Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;13(10):1977-83.
doi: 10.1046/j.0953-816x.2001.01574.x.

Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context

Affiliations
Free article

Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context

J Uslaner et al. Eur J Neurosci. 2001 May.
Free article

Abstract

In the dorsal striatum, there are two major populations of medium spiny projection neurons. One population is positive for dynorphin mRNA (DYN+), and these cells project preferentially to the substantia nigra, forming the so-called 'direct pathway'. A second population is positive for enkephalin mRNA (ENK+), and these cells influence the substantia nigra indirectly, via the globus pallidus and subthalamic nucleus. Psychostimulant drugs, such as amphetamine and cocaine, are reported to induce immediate early genes (IEGs) in only one subpopulation of dorsal striatal projection neurons, DYN+ cells. However, this apparent selectivity appears to be a function of environmental context. We found that when given in the animal's home cage, amphetamine and cocaine increased expression of the IEG, c-fos, almost exclusively in DYN+ cells. However, when given in a novel environment, amphetamine and cocaine increased c-fos mRNA in both DYN+ and ENK+ cells. Furthermore, amphetamine and cocaine increased c-fos mRNA expression in the subthalamic nucleus when administered in the novel environment, but not when given at home. We conclude that the neural circuitry engaged by psychostimulant drugs, and their ability to induce specific patterns of gene expression, are determined by the environmental context in which they are experienced. This may be related to the ability of environmental novelty to facilitate psychostimulant drug-induced neuroplasticity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
admin 2
Project 3
twitter 2