted
as the conjunction of cyberspace with physical processes, therefore, helps to underscore
the enormous impact that CPS will have. CPS leverages a phenomenal information
technology that far outstrips even the wildest dreams of Wiener’s era.
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Figure 1.1: Today’s design tools involve complex combinations of syntax, seman-
tics, and pragmatics.

1.1 Syntax, Semantics, and Pragmatics

At the time of this writing, we are in the midst of a dramatic transformation in engineer-
ing tools and techniques, which are evolving to enable us to adapt to increasing system
complexity and heterogeneity. In the past, entire industries were built around provid-
ing design tools for a single engineering domain, such as digital circuits, software, 3D
mechanical design, and heating and ventilation systems. Today we see a growing con-
solidation and combination of design tools; individual tools often expand into tool suites
and provide capabilities outside of their traditional domain. This evolution often entails
significant growing pains, where poorly integrated capabilities yield frustratingly unex-
pected behaviors. Tool integration often results in “frankenware,”* brittle combinations
of mostly incompatible tools that are extremely difficult to maintain and use effectively in
combination.

Moreover, tools that have traditionally worked well within a relatively narrow domain are
not as effective when used in broader domains. Today’s sophisticated design tools involve
complex combinations of syntax (how a design is represented), semantics (what a design
means and how it works), and pragmatics (Fuhrmann and von Hanxleden, 2008) (how
an engineer visualizes, edits, and analyzes a design). When tools are used in domains for
which they were not originally designed or in combination with other tools, awkwardness
may arise from incompatible syntaxes, poorly understood semantics, and inconsistent
human interfaces.

3The term “frankenware” is due to Christopher Brooks.
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1.1. SYNTAX, SEMANTICS, AND PRAGMATICS

Incompatibilities in syntax may arise because the structure of designs is intrinsically dif-
ferent (software syntax has very little in common with 3D volumes, for example). But all
too often, it arises because the tools were developed in different engineering communities
using different techniques. Similarly, the pragmatics of tools, such as how design files are
managed and how changes are tracked, are often starkly different by historical accident.
Differences in semantics are often accidental as well, sometimes arising from simple mis-
understandings. Semantics may not be intuitively obvious in a different domain. A block
diagram, for example, may mean something completely different to a control engineer as
to a software engineer.

This book examines key concepts in heterogeneous modeling using Ptolemy II, an open-
source modeling and simulation tool.* In contrast to most other design tools, Ptolemy
IT was developed from the outset to address heterogeneous systems. A key goal of the
Ptolemy Project (an ongoing research effort at UC Berkeley) has been to minimize the
accidental differences in syntax, semantics, and pragmatics between domains, and max-
imize the interoperability of designs expressed in different domains. As a consequence,
Ptolemy II provides a useful laboratory for experimenting with design technologies for
cyber-physical systems.

Ptolemy II integrates four distinct classes of syntaxes: block diagrams, bubble-and-arc
diagrams, imperative programs, and arithmetic expressions. These syntaxes are comple-
mentary, and enable Ptolemy to address a variety of design domains. Block diagrams are
used to express concurrent compositions of communicating components; bubble-and-arc
diagrams are used to express sequencing of states or modes; imperative programs are used
to express algorithms; and arithmetic expressions are used to express functional numeric
computations.

Ptolemy II also integrates a number of semantic domains. For block diagrams, in partic-
ular, there are many distinct semantics possible. Connections between blocks represent
interactions between components in a design, but what type of interaction? Is it an asyn-
chronous message (like sending a letter)? Is it a rendezvous communication (like making
a phone call)? Is it a clocked update of data (as in a synchronous digital circuit)? Does
time play a role in the interaction? Is the interaction discrete or continuous? To enable
heterogeneous modeling, Ptolemy II has been designed to support all of them, and is
extensible to support more.

“Ptolemy I is available for download at http://ptolemy.org.
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1. HETEROGENEOUS MODELING

1.2 Domains and Models of Computation

A semantic domain in Ptolemy II, often just called a domain, defines the “laws of
physics” for the interaction between components in a design. It provides the rules that
govern concurrent execution of the components and the communication between com-
ponents (such as those described above). A collection of such rules is called a model
of computation (MoC). We will use the terms “model of computation” and “domain”
(nearly) interchangeably, though technically we think of a domain as being an imple-
mentation of a MoC. The MoC is an abstract model, whereas the domain is its concrete
implementation in software.

The rules that constitute a model of computation fall into three categories. The first set
of rules specifies what constitutes a component. In this book, a component is generally
an actor, to be defined more precisely below. The second set of rules specifies the ex-
ecution and concurrency mechanisms. Are actors invoked in order? Simultaneously?
Nondeterministically? The third specifies the communication mechanisms. How do ac-
tors exchange data?

Each of the MoCs discussed in this book has many possible variants, many of which have
been realized in other modeling tools. In this book, we focus only on MoCs that have
been realized in Ptolemy II and that have well understood and documented semantics.’
For further context, we also provide brief descriptions and pointers to other useful MoCs
that have not been realized in Ptolemy II, but have been realized in other tools.

To support the design of heterogeneous systems, Ptolemy II domains (and models of com-
putation) interoperate with one another. This requires a level of agreement between se-
mantic domains that is rare when tools are developed separately and then later integrated.
The principles behind interoperation of domains in Ptolemy II are described in a number
of papers (Eker et al., 2003; Lee et al., 2003; Goderis et al., 2009; Lee, 2010b; Tripakis
et al., 2013). In this book, we focus on the practical aspects of domain interoperability,
not on the theory.

Using a single, coherent software system lets us focus on domain interoperation rather
than on less important incompatibilities that typically arise in tool integration. For, exam-
ple, the Ptolemy II type system (which defines the types of data that can be used with var-
ious computational components) is shared by all domains, by the state machine notation,

>In the electronic version of this book, most illustrations of models provide a hyperlink in the caption that
enables you to browse the model online. If you are reading the book on a Java-capable machine, then you
can edit and execute the models shown in most of the figures.
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1.3. THE ROLE OF MODELS IN DESIGN

and by the expression language. The domains are all capable of inferring and verifying
appropriate data types; this functionality works seamlessly across heterogeneous models
with multiple domains. Similarly, domains that include a notion of time in their semantics
share a common representation of time and a (multiform) model of time. Finally, the same
graphical editor spans domains, and the same XML schema is used to store design data.
These agreements remove many of the practical obstacles to heterogeneous composition
of models. They allow us to focus on the benefits of heterogeneous integration — most
importantly, the ability to choose the domain that best matches the problem, even when
the design is heterogeneous.

1.3 The Role of Models in Design

This book provides a framework for understanding and building models in Ptolemy II
and, more broadly, for understanding key issues in modeling and simulating complex
heterogeneous systems. This topic is broad enough that no single volume could possibly
cover all of the techniques that could be useful to system designers. In this book, we focus
on models that describe dynamics, or how a system or subsystem evolves in time. We do
not cover techniques that focus primarily on the static structure of designs (such as UML
class diagrams for software or 3D volumetric modeling). As a consequence, all of the
models in this book are executable. We call the execution of a model a simulation.

Modeling

Design

J

Figure 1.2: lterative process of modeling, design, and simulation.
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1. HETEROGENEOUS MODELING

Figure 1.2 shows three major parts of the process of implementing systems: modeling,
design, and simulation. Modeling is the process of gaining a deeper understanding of a
system through imitation. Models imitate the system and reflect properties of the system.
Models of dynamics specify what a system does; that is, how it reacts to stimulus from its
environment, and how it evolves over time. Design is the structured creation of artifacts
(such as software components) to implement specific functionality. It specifies how a
system will accomplish the desired functionality. Simulation shows how models behave
in a particular environment. Simulation is a simple form of design analysis; its goal is
to lend insight into the properties of the design and to enable testing of the design. The
models we discuss in this book can also be subjected to much more elaborate forms of
analysis, including formal verification. In its most general form, analysis is the process
of gaining a deeper understanding of a system through dissection, or partitioning into
smaller, more readily analyzed pieces. It specifies why a system does what it does (or
fails to do) what a model says it should do. We leave all analysis techniques except
simulation to other texts.

As suggested in Figure 1.2, the three parts of the design process overlap, and the process
iterates between them. Normally, the design process begins with modeling, where the
goal is to understand the problem and to develop solution strategies.

Modeling plays a central role in modern design processes. The key principle of model-
based design is to maximally leverage modeling to construct better designs. To be effec-
tive, models must be reasonably faithful, of course, but they also must be understandable
and analyzable. To be understandable and analyzable, a model needs to have a clear
meaning (a clear semantics).

Models are expressed in some modeling language. For example, a procedure may be
expressed in Java or in C, so these programming languages are in fact modeling languages
for procedures. A modeling language has a strong semantics if models expressed in
the language have a clear and unambiguous meaning. Java, for example, has a stronger
semantics than C, as illustrated by the following example.

Example 1.1: Suppose that the arguments to a procedure are of type int. In
Java, this data type is well defined, but not in C. In C, int may represent a 16-
bit integer or a 32-bit integer, for example. The behavior of the procedure may
be quite different depending on which implementation is provided. Particularly,
overflow occurs more easily with 16-bit integers than with 32-bit integers.

Ptolemaeus, System Design 9
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Sidebar: Models vs. Realizations of Systems

Models must be used with caution. The Kopetz principle (named after Prof. Dr. Her-
mann Kopetz of TU-Vienna, who taught us this principle), paraphrased, is: Many prop-
erties that we assert about systems (determinism, timeliness, reliability) are in fact not
properties of an implemented system, but rather properties of a model of the system.

Golomb (1971) emphasizes understanding the distinction between a model and thing
being modeled, famously stating “you will never strike oil by drilling through the map!”
In no way, however, does this diminish the value of a map! Consider determinism.
A model is determinate if it produces a uniquely defined output for each particular
input. It is nondeterminate if there are multiple possible outputs for any particular
input. Although this seems like a simple definition, there are many subtleties. What
do we mean by a “particular input?”’ Does the time at which the input arrives matter?
What do we mean by a “uniquely defined output?” Should we consider how the system
behaves when its implementation hardware fails?

Any statement about the determinism of a physical “implemented” system is funda-
mentally a religious or philosophical assertion, not a scientific one. We may assert that
no real physical system is determinate. How will it behave when it is crushed, for exam-
ple? Or we may conversely assert that everything in the physical world is preordained,
a concept that we find farfetched, difficult to refute, and not very useful.

For models, however, we can make definitive assertions about their determinism. For
example, a procedure defined in a programming language may be determinate in that the
returned value of the procedure depends only on the arguments. No actual realization
of the procedure is actually determinate in an absolute sense (the hardware may fail and
no returned value will be produced at all). The procedure is a model defined within
a formal framework (the semantics of the language). It models the execution of a
machine abstractly, omitting information. The time at which the inputs are provided
makes no difference to the model, so time is not part of what we mean by a “particular
input.” The inputs and outputs are just data, and the procedure defines the relationship
between the inputs and outputs. This point about models is supported by Box and
Draper (1987), who state “Essentially, all models are wrong, but some are useful.” The
usefulness of a model depends on the model fidelity, the degree to which a model ac-
curately imitates the system being modeled. But models are always an approximation.

10 Ptolemaeus, System Design
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1. HETEROGENEOUS MODELING

Many popular modeling languages based on block diagrams have quite weak semantics.
It is common, for example, for modeling languages to adopt a block diagram notation
without giving precise meaning to the lines drawn between blocks; they vaguely represent
the fact that components interact. (For examples, see the sidebar on page 14.) Modeling
languages with weak semantics are harder to analyze. Their value lies instead in their
ability to informally communicate design concepts among humans.

1.4 Actor Models

Ptolemy II is based on a class of models called actor-oriented models, or more simply,
actor models. Actors are components that execute concurrently and share data with each
other by sending messages via ports.

Example 1.2: Consider, for example, the Ptolemy model shown in Figure 1.3.
This model shows three actors, each of which has one port. Actor A sends messages
to actors B and C via its port (the Relation diamond indicates that the output from
A goes to both B and C).

The sum of all of the messages communicated via a port is referred to as a signal. The
Director block in the example specifies the domain (and hence the model of computation).
Most of this book is devoted to explaining the various domains that have been realized in
Ptolemy II.

Actor Model

Director
Actor B

ortal

link
Actor A Actor C

Relation

Figure 1.3: Visual rendition of a simple actor model.
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Model: CompositeActor

Director |
B: AtomicActor

A: CompositeActor

C: CompositeActor

\b

~ v 7
.. Relation

Director o Attribute: value

E: AtomicActor

q: Port
D: AtomicActor

p: Port
Relation

Relation

Opaque CompositeActor Transparent CompositeActor

Figure 1.4: A hierarchical actor model consisting of a top-level composite actor
and two submodels, each of which is also a composite actor.

1.5 Model Hierarchy

Models of complex systems are often complex. There is an art (the art of model engi-
neering) to constructing good models of complex systems. A good model of a complex
system provides relatively simple views of the system in order to faciliate easier under-
standing and analysis. A key approach to creating models with simplified views is to
use modeling hierarchy, where what appears to be single component in one model is,
internally, another model.

A hierarchical actor model is shown in Figure 1.4. It is an elaboration of Figure 1.3
where actors A and C are revealed to be themselves actor models. An atomic actor
(where atomic comes from the ancient Greek atomos, meaning indivisible), is one that
is not internally defined as an actor model. A composite actor, in contrast, is itself a
composition of other actors. The ports p and ¢ in the figure bridge the levels of hierarchy.
A communication from D, for example, will eventually arrive at actor E after traversing
ports and levels of the hierarchy.
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1.6 Approaches to Heterogeneous Modeling

There are many approaches to heterogeneous modeling (Brooks et al., 2008). In multi-
view modeling, distinct and separate models of the same system are constructed to model
different aspects of a system. For example, one model may describe dynamic behavior,
while another describes physical design and packaging. In amorphous heterogeneity,
distinct modeling styles are combined in arbitrary ways within the same model without
the benefit of structure. For example, some component interactions in a model may use
rendezvous messaging (where both a sender and a receiver must be ready before a com-
munication can occur), while others use asynchronous message passing (where the re-
ceiver receives the communication at some indeterminate time after the sender sends it).
In hierarchical multimodeling, hierarchical compositions of distinct modeling styles are
combined to take advantage of the unique capabilities and expressiveness of each style.

Sidebar: About the Term “Actors”

Our notion of actor-oriented modeling is related to the term “actor” as introduced in
the 1970’s by Hewitt to describe the concept of autonomous reasoning agents (Hewitt,
1977). The term evolved through the work of Agha and others to describe a formal-
ized model of concurrency (Agha et al., 1997). Agha’s actors each have an independent
thread of control and communicate via asynchronous message passing. The term “actor”
was also used in Dennis’s dataflow models (Dennis, 1974) of discrete atomic computa-
tions that react to the availability of inputs by producing outputs sent to other actors.

In this book, the term “actor” embraces a larger family of models of concurrency.
They are often more constrained than general message passing and do not necessarily
conform with a dataflow semantics. Our actors are still conceptually concurrent, but
unlike Agha’s actors, they need not have their own thread of control. Unlike Dennis’
actors, they need not be triggered by input data. Moreover, although communication is
still achieved through some form of message passing, it need not be asynchronous.

Actors are components in systems and can be compared to objects, software compo-
nents in object-oriented design. In prevailing object-oriented languages (such as Java,
C++, and C#), the interfaces to objects are primarily methods, which are procedures
that modify or observe the state of objects. By contrast, the actor interfaces are primar-
ily ports, which send and receive data. They do not imply the same sequential transfer
of control that procedures do, and hence they are better suited to concurrent models.
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Sidebar: Actors in UML, SysML, and MARTE

The Object Management Group (OMG) has standardized a number of notations
that relate strongly to the block diagram syntax common in actor models. The actor
models in this book relate to composite structure diagrams of UML 2 (the second
version of the unified modeling language) (Bock, 2006; Booch et al., 1998), or more
directly its derivative SysML (Object Management Group (OMG), 2008a). The internal
block diagram notation of SysML, particularly with the use of flow ports, is closely
related to actor models. In SysML, the actors are called “blocks.” (The term “actor” is
used in UML for another purpose.)

SysML, however, emphasizes how model diagrams are rendered (their visual syn-
tax), and leaves many details open about what the diagrams mean and how the models
operate (their semantics). For example, although the SysML declares that “flow ports
are intended to be used for asynchronous, broadcast, or send-and-forget interactions”
(Object Management Group (OMG), 2008a), there is nothing like an MoC in SysML.
Different SysML tools may give different behavior to flow ports and still be compliant
with the standard. A single SysML model may represent multiple designs, and the be-
havior of the model may depend on the tools used to interpret the model. The emphasis
of SysML is on standardizing the notation, not the meaning of the notation.

In contrast, the emphasis in Ptolemy II is on the semantics of models, rather than on
how they are rendered (visually or otherwise). The visual notation is incidental, and
in fact is not the only representation for a Ptolemy II model. Ptolemy II directors give
models a very specific meaning. This concrete meaning ensures that a model means the
same thing to different observers, and enables interoperation of heterogeneous models.

MARTE (modeling and analysis of real-time and embedded systems) puts more
emphasis than SysML on the behavior of models (Object Management Group (OMG),
2008b). It avoids “constraining” the execution semantics, making the standard flexible,
enabling representation of many prevalent real-time modeling techniques. In contrast,
the emphasis in Ptolemy II is less on capturing existing design practices, and more on
providing precise and well-defined models of system behavior. MARTE, interestingly,
includes a multiform time model (André et al., 2007) not unlike that supported by
Ptolemy II.

14 Ptolemaeus, System Design
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An example familiar to software engineers is Statecharts (Harel, 1987), which hierarchi-
cally combines synchronous concurrent composition with finite state machines. Another
example of hierarchical modeling is cosimulation, where two distinct simulation tools
are combined using a standardized interface such as the Simulink S function interface
or the functional mockup interface (FMI) from the Modelica Association.® It is also
possible to support heterogeneous modeling by creating very flexible or underspecified
modeling frameworks that can be adapted to cover the models of interest. The downside
of this approach is weak semantics. The goal of Ptolemy Il is to achieve strong semantics,
yet embrace heterogeneity and provide mechanisms for heterogeneous models to interact
concurrently.

As shown in Figure 1.4, one can partition a complex model into a hierarchical tree of
nested submodels. At each level, the submodels can be joined together to form a network
of interacting actors. Ptolemy II constrains each level of the hierarchy to be locally ho-
mogeneous, using a common model of computation. These homogeneous networks can
then be hierarchically combined to form a larger heterogeneous model. The advantage to
this approach is that each part of the system can be modeled using the model of compu-
tation that provides the best match for its processing requirements — yet each model of
computation provides strong semantics to ensure that it is relatively easy to understand,
analyze, and execute.

In Ptolemy II, a director defines the semantics of a model. In Figure 1.4, there are two
directors. The one at the top level defines the interaction between actors A, B, and C.
Since C does not internally contain a director, the same top-level director governs the
interactions with actor E. Actor C is called a transparent composite actor; its contained
model is visible to its director.

In contrast, actor A internally contains another director. That inside director governs the
interaction of actors within the sub model (in this simple example, there is only one such
actor, but there could be more). Actor A is called an opaque composite actor, and its
contents are hidden from A’s outside director. To distinguish the two directors, we call
the outside director the executive director. To the executive director, actor A looks just
like an atomic actor. But internally, A contains another model.

The directors at different levels of the hierarchy need not implement the same MoC.
Opaque composite actors, therefore, are Ptolemy’s way of realizing hierarchical multi-
modeling and cosimulation.

6http: //www.functional-mockup-interface.org
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Sidebar: Plurality of Models

Occam’s razor is a principle in science and engineering that encourages selection of
those theories and hypotheses that require the fewest assumptions, postulates, or entities
to explain a given phenomenon. The principle can be expressed as “entities must not
be multiplied beyond necessity” (entia non sunt multiplicanda praeter necessitatem) or
as “plurality should not be posited without necessity” (pluralitas non est ponenda sine
necessitate) (Encyclopedia Britannica, 2010). The principle is attributed to 14th-century
English logician, theologian and Franciscan friar William of Ockham.

Despite its compelling value, the principle has limitations. Immanuel Kant, for ex-
ample, felt a need to moderate the effects of Occam’s razor, stating “the variety of
beings should not rashly be diminished.” (entium varietates non temere esse minuen-
das) (Smith, 1929). Einstein allegedly remarked, “everything should be made as simple
as possible, but not simpler” (Shapiro, 2006).

When applied to design techniques, Occam’s razor biases us towards using fewer and
simpler design languages and notations. However, experience indicates that both redun-
dancy and diversity can be beneficial. For example, there is benefit to using UML class
diagrams even if the information they represent is already encoded in a C++ program.
There is also value in UML use-case diagrams, which express concepts that are not
encoded in the C++ program and are also not (directly) represented in the UML class
diagram. The three representations serve different purposes, though they represent the
same underlying process.

The fact that many different notations are used in UML and its derivatives runs counter
to the principle in Occam’s razor. Ironically, the unified modeling language (UML) orig-
inated in the 1990s to reduce the diversity of notations used to express object-oriented
software architectures (Booch et al., 1998). So what is gained by this anti-razor?

Design of software systems is essentially a creative process; engineers create
programs that did not previously exist. Occam’s razor should be applied only cautiously
to creative processes, because creativity often flourishes when there are multiple media
with which to achieve the desired effect. UML facilitates the creative process by
offering more abstract notations than C++ source code, and these notations encourage
experimentation with design and communication of design ideas.
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Sidebar: About Heterogeneous Models

Some authors use the term multi-paradigm modeling to describe approaches that
mix models of computation (Mosterman and Vangheluwe, 2004). Ptolemy II focuses
on techniques that combine actors with multi-paradigm modeling. An early systematic
approach to such mixed models was realized in Ptolemy Classic (Buck et al., 1994), the
predecessor to Ptolemy II (Eker et al., 2003). Influenced by the Ptolemy approach, Sys-
temC is capable of realizing multiple MoCs (Patel and Shukla, 2004; Herrera and Villar,
2006). So are ModHel’X (Hardebolle and Boulanger, 2007) and ForSyDe (Jantsch,
2003; Sander and Jantsch, 2004).

Another approach supports mixing concurrency and communication mechanisms
without the structural constraints of hierarchy (Goessler and Sangiovanni-Vincentelli,
2002; Basu et al., 2006). A number of other researchers have tackled the problem of
heterogeneity in creative ways (Burch et al., 2001; Feredj et al., 2009).

It is also possible to use tool integration, where different modeling tools are com-
bined either through interchange languages or through co-simulation (Liu et al., 1999;
University of Pennsylvania MoBIES team, 2002; Gu et al., 2003; Karsai et al., 2005).
This approach is challenging, however, and yields fragile tool chains. Many tools lack
documentation on how and where they can be extended to enable cross-tool integra-
tion; implementing and maintaining integration requires considerable effort. Challenges
include API incompatibilities, unstable or undocumented APIs, unclear semantics, syn-
tactic incompatibilities, and unmaintainable code bases.Tool integration proves to be a
painful way to accomplish heterogeneous design. A better approach is to focus on the se-
mantics of interoperation, rather than on the software problems of tool integration. Good
software architectures for interoperation will emerge only from a good understanding of
the semantics of interoperation.

In Ptolemy, each model contains a director that specifies the MoC being used and
provides either a code generator or an interpreter for the MoC (or both). An interesting
alternative is given by “42” (Maraninchi and Bhouhadiba, 2007), which integrates a
custom MoC with the model.
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Sidebar: Tools Supporting Heterogeneous Models

Several widely used tools provide fixed combinations of a few MoCs. Commercial
tools include Simulink/StateFlow (from The MathWorks), which combines continuous-
and discrete-time actor models with finite-state machines, and LabVIEW (from Na-
tional Instruments), which combines dataflow actor models with finite-state machines
and a time-driven MoC. Statemate (Harel et al., 1990) and SCADE (Berry, 2003) com-
bine finite-state machines with a synchronous/reactive formalism (Benveniste and Berry,
1991). Giotto (Henzinger et al., 2001) and TDL (Pree and Templ, 2006) combine FSMs
with a time-driven MoC. Several hybrid system modeling and simulation tools combine
continuous-time dynamical systems with FSMs (Carloni et al., 2006).

The Y-chart approach supports heterogeneous modeling and is popular for hardware-
software codesign (Kienhuis et al., 2001). This approach separates modeling of the
hardware implementation from modeling of application behavior (a form of multi-
view modeling), and provides mechanisms for bringing these disparate models together.
These mechanisms allow developers to trade off hardware cost and complexity with
software design. Metropolis is a particularly elegant tool for this purpose (Goessler and
Sangiovanni-Vincentelli, 2002). It introduces a “quantity manager” that mediates inter-
actions between the desired functionality and the resources required to implement that
functionality.

Modelica (Fritzson, 2003; Modelica Association, 2009) also has actor-like semantics
in the sense that components are concurrent and communicate via ports, but the ports
are neither inputs nor outputs. Instead, the connections between ports declare equation
constraints on variables. This approach has significant advantages, particularly for spec-
ifying physical models based on differential-algebraic equations (DAEs). However, the
approach also appears to be harder to combine heterogeneously with other MoCs.

DESTECS (design support and tooling for embedded control software) is a tool
supported by a consortium from academia and industry that has a focus on fault-tolerant
embedded systems (Fitzgerald et al., 2010). This tool integrates continuous-time
models made in 20-sim (Broenink, 1997) and discrete-event models in VDM (Vienna
Development Method) (Fitzgerald et al., 2008). DESTECS synchronizes time and
passes variables between the two tools.
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1.7 Models of Time

Some models of computation have a notion of time. Specifically, this means that com-
munication between actors and computation performed by actors occurs on a logical time
line. Even more specifically, this means that there is a notion of two actions (communica-
tion or computation) being either ordered in time (one occurs before the other) or being
simultaneous. A notion of time may also have a metric, meaning (loosely) that the time
gap between two actions may be measured.

A key mechanism that Ptolemy II provides for interoperability of domains is a coherent
notion of time. This mechanism has proven effective even for combining models of com-
putation that have no notion of time (such as dataflow models and finite state machines),
with models of computation that depend strongly on time (such as discrete-event models
and continuous-time models). In this section, we outline key features of this mechanism.

1.7.1 Hierarchical Time

The model hierarchy discussed in Sections 1.5 and 1.6 is central to the management of
time. Typically, only the top-level director advances time. Other directors in a model
obtain the current model time from their enclosing director. If the top-level director does
not implement a timed model of computation, then time does not advance. Hence, timed
models always contain a top-level director that implements a timed model of computation.

Timed and untimed models of computation may be interleaved in the hierarchy. As we
will discuss later, however, there are certain combinations that do not make sense, while
other combinations are particularly useful, particularly the modal models discussed in
Chapter 8.

Time can also advance non-uniformly in a model. In the modal models of Chapter 8,
the advancement of time can be temporarily suspended in a submodel (Lee and Tripakis,
2010). More generally, as explained in Chapter 10, time may also progress at different
rates at different levels of the hierarchy. This feature is particularly useful for modeling
distributed systems where maintaining a perfectly coherent uniform time base is not phys-
ically possible. It is referred to as multiform time, and it enables highly realistic models
that explicitly recognize that time can only be imperfectly measured.
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1.7.2 Superdense Time

In addition to providing multiform time, Ptolemy II provides a model of time known as
superdense time (Manna and Pnueli, 1993; Maler et al., 1992; Lee and Zheng, 2005;
Cataldo et al., 2006). A superdense time value is a pair (¢, n), called a time stamp, where
t is the model time and n is a microstep (also called an index). The model time repre-
sents the time at which some event occurs, and the microstep represents the sequencing
of events that occur at the same model time. Two time stamps (¢,n1) and (¢, n2) can be
interpreted as being simultaneous (in a weak sense) even if n; # my. A stronger no-
tion of simultaneity would require the time stamps to be equal (both in model time and
microstep). An example illustrates the value of superdense time.

Example 1.3: To understand the role of the microstep, consider Newton’s cradle,
a toy with five steel balls suspended by strings, shown in Figure 1.5. If you lift the
first ball and release it, it strikes the second ball, which does not move. Instead, the
fifth ball reacts by rising.

Figure 1.5: Newton’s cradle. Image by Dominique Toussaint, made available
under the terms of the GNU Free Documentation License, Version 1.2 or later.
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Consider the momentum p of the second ball as a function of time. The second ball
does not move, so its momentum must be everywhere zero. But the momentum of
the first ball is somehow transferred to the fifth ball, passing through the second
ball. So the momentum cannot be always zero.

Let R represent the real numbers. Let p: R — R be a function that represents the
momentum of this second ball, and let 7 be the time of the collision. Then

P ift=r
p(t) = { 0 otherwise o)

for some constant P and for all ¢t € R. Before and after the instant of time 7,
the momentum of the ball is zero, but at time 7, it is not zero. Momentum is
proportional to velocity, so

p(t) = Mu(t),
where M is the mass of the ball. Hence, combining with (1.1),
P/M ift=r7
o) = { 0 otherwise. (1.2)

The position of a mass is the integral of its velocity,

where x(0) is the initial position. The integral of the function given by (1.2) is
zero at all ¢, so the ball does not move, despite having a non-zero momentum at an
instant.

The above physical model mostly works to describes the physics, but has two flaws.
First, it violates the basic physical principle of conservation of momentum. At
the time of the collision, all three middle balls will simultaneously have non-zero
momentum, so seemingly, aggregate momentum has magically increased. Second,
the model cannot be directly converted into a discrete representation.

A discrete representation of a signal is a sequence of values that are ordered in time
(for mathematical details, see the sidebar on page 334). Any such representation
of the momentum in (1.1) or velocity in (1.2) is ambiguous. If the sequence does
not include the value at the time of the collision, then the representation does not
capture the fact that momentum is transferred through the ball. If the representa-
tion does include the value at the time of the collision, then the representation is
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indistinguishable from a representation of a signal that has a non-zero momentum
over some interval of time, and therefore models a ball that does move. In such a
discrete representation, there is no semantic distinction between an instantaneous
event and a rapidly varying continuous event.

Superdense time solves both problems. Specifically, the momentum of the second
ball can be unambiguously represented by a sequence of samples where p(7,0) =
0, p(r,1) = P, and p(7,2) = 0, where 7 is the time of the collision. The third
ball has non-zero momentum only at superdense time (7,2). At the time of the
collision, each ball first has zero momentum, then non-zero, then zero again, all in
an instant. The event of having non-zero momentum is weakly simultaneous for
all three middle balls, but not strongly simultaneous. Momentum is conserved, and
the model is unambiguously discrete.

One could argue that the physical system is not actually discrete. Even well-made
steel balls will compress, so the collision is actually a continuous process, not a
discrete event. This is true, but when building models, we do not want the modeling
formalism to force us to construct models that are more detailed than is appropriate.
Such a model of Newton’s cradle would be far more sophisticated, and the resulting
non-linear dynamics would be far more difficult to analyze. The fidelity of the
model would improve, but at a steep price in understandability and analyzability.

The above example shows that physical processes that include instantaneous events are
better modeled using functions of the form p: R x N — R, where N represents the
natural numbers, rather than the more conventional p: R — R. The latter is adequate for
continuous processes, but not for discrete events. At any time ¢ € R, the signal p has a
sequence of values, ordered by their microsteps. This signal cannot be misinterpreted as
a rapidly varying continuous signal.

We say that two time stamps (¢1, 1) and (t2,ng) are weakly simultaneous if ¢; = to,
and strongly simultaneous if, in addition, ny = no.

Thus we can represent causally-related, but weakly simultaneous events. A signal may
have two distinct events at with time stamps (¢,m1) and (¢,n2), where ny # ns. A
signal may therefore include weakly simultaneous, but distinct, events. Two distinct sig-
nals may contain strongly simultaneous events, but a single signal cannot contain two
distinct strongly simultaneous events. This model of time unambiguously represents dis-
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crete events, discontinuities in continuous-time signals, and sequences of zero-time events
in discrete signals.

Superdense time is ordered lexicographically (like a dictionary), which means that (¢1,n;) <
(t2,m2) if either 1 < t9, or t; = to and n; < ng. Thus, an event is considered to occur
before another if its model time is less or, if the model times are the same, if its microstep

is lower. Time stamps are a particular realization of tags in the tagged-signal model of
Lee and Sangiovanni-Vincentelli (1998).

1.7.3 Numeric Representation of Time

Computers cannot perfectly represent real numbers, so a time stamp of form (t,n) €
R x N is not realizable. Many software systems approximate a time ¢ using a double-
precision floating point number. But such a representation has two serious disadvantages.
First, the precision of a number (how close it is to the next smaller or large representable
number) depends on its magnitude. Thus, as time increases in such systems, the precision
with which time is represented decreases. Second, addition and subtraction can introduce
quantization errors in such a representation, so it is not necessarily true that (¢; +t2)+t3 =
t1 + (t2 + t3). This significantly weakens the semantic notion of simultaneity, since
whether two events are (weakly or strongly) simultaneous may depend on how their time
stamps were computed.

Ptolemy II solves this problem by making the time resolution a single, global constant.
Model time is given as ¢t = mr, where m is an arbitrarily large integer, and the time
resolution 7 is a double-precision floating point number. The multiple m is realized as a
Java Biglnteger (an arbitrarily large integer), so it will never overflow. The time resolution
r, a double, is a parameter shared by all the directors in a model. A model, therefore, has
the same time resolution throughout its hierarchy and throughout its execution, no matter
how big time gets. Moreover, addition and subtraction of time values does not suffer
quantization errors. By default, the time resolution is » = 1079, which may represent
one tenth of a nanosecond. Then, for example, m = 10! represents 10 seconds.

In Ptolemy II, the microstep n in a time stamp (¢, n) is represented as an int, a 32-bit inte-
ger. The microstep, therefore, is vulnerable to overflow. Such overflow may be prevented
by avoiding models that have chattering Zeno behavior, as discussed in Chapter 7.

Ptolemaeus, System Design 23


http://Ptolemy.org

1.8. OVERVIEW OF DOMAINS AND DIRECTORS

( Functional ) (Seq uential) (Concurrent)

N~

( Event Graphs ) (State Machines) ( Untimed )

(Rendezvous) (Process Networks) (Dataﬂow)l‘:’/ (Synchrnnous Reactive

(Dynamic Dataﬂow) (Synchronous Dataflow) (Continuous Time) (Discrete Events)

Equational

Figure 1.6: Summary of the relationship between models of computation. The
ones with bold outlines are covered in detail in this Book.

1.8 Overview of Domains and Directors

In Ptolemy II an implementation of a model of computation is called a domain.” In this
section, we briefly describe domains that have been realized in Ptolemy II. This is not a
complete list; the intent is to show the diversity of the models of computation under study.
These and other domains are described in subsequent chapters in more detail. Figure 1.6
summarizes the relationships between these domains.

All of the domains discussed here ensure determinism unless the model explicitly spec-
ifies nondeterministic behavior. That is, nondeterminism, if desired, must be explicitly
built into the models; it does not arise accidentally from weak semantics in the model-
ing framework. A domain is said to be determinate if the signals sent between actors —

"The term “domain” comes from a fanciful notion in astrophysics, that there are regions of the universe
with different sets of laws of physics. A model of computation represents the “laws of physics” of the
submodel it governs.
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including data values carried by messages, their order, and their time stamps — do not
depend on arbitrary scheduling decisions, despite the concurrency in the model. Ensuring
determinism is far from trivial in concurrent MoCs, and providing reasonable nondeter-
minate mechanisms is also challenging. The goal is that, when a model includes nonde-
terminate behavior, it should be explicitly specified by the builder of the model; it should
not appear accidentally, nor should it surprise the user.

Dataflow. Ptolemy II includes several dataflow domains, described in Chapter 3. The
execution of an actor in dataflow domains consists of a sequence of firings, where each
firing occurs as a reaction to the availability of input data. A firing is a (typically small)
computation that consumes the input data and produces output data.

The synchronous dataflow (SDF) domain (Lee and Messerschmitt, 1987b) is particularly
simple, and is possibly the most used domain of all. When an actor is executed in SDF,
it consumes a fixed amount of data from each input port, and produces a fixed amount
of data to each output port. An advantage of the SDF domain is that (as described in
Chapter 3) the potential for deadlock and boundedness can be statically checked, and
schedules (including parallel schedules) can be statically computed. Communication in
this domain is realized with first-in, first-out (FIFO) queues with fixed finite capacity,
and the execution order of components is statically scheduled. SDF can be timed or
untimed, though it is usually untimed, as suggested in Figure 1.6.

In contrast, the dynamic dataflow (DDF) domain is more flexible than SDF and computes
schedules on the fly. In DDF, the capacity of the FIFO queues is not bounded. DDF
is useful when communication patterns between actors are dependent on the data that is
passed between actors.

Dataflow models are ideal for representing streaming systems, where sequences of data
values flow in relatively regular patterns between components. Signal processing systems,
such as audio and video systems, for example, are a particularly good match.

Process Networks. In the process network (PN) domain, described in Chapter 4, ac-
tors represent concurrent processes that communicate by (conceptually infinite capacity)
FIFO queues (Lee and Parks, 1995). Writing to the queues always succeeds immediately,
while reading from an empty queue blocks the reader process. The simple blocking-read,
nonblocking-write strategy ensures the determinacy of the model (Kahn and MacQueen,
1977). Nevertheless, we have extended the model to support certain forms of nonde-
terminism. Each actor executes in its own Java thread, so on multicore machines they
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can execute in parallel. This domain is untimed. The PN domain realizes a generaliza-
tion of dataflow where instead of discrete firings, actors represent continually executing
processes (Lee and Matsikoudis, 2009).

PN is suitable for describing concurrent processes that communicate asynchronously by
sending messages to one another. Messages are eventually delivered in the same order
they are sent. Message delivery is presumed to be reliable, so the sender does not expect
nor receive any confirmation. This domain has a “send and forget” flavor.

PN also provides a relatively easy way to get parallel execution of models. Each actor
executes in its own thread, and most modern operating systems will automatically map
threads onto available cores. Note that if the actors are relatively fine-grained, meaning
that they perform little computation for each communication, then the overhead of mul-
tithreading and inter-thread communication may overwhelm the performance advantages
of parallel execution. Thus, model builders should expect performance advantages only
for coarse-grained models.

Rendezvous. The Rendezvous domain, also described in Chapter 4, is similar to PN in
that actors represent concurrent processes. However, unlike PN’s “send and forget” se-
mantics, in the Rendezvous domain, actors communicate by atomic instantaneous data
exchanges. When one actor sends data to another, the sender will block until the receiver
is ready to receive. Similarly, when one actor attempts to read input data, it will block
until the sender of the data is ready to send the data. As a consequence, the process
that first reaches a rendezvous point will stall until the other process reaches the same
rendezvous point (Hoare, 1978). It is also possible in this domain to create multi-way
rendezvous, where several processes must all reach the rendezvous point before any pro-
cess can continue. Like PN, this domain is untimed, supports explicit nondeterminism,
and can transparently leverage multicore machines.

The Rendezvous domain is particularly useful for modeling asynchronous resource con-
tention problems, where a single resource is shared by multiple asynchronous processes.

Synchronous-Reactive. The synchronous-reactive (SR) domain, described in Chapter
5, is based on the semantics of synchronous languages (Benveniste and Berry, 1991;
Halbwachs et al., 1991; Edwards and Lee, 2003a). The principle behind synchronous
languages is simple, although the consequences are profound. Execution follows “ticks”
of a global “clock.” At each tick, each variable (represented visually in Ptolemy II by
the wires that connect the blocks) may or may not have a value. Its value (or absence of
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Figure 1.7: A simple feedback system.

value) is given by an actor whose output port is connected to the wire. The actor real-
izes a function that maps the values at its input ports to the values at its output ports (the
function can vary from tick to tick). For example, in Figure 1.7, the variables = and y at a
particular tick are related by

r = f(y), and y = g(x).

The task of the domain’s director is to find, at each tick, values of x and y that solve these
equations. This solution is called a fixed point. The SR domain is by default untimed,
but it can optionally be timed, in which case there is a fixed time interval between ticks.®

The SR domain is similar to dataflow and PN in that actors send streams of data to one
other. Unlike dataflow, however, the streams are synchronized; at a tick of the clock, ev-
ery communication path either has a message, or the message is unambiguously absent.
Dataflow models, by contrast, are more asynchronous; a message may be “absent” simply
because it hasn’t arrived yet due to an accident of scheduling. To prevent nondeterminism,
PN and dataflow have no semantic notion of an “absent” input. Inputs always have mes-
sages (or will have messages, in which case the actor is required to wait for the messages
to arrive).

SR is well suited to situations with more complex control flow, where an actor may take
different actions depending on whether a message is present or not. By synchronizing
actions, the domain handles these scenarios without nondeterminism. SR is less concur-
rent than dataflow or PN, since each tick of the clock must be tightly orchestrated. As a
consequence, it is harder to execute in parallel.

Finite-State Machine. The finite state machine (FSM) domain, described in Chapter 6,
is the only domain discussed here that is not concurrent. The components in this domain

81f you need a variable time interval between ticks, you can accomplish this by placing an SR model
within a DE model.
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are not actors, but rather represent states, and the relations represent not communication
paths, but rather transitions between states. Transitions have guards that determine when
state transitions occur.

An FSM can be used to define the behavior of an actor used in any of the other domains.
The actor can have any number of input and output ports. When that actor executes,
the FSM reads the inputs, evaluates the guards to determine which transition to take,
and produces outputs as specified on the selected transition. FSMs can also have local
variables whose values can be modified by transitions (providing a model of computation
that is known as an extended state machine).

An FSM can also be used to create a rich class of hierarchical models known as modal
models, discussed in Chapter 8 (Lee and Tripakis, 2010). In a modal model, states of
an FSM contain submodels that process inputs and produce outputs. Each state of the
FSM represents a mode of execution, and the mode refinement defines the behavior in
that mode. The mode refinement is a submodel with its own director that is active only
when the FSM is in the corresponding state. When a submodel is not active, its local time
does not advance, as explained above in Section 1.7.1.

Discrete Event. In the discrete-event (DE) domain, described in Chapter 7, actors com-
municate through events placed on a time line. Each event has a value and a time stamp,
and actors process events in chronological order. The output events produced by an actor
are required to be no earlier in time than the input events that were consumed. In other
words, actors in DE are causal.

The execution of this model uses a global event queue. When an actor generates an output
event, the event is slotted into the queue according to its time stamp. During each iteration
of a DE model, the events with the smallest time stamp are removed from the global event
queue, and their destination actor is fired. The DE domain supports simultaneous events.
At each time where at least one actor fires, the director computes a fixed point, similar to
SR (Lee and Zheng, 2007). DE is closely related to the well-known DEVS (discrete event
system specification) formalism (Zeigler et al., 2000), which is widely used for simulating
large, complex systems. The semantics of the Ptolemy II variant of DE is given by Lee
(1999).

DE is well suited for modeling the behavior of complex systems over time. It can model
networks, digital hardware, financial systems, and human organizational systems, for ex-
ample. Chapter 10 shows how DE can be extended to leverage multiform time.
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Continuous time. The Continuous time domain (Lee and Zheng, 2005), described in
Chapter 9, models ordinary differential equations (ODEs), while also supporting discrete
events. Special actors that represent integrators are connected in feedback loops in order
to represent the ODEs. Each connection in this domain represents a continuous-time
function, and the components denote the relations between these functions.

The Continuous model computes solutions to ODEs using numerical methods. As with
SR and DE, at each instant, the director computes a fixed point for all signal values (Lee
and Zheng, 2007). In each iteration, time is advanced by an amount determined by the
ODE solver. To advance time, the director chooses a time stamp with the help of a solver
and speculatively executes actors through this time step. If the time step is sufficiently
small (key events such as level crossings, mode changes, or requested firing times are
not skipped over, and the numerical integration is sufficiently accurate), then the director
commits the time increment.

The Continuous director interoperates with all other timed Ptolemy II domains. Combin-
ing it with FSMs yields a particular form of modal model known as a hybrid system (Lee
and Zheng, 2005; Lee, 2009). Combinations with discrete-event and synchronous/reactive
domains are also useful (Lee and Zheng, 2007).

Ptera. The Ptera domain, described in Chapter 11, realizes a variant of event graphs. In
Ptera, the components are not actors. Instead, the components are events, and the connec-
tions between components are triggering relations for events. A Ptera model represents
how events in a system can trigger other events. Ptera is a timed model, and like FSM,
it can be used to define the behavior of an actor to be used in another domain. In ad-
dition, events can be composites in that they have actions associated with them that are
themselves defined by a submodel specified using another domain. Ptera is useful for
specifying timed behaviors where input events may trigger chain reactions.

1.9 Case Study

Cyber-physical systems are intrinsically heterogeneous. CPS models, therefore, benefit
from being able to combine models of computation. In this section, we walk through an
example that uses several models of computation. The example is highly simplified, but
with a little imagination, it is easy to see how the model can evolve to become an accurate
and complete model of a large complex system. In particular, the large complex system
we have in mind is an electric power system in a smart grid or on a vehicle (such as
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an airplane or advanced ground vehicle). In such a system, there are multiple sources of
electric power (windmills, solar panels, turbines, backup generators, etc.) that must be co-
ordinated to provide power to a multiplicity of loads. The system includes controllers that
regulate the generators to keep voltages and frequencies near constant, and supervisory
controllers that connect and disconnect loads and generators to provide services and han-
dle faults to protect equipment. Such a system also includes networks whose dynamics
may affect the overall behavior of the system.

Here, we illustrate a highly simplified version of such a system to show how the various
MoCs come into play.

Example 1.4: A simplified model of a gas-powered generator that may be con-
nected to and disconnected from a load is shown in Figure 1.8. This is a continuous-
time model, as indicated by the Continuous director, which is discussed in Chapter
9. The model has two inputs, a drive signal, and a loadAdmittance. The output is
a voltage signal. In addition, the model has three parameters, a time constant 7, an
output impedance Z, and a drive limit L. The model gives the output voltage of a
generator over time as the generator gets more or less gas (specified by the drive
input), and as the load varies (as specified by the loadAdmittance input).

This model exhibits simplified linear and nonlinear dynamics. The nonlinear dy-
namics is realized by the Limiter actor (see the sidebar on page 57), which limits

oT:T Time constant Continuous Director

[ AlvA Output impedance

e L: Infinity Drive limit

Limiter
drive L AddSubtract Scale Integrator
0.0 | '

Expression
V/1+A*2)

voltage

loadAdmittance

Figure 1.8: Simplified model of a gas-powered generator. [online]
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the drive input. In particular, if the drive input becomes negative, it sets the drive
to zero (you cannot extract gas from a generator). It also saturates the drive input
at an upper bound given by the parameter L, which defaults to Infinity, meaning
that there is no saturation (this generator can accept an arbitrarily large drive input).

The linear dynamics in this model is given by the small feedback loop, which in-
cludes an AddSubtract actor, a Scale actor, and an Integrator. If the output of the
limiter is D, then this loop gives a value V that satisfies the following ordinary

differential equation,
av 1
—=—(D-V
where both D and V are functions of time (see Chapter 9 to understand how this
model yields the above equation).

For our purposes here, understanding this equation is not important, since this part
of such a model would typically be constructed by a mechanical engineer who is an
expert in such models, but we can nevertheless make some intuitive observations.
First, if D = V, then the derivative is zero, so the generator is stable and will
produce an unchanging output. Second, when D # V/, the feedback loop adjusts
the value of V' to make it closer to D. If D > V, then this equation makes the
derivative of V' positive, which means that V' will increase. If D < V, then the
derivative is negative, so V' will decrease. In fact, the output V' will converge to D
exponentially with time constant 7'. A time constant is the amount of time that an
exponential signal takes to reach 1 — 1/e =~ 63.2% of its final (asymptotic) value.

The last part of the model is the part that models the effect of the load. This effect is
modeled by the Expression actor (see Section 13.2.4), which uses Ohm’s law to cal-
culate the output voltage as a function of the value V' (representing the generator’s
effort), the output impedance Z, and the load admittance A. An electrical engineer
would recognize this calculation as the realization of a simple voltage divider.

For our purposes, it is sufficient to notice that if A = 0 (there is no load) or Z = 0
(the generator is an ideal voltage source with no output impedance), then the voltage
output is equal to the effort V. A real generator, however, will have a non-zero
output impedance. As the load admittance A increases from zero, the output voltage
will drop.
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The above model is about the simplest interesting model of continuous dynamics. To
integrate this model with digital controllers, we could wrap the model in another one that
defines the discrete interfaces, as shown next.

Example 1.5: The Generator model of Figure 1.8 is wrapped to provide a discrete
interface in Figure 1.9. Here, the drive and loadAdmittance inputs go to instances
of the ZeroOrderHold actor. These inputs, therefore, can be provided as discrete
events rather continuous-time signals. The ZeroOrderHold actor converts these
discrete events into continuous-time signals by holding the value constant between
arrivals of events (see Section 9.2).

The output voltage goes through a PeriodicSampler actor (see Section 9.2), which
produces discrete events that are samples of the output voltage. The sample period
is a parameter P of the model.

This model exposes the time constant 7 and output impedance Z, but hides the
drive limit L. Of course, the model designer could make other choices about which
parameters to expose.

Continuous Director

eT:5.0 Time constant
eZ:1.0 Output impedance
eP: 1.0 Sample period

ZeroOrderHold
drive
’—’J_Ll_ Generator PeriodicSampler

) voltage
. voltage
defaultvalue: 0.0 loadAdmittan S}D ._/—|

ZeroOrderHold?2 T samplePeriod: P
Z

loadAdmittance

defaultvalue: 0.0

Figure 1.9: The Generator model of Figure 1.8 wrapped to provide a discrete
interface. [online]
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Figure 1.10: A discrete-event model with a generator, a controller, and an over-
voltage protector. [online]

A continuous-time model may be embedded within a discrete-event model (see Chapter
7), as illustrated next.

Example 1.6: The DiscreteGenerator model of Figure 1.9 is embedded in a
discrete-event model in Figure 1.10. This model has two parameters, the load ad-
mittance A and an over-voltage threshold OVT. The time constant 7" of the Dis-
creteGenerator is set to 5.0. This model includes two other components that we
will explain below, a Supervisor, which provides the over-voltage protection, and
a Controller, which regulates the drive input of the DiscreteGenerator based on
measurements of the output voltage.

In addition, this model includes a simple test scenario, where a SingleEvent actor
(see sidebar on page 241) requests that a load be connected at time 15.0, and a
TimedPlotter actor (see Chapter 17), which displays the results of a run of the
model, as shown in Figure 1.11.
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3 [ e

Figure 1.11: The plot produced by the model in Figure 1.10. [online]

In this test scenario, the load admittance is quite high (1.0) compared to the output
impedance (also 1.0), so when the load is connected at time 15, the voltage abruptly
drops to half its target value of 110 volts. The Controller compensates for this
by substantially increasing the drive, but this causes the voltage to overshoot the
target, and at time 24, to exceed the OVT threshold. The Supervisor reacts to this
over-voltage condition by disconnecting the load, which causes the voltage to spike
quite high, since the generator now has a substantial drive input. The Controller
eventually brings the voltage back to the target level.

Notice further that when the load is disconnected, the Controller takes the drive
signal negative. If this is a gas-powered generator, the Controller is trying to give
the generator a negative flow of gas. Fortunately, our generator model includes a
Limiter actor that prevents the model from actually providing that negative flow of
gas.

The model in Figure 1.10 includes two very different kinds of controllers, a supervisory
controller called Supervisor, and a low-level controller called simply Controller. These
two controllers are specified using two additional MoCs, as explained next.
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guard: onOff
output: loadAdmittance = A

onOff
loadAdmittance

fault

output: loadAdmittance = 0.0

guard: fault
output: loadAdmittance = 0.0

Figure 1.12: The Supervisor of Figure 1.10. [online]

Example 1.7: The Supervisor model of Figure 1.10 is a finite state machine, shown
in Figure 1.12. The notation here is explained in Chapter 6, but we can easily grasp
the general behavior.

This FSM has two inputs, onOff (a boolean that requests to connect or discon-
nect the load) and fault (a boolean that indicates that an over-voltage condition
has occurred). It has one output, loadAdmittance, which will be the actually load
admittance provided to the generator.

The initial state of the FSM is off. When an onOff input arrives that has value true,
the FSM will transition from the off state to the on state and produce a loadAdmit-
tance output with value given by A, a parameter of the model. This connects the
load.

When the FSM is in state on, if a fault event arrives with value true, then it will
transition to the final state fault and set the loadAdmittance to 0.0, disconnecting
the load. If instead an onOff event arrives with value false, then it will transition
to the state off and also disconnect the load. The difference between these two
transitions is that once the FSM has entered the fault state, it cannot reconnect the
load without a system reset (which will bring the FSM back to the initial state).
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Figure 1.13: The Controller of Figure 1.10. [online]

Example 1.8: The Controller model of Figure 1.10 is the dataflow model shown
in Figure 1.13. This model uses the SDF director (see Chapter 3), which is suitable
for sampled-data signal processing. In this case, the controller compares the input
voltage against a desired voltage (110 volts), and feeds the resulting error signal
into a PID controller. A PID controller is a commonly used linear time-invariant
system. A control engineer would know how to set the parameters of this controller,
but in this case, we have simply chosen some parameters experimentally to yield
an interesting test case.

Notice that the pieces of the model in Figure 1.10 are distinctly heterogeneous, touching
on several disciplines within engineering and computer science. Typically, models of this
type are the result of teams of engineers working together, and a framework that enables
these teams to compose their models can become extremely valuable.

Many elaborations of this model are easy to envision. For example:

e The Generator could be defined as an actor-oriented class, so that it can be instantiated
multiple times, and yet developed and maintained in a single centralized definition (see
Section 2.6).

e The Generator model could be elaborated to reflect more sophisticated linear and non-
linear dynamics using the techniques discussed in Chapter 9.

36 Ptolemaeus, System Design


http://ptolemy.org/systems/models/intro/GeneratorRegulatorProtector/index.html
http://Ptolemy.org

1. HETEROGENEOUS MODELING

e The Generator model could be elaborated to include frequency and phase effects, for
example by using complex-valued impedances and admittances together with a phasor
representation.

e Models with a variable size (e.g., n generators and m loads, where n and m are pa-
rameters) could be created using the higher-order components considered in Section
2.7.

e The effects of network timing, clock synchronization, and contention for shared re-
sources could be modeled using the techniques in Chapter 10.

e Signal processing techniques such as machine learning and spectral analysis, (see Chap-
ter 3), could be integrated into the control algorithms.

e A units system could be included to make the model precise about the units used to
measure time, voltage, frequency, etc.

e An ontology could be included to make the model precise about which signals and pa-
rameters represent voltages, admitances, impedances, etc., or even to make distinctions
between domain-specific concepts such as the internal voltage (effort) of a generator
vs. the voltage exhibited at its output, which is affected by its output impedance and
load.

1.10 Summary

Ptolemy II focuses on actor-oriented modeling of complex systems, providing a disci-
plined approach to heterogeneity and concurrency. The central notion in hierarchical
model decomposition is that of a domain, which implements a particular model of com-
putation. Technically, a domain serves to separate the flow of control and data between
components from the actual functionality of individual components. Besides facilitating
hierarchical models, this separation can dramatically increase the reusability of compo-
nents and models. The remainder of this book shows how to build Ptolemy II models and
how to leverage the properties of each of the models of computation.
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