Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Jan;54(1):283-311.
doi: 10.1002/neu.10173.

Different data from different labs: lessons from studies of gene-environment interaction

Affiliations
Review

Different data from different labs: lessons from studies of gene-environment interaction

Douglas Wahlsten et al. J Neurobiol. 2003 Jan.

Abstract

It is sometimes supposed that standardizing tests of mouse behavior will ensure similar results in different laboratories. We evaluated this supposition by conducting behavioral tests with identical apparatus and test protocols in independent laboratories. Eight genetic groups of mice, including equal numbers of males and females, were either bred locally or shipped from the supplier and then tested on six behaviors simultaneously in three laboratories (Albany, NY; Edmonton, AB; Portland, OR). The behaviors included locomotor activity in a small box, the elevated plus maze, accelerating rotarod, visible platform water escape, cocaine activation of locomotor activity, and ethanol preference in a two-bottle test. A preliminary report of this study presented a conventional analysis of conventional measures that revealed strong effects of both genotype and laboratory as well as noteworthy interactions between genotype and laboratory. We now report a more detailed analysis of additional measures and view the data for each test in different ways. Whether mice were shipped from a supplier or bred locally had negligible effects for almost every measure in the six tests, and sex differences were also absent or very small for most behaviors, whereas genetic effects were almost always large. For locomotor activity, cocaine activation, and elevated plus maze, the analysis demonstrated the strong dependence of genetic differences in behavior on the laboratory giving the tests. For ethanol preference and water escape learning, on the other hand, the three labs obtained essentially the same results for key indicators of behavior. Thus, it is clear that the strong dependence of results on the specific laboratory is itself dependent on the task in question. Our results suggest that there may be advantages of test standardization, but laboratory environments probably can never be made sufficiently similar to guarantee identical results on a wide range of tests in a wide range of labs. Interpretations of our results by colleagues in neuroscience as well as the mass media are reviewed. Pessimistic views, prevalent in the media but relatively uncommon among neuroscientists, of mouse behavioral tests as being highly unreliable are contradicted by our data. Despite the presence of noteworthy interactions between genotype and lab environment, most of the larger differences between inbred strains were replicated across the three labs. Strain differences of moderate effects size, on the other hand, often differed markedly among labs, especially those involving three 129-derived strains. Implications for behavioral screening of _targeted and induced mutations in mice are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
Note 2
twitter 2