Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;12(2):97-109.
doi: 10.1016/s0969-9961(02)00009-8.

Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer's disease

Affiliations

Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer's disease

Pamela J Yao et al. Neurobiol Dis. 2003 Mar.

Abstract

Loss of synapses correlates with cognitive decline in Alzheimer's disease (AD). However, molecular mechanisms underlying the synaptic dysfunction and loss are not well understood. In this study, microarray analysis of brain tissues from five AD cases revealed a reduced expression of a group of related genes, all of which are involved in synaptic vesicle (SV) trafficking. By contrast, several synaptic genes with functions other than vesicle trafficking remained unchanged. Quantitative RT-PCR confirmed and expanded the microarray findings. Furthermore, immunoblotting showed that the protein level of at least one of these gene products, dynamin I, correlated with its reduced transcript. Immunhistochemical analysis exhibited an altered distribution of dynamin I immunolabeling in AD neurons. Microarray analysis of transgenic mice with mutated amyloid precursor protein showed that although the transcript levels for some of the SV trafficking-related genes are also decreased, the change in dynamin did not replicate the AD pattern. The results suggest a link among SV vesicle-trafficking pathways, synaptic malfunction, and AD pathogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

  NODES
twitter 2