Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Feb 14;64(1-3):103-14.
doi: 10.1016/s0168-3659(99)00145-5.

Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices

Affiliations
Comparative Study

Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices

M J Wissink et al. J Control Release. .

Abstract

Endothelial cell seeding, a promising method to improve the performance of small-diameter vascular grafts, requires a suitable substrate, e.g. crosslinked collagen. In addition, the growth of seeded endothelial cells can be improved by local release of a heparin-binding protein, basic fibroblast growth factor (bFGF). In this study, the influence of immobilization of heparin to collagen, crosslinked using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) in combination with N-hydroxysuccinimide (NHS), on the binding and release of bFGF was determined. Heparin was immobilized also using EDC and NHS. Furthermore, the effects of the release of bFGF from (heparinized) EDC/NHS-crosslinked collagen on the proliferation of seeded endothelial cells was studied in vitro. Immobilization of increasing amounts of heparin to EDC/NHS-crosslinked collagen (containing 14 free epsilon-amino groups per 1000 amino acid residues, E/N14C) resulted in binding of increasing amounts of bFGF to the material. Maximal bFGF binding was observed for E/N14C containing 20-30 mg heparin immobilized per gram of collagen which was obtained using a molar ratio of EDC to heparin-carboxylic acid groups of 0.4 for heparin immobilization (E/N14C-H(0.4)). Up to concentrations of 320 ng bFGF/ml, 10% of the added bFGF bound to E/N14C, while binding of bFGF to E/N14C-H(0.4) was 22%. The initial release rate of bFGF bound to E/N14C was much higher compared to bFGF bound to E/N14C-H(0.4): respectively, 30 vs. 2% in the first 6 h. After 10 days, the bFGF release from E/N14C and E/N14C-H(0.4) amounted to 83 vs. 42%, respectively. Binding of increasing amounts of bFGF resulted in increased growth of human umbilical vein endothelial cells (HUVECs) seeded on both E/N14C and E/N14C-H(0.4). Nevertheless, after 6 and 10 days of proliferation cell numbers on E/N14C-H(0.4) where higher than cell numbers on E/N14C, irrespective of the bFGF concentration used for loading of the matrix. It is concluded that heparinized, EDC/NHS-crosslinked collagen is a good synthetic vascular graft coating for in vivo endothelial cell seeding.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
admin 1
twitter 2