Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Nov 8;323(5):939-50.
doi: 10.1016/s0022-2836(02)01001-x.

Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics

Affiliations
Comparative Study

Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics

Mu Gao et al. J Mol Biol. .

Abstract

Experimental studies have indicated that FN-III modules undergo reversible unfolding as a mechanism of elasticity. The unfolding of FN-III modules, including the cell-binding FN-III(10) module, has further been suggested to be functionally relevant by exposing buried cryptic sites or modulating cell binding. While steered molecular dynamics (SMD) simulations have provided one tool to investigate this process, computational requirements so far have limited detailed analysis to the early stages of unfolding. Here, we use an extended periodic box to probe the unfolding of FN-III(10) for extensions longer than 60A. Up to three plateaus, corresponding to three metastable intermediates, were observed in the extension-time profile from SMD stretching of FN-III(10). The first and second plateaus correspond to a twisted and an aligned state prior to unraveling FN-III(10) beta-strands. The third plateau, at an extension of approximately 100A, follows unraveling of FN-III(10) A and B-strands and precedes breaking of inter-strand hydrogen bonds between F and G-strands. The simulations revealed three forced unfolding pathways of FN-III(10), one of which is preferentially selected under physiological conditions. Implications for fibronectin fibrillogenesis are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2