Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;21(2):139-47.
doi: 10.1016/s0945-053x(01)00197-4.

A structural model for force regulated integrin binding to fibronectin's RGD-synergy site

Affiliations

A structural model for force regulated integrin binding to fibronectin's RGD-synergy site

André Krammer et al. Matrix Biol. 2002 Mar.

Abstract

The synergy site on fibronectin's FN-III(9) module, located approximately 32 A away from the RGD-loop on FN-III(10), greatly enhances integrin alpha(5)beta(1) mediated cell binding. Since fibronectin is exposed to mechanical forces acting on the extracellular matrix in vivo, we used steered molecular dynamics to study how mechanical stretching of FN-III(9-10) affects the relative distance between these two synergistic sites. Our simulations predict the existence of an intermediate state prior to unfolding. In this state, the synergy-RGD distance is increased from 32 A to approximately 55 A, while the conformations of both sites remain unperturbed. This distance is too large for both sites to co-bind the same receptor, as indicated by experiments that confirm that increasing the length of the linker chain between FN-III(9) and FN-III(10) reduces alpha(5)beta(1) binding. Our simulations thus suggest that increased alpha(5)beta(1)-binding attributed to the synergy site, along with the associated downstream cell-signaling events, can be turned off mechanically by stretching FN-III(9-10) into this intermediate state. The potential physiological implications are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2