Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Oct;20(5 Suppl):464S-472S; discussion 473S-475S.
doi: 10.1080/07315724.2001.10719185.

The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population

Affiliations
Review

The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population

R I Salganik. J Am Coll Nutr. 2001 Oct.

Abstract

Cellular oxidants, called reactive oxygen species (ROS), are constantly produced in animal and human cells. Excessive ROS can induce oxidative damage in cell constituents and promote a number of degenerative diseases and aging. Cellular antioxidants protect against the damaging effects of ROS. However, in moderate concentrations, ROS are necessary for a number of protective reactions. Thus, ROS are essential mediators of antimicrobial phagocytosis, detoxification reactions carried out by the cytochrome P-450 complex, and apoptosis which eliminates cancerous and other life-threatening cells. Excessive antioxidants could dangerously interfere with these protective functions, while temporary depletion of antioxidants can enhance anti-cancer effects of apoptosis. Experimental data are presented supporting these notions. The human population is heterogeneous regarding ROS levels. Intake of exogenous antioxidants (vitamins E, C, beta-carotene and others) could protect against cancer and other degenerative diseases in people with innate or acquired high levels of ROS. However, abundant antioxidants might suppress these protective functions, particularly in people with a low innate baseline level of ROS. Screening human populations for ROS levels could help identify groups with a high level of ROS that are at a risk of developing cancer and other degenerative diseases. It also could identify groups with a low level of ROS that are at a risk of down-regulating ROS-dependent anti-cancer and other protective reactions. Screening populations could provide a scientifically grounded application of antioxidant supplements, which could significantly contribute to the nation's health.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2