Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec;19(3):419-27.
doi: 10.1080/07391102.2001.10506751.

Solution structure of p21(Waf1/Cip1/Sdi1) C-terminal domain bound to Cdk4

Affiliations

Solution structure of p21(Waf1/Cip1/Sdi1) C-terminal domain bound to Cdk4

Y H Sung et al. J Biomol Struct Dyn. 2001 Dec.

Abstract

Cyclin-dependent kinase (Cdk) inhibitor p21(Waf1/Cip1/Sdi1), a multifunctional protein, has a major role as tumor suppressor, mediating G1/S arrest through inhibition of Cdks. Recent biological studies of Cyclin D1/Cdk4 have proposed that p21 C-terminal domain (p21(CT)) plays a key role as a potent Cdk4 inhibitor. We report here solution structures of p21(CT) for both the free and Cdk4-bound forms using 2D transferred NOE spectroscopy and dynamical simulated annealing calculations. Even though p21(CT) peptide is very flexible in the free state, when it bound to Cdk4, the structure becomes well structured in the binding domain. Therefore we propose that p21(CT) experiences an extensive conformational change upon Cdk4 binding. This structural change of p21(CT) may suggest the molecular mechanism of p21 for specificity and inhibition mode to assemble different cyclin-Cdk complexes. Especially, our data suggests that the D(149)FYHSKRR(156) region of p21 is critical for Cdk4 binding, indicating that the major driving force for complex originates from hydrophobic interaction between p21 and Cdk4.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

  NODES
HOME 2
Javascript 1
os 9
text 8
twitter 2
web 4